Members Can Post Anonymously On This Site
-
Posts
4,764 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) By Wayne Smith Investigators at NASA’s Marshall Space Flight Center in Huntsville, Alabama, will use observations from a recently-launched sounding rocket mission to provide a clearer image of how and why the Sun’s corona grows so much hotter than the visible surface of Earth’s parent star. The MaGIXS-2 mission – short for the second flight of the Marshall Grazing Incidence X-ray Spectrometer – launched from White Sands Missile Range in New Mexico on Tuesday, July 16. NASA’s MaGIXS-2 sounding rocket mission successfully launched from White Sands Missile Range in New Mexico on July 16. United States Navy The mission’s goal is to determine the heating mechanisms in active regions on the Sun by making critical observations using X-ray spectroscopy. The Sun’s surface temperature is around 10,000 degrees Fahrenheit – but the corona routinely measures more than 1.8 million degrees, with active regions measuring up to 5 million degrees. Amy Winebarger, Marshall heliophysicist and principal investigator for the MaGIXS missions, said studying the X-rays from the Sun sheds light on what’s happening in the solar atmosphere – which, in turn, directly impacts Earth and the entire solar system. X-ray spectroscopy provides unique capabilities for answering fundamental questions in solar physics and for potentially predicting the onset of energetic eruptions on the Sun like solar flares or coronal mass ejections. These violent outbursts can interfere with communications satellites and electronic systems, even causing physical drag on satellites as Earth’s atmosphere expands to absorb the added solar energy. “Learning more about these solar events and being able to predict them are the kind of things we need to do to better live in this solar system with our Sun,” Winebarger said. The NASA team retrieved the payload immediately after the flight and has begun processing datasets. “We have these active regions on the Sun, and these areas are very hot, much hotter than even the rest of the corona,” said Patrick Champey, deputy principal investigator at Marshall for the mission. “There’s been a big question – how are these regions heated? We previously determined it could relate to how often energy is released. The X-rays are particularly sensitive to this frequency number, and so we built an instrument to look at the X-ray spectra and disentangle the data.” The MaGIXS-2 sounding rocket team stand on the launchpad in White Sands, New Mexico prior to launch on July 16, 2024. United States Navy Following a successful July 2021 launch of the first MaGIXS mission, Marshall and its partners refined instrumentation for MaGIXS-2 to provide a broader view for observing the Sun’s X-rays. Marshall engineers developed and fabricated the telescope and spectrometer mirrors, and the camera. The integrated instrument was exhaustively tested in Marshall’s state-of-the-art X-ray & Cryogenic Facility. For MaGIXS-2, the team refined the same mirrors used on the first flight, with a much larger aperture and completed the testing at Marshall’s Stray Light Test Facility. A Marshall project from inception, technology developments for MaGIXS include the low-noise CCD camera, high-resolution X-ray optics, calibration methods, and more. Winebarger and Champey said MaGIXS many of the team members started their NASA careers with the project, learning to take on lead roles and benefitting from mentorship. “I think that’s probably the most critical thing, aside from the technology, for being successful,” Winebarger said. “It’s very rare that you get from concept to flight in a few years. A young engineer can go all the way to flight, come to White Sands to watch it launch, and retrieve it.” NASA routinely uses sounding rockets for brief, focused science missions. They’re often smaller, more affordable, and faster to design and build than large-scale satellite missions, Winebarger said. Sounding rockets carry scientific instruments into space along a parabolic trajectory. Their overall time in space is brief, typically five minutes, and at lower vehicle speeds for a well-placed scientific experiment. The MaGIXS mission was developed at Marshall in partnership with the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts. The Sounding Rockets Program Office, located at NASA Goddard Space Flight Center’s Wallops Flight Facility, provides suborbital launch vehicles, payload development, and field operations support to NASA and other government agencies. Jonathan Deal Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 jonathan.e.deal@nasa.gov Lane Figueroa Marshall Space Flight Center, Huntsville, Ala. 256.932.1940 lane.e.figueroa@nasa.gov Share Details Last Updated Jul 18, 2024 LocationMarshall Space Flight Center Related TermsMarshall Space Flight CenterSounding RocketsSounding Rockets Program Explore More 15 min read The Marshall Star for July 17, 2024 Article 23 hours ago 4 min read NASA Marshall Engineers Unveil Versatile, Low-cost Hybrid Engine Testbed Article 6 days ago 15 min read The Marshall Star for July 10, 2024 Article 1 week ago Keep Exploring Discover More Topics From NASA Sounding Rockets For over 40 years the Sounding Rocket Program has provided critical scientific, technical, and educational contributions to the nation’s space… White Sands Test Facility Sun Overview The Sun’s gravity holds the solar system together, keeping everything – from the biggest planets to the smallest particles… Wallops Flight Facility View the full article
-
These images from NASA’s LRO spacecraft show a collection of pits detected on the Moon. Each image covers an area about 728 feet wide. An international team of scientists using data from NASA’s LRO (Lunar Reconnaissance Orbiter) has discovered evidence of caves beneath the Moon’s surface. In re-analyzing radar data collected by LRO’s Mini-RF (Miniature Radio-Frequency) instrument in 2010, the team found evidence of a cave extending more than 200 feet from the base of a pit. The pit is located 230 miles northeast of the first human landing site on the Moon in Mare Tranquillitatis. The full extent of the cave is unknown, but it could stretch for miles beneath the mare. Scientists have suspected for decades that there are subsurface caves on the Moon, just like there are on Earth. Pits that may lead to caves were suggested in images from NASA’s lunar orbiters that mapped the Moon’s surface before NASA’s Apollo human landings. A pit was then confirmed in 2009 from images taken by JAXA’s (Japan Aerospace Exploration Agency) Kaguya orbiter, and many have since been found across the Moon through images and thermal measurements of the surface taken by LRO. NASA’s LRO Finds Lunar Pits Harbor Comfortable Temperatures “Now the analysis of the Mini-RF radar data tells us how far these caves might extend,” said Noah Petro, LRO project scientist based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Lunar Pits Could Shelter Astronauts, Reveal Details of How ‘Man in the Moon’ Formed Like “lava tubes” found here on Earth, scientists suspect that lunar caves formed when molten lava flowed beneath a field of cooled lava, or a crust formed over a river of lava, leaving a long, hollow tunnel. If the ceiling of a solidified lava tube collapses, it opens a pit, like a skylight, that can lead into the rest of the cave-like tube. Evidence is mounting that an intricate, winding network of channels exist just below the surface of the Moon. These “lava tubes” are produced by underground flowing magma from ancient volcanoes. Credit: NASA Mini-RF is operated by The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities. By Lonnie Shekhtman NASA’s Goddard Space Flight Center, Greenbelt, Md. View the full article
-
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 8 min read The Earth Observer Editor’s Corner: Summer 2024 Welcome to a new era for The Earth Observer newsletter! This communication marks the official public release of our new website. While this release moves us into a new online future, the newsletter team has worked to ensure the new website also allows for continuity with our publication’s robust 35-year history. The Executive Editor has written a more detailed overview of our new site that is posted separately. I am happy to report on the success of several recent launches. The Geostationary Operational Environmental Satellite–U (GOES-U) successfully launched at 5:26 PM Eastern Daylight Time (EDT) on June 25 aboard a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. GOES-U (renamed GOES-19 after reaching geostationary orbit on July 8) is the fourth and final satellite in the GOES-R Series, providing advanced imagery and atmospheric measurements, real-time mapping of lightning activity, and space weather observations. Once the checkout phase is complete, NASA will hand operational control to NOAA. After checkout, the plan is for GOES-19 to replace GOES-16 (originally GOES–R) as GOES-East. GOES-19 will work in tandem with GOES-18 (GOES–T), NOAA’s GOES-West satellite, to enable observations from the west coast of Africa to New Zealand. In addition to its critical role in terrestrial weather prediction, the GOES constellation of satellites helps forecasters predict near Earth space weather that can interfere with satellite and terrestrial electronics and communication. The GOES-U satellite goes beyond the capabilities of its predecessors with a new space weather instrument, the Compact Coronagraph-1 (CCOR-1), which blocks light from the solar disk to allow imagery of the faint solar corona, providing low latency observations for detecting coronal mass ejections. Speaking of space weather, Solar Cycle 25 is nearing its peak, which typically results in an increase in solar activity and geomagnetic storms. A particularly intense geomagnetic storm took place in mid-May 2024—the strongest in over two decades The G5 storm culminated in a remarkable display of the aurora overnight—in both hemispheres—on May 10–11, visible from many areas worldwide—including latitudes where sightings of auroras are uncommon. It also caused concerns for the safety of some of NASA’s Earth science satellite missions, although fortunately there was no lasting impact. The aurora produced by the storm could be observed from the day-night band on the NASA–NOAA Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) that is sensitive enough to detect nighttime light across a broad band of wavelengths (green to near-infrared) to observe signals such as city lights, reflected moonlight, and auroras. VIIRS captured the image shown below on the night of May 11, 2024. Figure. The day-night band on Visible Infrared Imaging Radiometer Suite (VIIRS) captured this image of the aurora borealis that occurred on the night of May 11, 2024, as the culminating event of a particularly intense geomagnetic storm that occurred in May 2024. In this view, the northern lights appear as a bright white strip across parts of Montana, Wyoming, the Dakotas, Minnesota, Wisconsin, Iowa, and Michigan. Figure credit: NASA’s Earth Observatory There were two deployments from the International Space Station (ISS) as part of NASA’s Earth Science Technology Office (ESTO) In-Space Validation of Earth Science Technologies (InVEST) program. The SigNals Of Opportunity: P-band Investigation (SNOOPI) was launched on March 21 from NASA’s Cape Canaveral Space Force Station to the International Space Station aboard SpaceX’s Dragon cargo spacecraft (CRS-30) as part of the company’s thirtieth commercial resupply mission. On April 21, the instrument was released into orbit from the station. The SNOOPI mission will demonstrate and validate the in-space use of P-band (~300 MHz) signals of opportunity to measure root zone soil moisture and snow water equivalent, reducing the risk of utilizing this technique on future space missions. SNOOPI will also verify important assumptions about reflected signal coherence, robustness to the RFI environment, and the ability to capture and process the transmitted signal in space. James Garrison [Purdue University] is PI for SNOOPI, with co-investigators from GSFC. The Hyperspectral Thermal Imager (HyTI) CubeSat was also flown aboard CRS-30 and deployed from the ISS. HyTI is a technology demonstration mission by the University of Hawaiiʻi at Mānoa designed to demonstrate how high spatial resolution (60-m ground resolution), high spectral resolution (25 bands), and long-wave infrared image data can be acquired to monitor water resources using a 6U CubeSat. Robert Wright [University of Hawaiʻi at Mānoa] is principal investigator for HyTI. NASA is conducting the Arctic Radiation Cloud Aerosol Surface Interaction Experiment (ARCSIX) over the Arctic Ocean north of Greenland this spring and summer. Altogether, about 75 scientists (including sea ice surface researchers, aerosol researchers, and cloud researchers), along with instrument operators and flight crew, are participating in ARCSIX’s two phases based out of Pituffik Space Base in northwest Greenland. The first three-week deployment, from late May to mid-June of this year, was timed to document the start of the ice melt season. The second deployment will occur in late July and August to monitor late summer conditions leading up to the freeze-up period. As part of ARCSIX, NASA is flying two of its aircraft, with the first flights having occurred on May 28, 2024. The P-3 Orion aircraft from NASA’s Wallops Flight Facility flies at relatively low altitudes to characterize sea ice surface properties, the optical and microphysical properties of cloud and aerosol particles, atmospheric chemistry, radiative fluxes, and other lower atmospheric properties. At the same time, a Gulfstream III aircraft, managed by NASA’s Langley Research Center, flies at higher altitudes to provide hyperspectral imagery and obtain atmospheric profiles, adding a perspective similar to those of orbiting satellites. Two members of NASA’s Earth observing fleet celebrate milestone anniversaries this summer. The third of NASA’s EOS Flagships—Aura—marks 20 years in orbit on July 15. During the 1990s and early 2000s, an international team of engineers and scientists worked together to design the first integrated observatory for studying atmospheric composition. This was a “bold endeavor” at the time, intended to provide unprecedented detail essential to understanding how Earth’s ozone layer and air quality respond to changes in atmospheric composition caused by both human activities and natural phenomena, a key NASA Earth science objective. The Aura spacecraft (Latin for “breeze” and “air”) was launched on July 15, 2004, with its four instruments. Twenty years later, the spacecraft and two of its instruments, the Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI), are in remarkable shape, which is a testament to Aura’s solid engineering. MLS and OMI are remarkably stable, allowing for the continuation of their science- and trend-quality datasets. However, all good things must come to an end. Insufficient solar power generation will require that data collection end in mid-2026. In the meantime, MLS and OMI will continue to monitor the everchanging composition of Earth’s atmosphere. I extend my congratulations to Bryan Duncan [GSFC—Aura Project Scientist] and the entire Aura team, past and present, on this remarkable achievement. On July 2, 2024, the Orbiting Carbon Observatory-2 (OCO-2) celebrated ten years since its launch, marking a decade of gold-standard measurements of carbon dioxide (CO2) from space. OCO-2 was originally designed as a pathfinder mission to measure CO2 with the precision and accuracy needed to quantify regional sources and sinks of this key greenhouse gas. OCO-2 has tracked the relentless rise of CO2 in our atmosphere and has provided unprecedented information on where, when, and how CO2 is released into and removed from the atmosphere. OCO-2 data have provided new insights into how CO2 emissions are offset by natural carbon sinks such as forests and oceans. The data have demonstrated that spaceborne measurements can be used to accurately quantify CO2 emissions from power plants and cities. The long-term, global record has also been used to examine the two-way interactions between CO2 and climate. As the length of the data record has increased, OCO-2 is beginning to be able to provide policy-relevant information and to address an ever more diverse range of carbon cycle science questions. Because of the mission’s success, NASA now has two instruments in space monitoring Earth’s carbon cycle. OCO-2’s spare parts were repurposed and nested as OCO-3 on the International Space Station in 2019. OCO-2 is unique among NASA missions in providing near-global sampling in combination with the spectral resolution and signal to noise needed to provide CO2 with the sensitivity required to inform studies of the natural carbon cycle as well as anthropogenic sources. The OCO-2 mission has been and will remain a key element of any U.S. or international greenhouse gas observational network to enhance our scientific understanding of the carbon cycle and inform climate mitigation efforts. Congratulations to Vivienne Payne [JPL—OCO-2 Principal Investigator] and the entire OCO-2 team on this noteworthy achievement. The Earth Observer plans more in-depth feature coverage of both these missions celebrating milestones in July over the coming months. Last but certainly not least, I would like to congratulate Sarah Ringerud [GSFC] on being chosen as the Deputy Project Scientist for the Global Precipitation Measurement (GPM) mission. Ringerud holds a Ph.D. in Atmospheric Science with an emphasis on Remote Sensing from Colorado State University. Ringerud is a research meteorologist at GSFC, leading projects focused on GPM and future mission concepts. Her expertise lies in satellite algorithm development, particularly for microwave instruments, and she actively collaborates with government and academic partners to advance the field of precipitation remote sensing. Congratulations to Sarah and best wishes in her new role. Steve Platnick EOS Senior Project Scientist steven.e.platnick@nasa.gov Share Details Last Updated Jul 18, 2024 Related Terms Earth Science Uncategorized View the full article
-
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 3 min read The Earth Observer’s 35th Anniversary Welcome to a new era for The Earth Observer newsletter! Our 35th anniversary also marks the official public release of our new website. Over the past year and a half, The Earth Observer has migrated from a print publication (the last printed issue was November–December 2022) to publishing PDFs online only (final PDF issue published in May 2024) to publishing individual articles on our new site. While this move shifts The Earth Observer’s format to be more in line with that of other online publications, our intent is for the content to remain distinctive. Readers can expect to continue receiving the same quality reporting on NASA Earth Science activities that they have come to depend on from The Earth Observer for over 35 years. The release of the website coincides with a historical milestone for The Earth Observer. It was 35 years ago – in March 1989 – that the first print issue of the newsletter was produced. At that time, The Earth Observer was a crucial communication tool for the initial group of investigators for the Earth Observing System (EOS), which had been selected that same year. They depended on the periodic delivery of the newsletter to their physical mailboxes to keep them informed about decisions made at recent science team and payload panel meetings, and other activities related to the program. As communication technologies have evolved, so has The Earth Observer. The interweaving tale of the evolution of EOS and The Earth Observer has been told in previous issues of our publication. (For example, see The Earth Observer: Twenty-Five Years Telling NASA’s Earth Science Story in the March–April 2014 issue [Volume 26, Issue 2, pp. 4–13] and A Thirtieth Anniversary Reflection by the Executive Editor in the March–April 2019 issue [Volume 31, Issue 2 – online version, pp. 1–4.) Publishing content online marks the next step in the evolution of The Earth Observer. On the new website, readers will find overlapping content from our November–December 2023 and final PDF issues – as well as original content. To maintain a sense of continuity with our past, the content is organized much like previous issues. There are separate sections for Feature Articles, Meeting Summaries, News Content, and “The Editor’s Corner,” as well as Calendars for NASA and Global Science Community activities. Given The Earth Observer’s focus on history, and in keeping with the organization of our previous website, the new site also includes an Archives section where readers can view PDFs of all previous issues of The Earth Observer. There is also a listicle in which our team has compiled links to many of our most popular historical articles. In addition to articles written to mark anniversaries of The Earth Observer (including the two referenced earlier), the page contains a link to the popular Perspectives on EOS Series. These articles originally ran in The Earth Observer from 2008–2011, with each article focusing on a particular aspect (or aspects) of the early history of EOS from the perspective of someone who lived it. There are also links to articles that have been written to mark milestone anniversaries for satellite missions and observing networks, and to summaries of several symposia that include historical information. We hope readers find this collection of historical information a useful link to the past as The Earth Observer moves full speed ahead into its digital future. Share Details Last Updated Jul 18, 2024 Related Terms Earth Science View the full article
-
NASA/Eric Bordelon & Michael DeMocker On July 16, 2024, the first core stage of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission began a journey from NASA’s Michoud Assembly Facility in New Orleans. The core stage was moved onto the agency’s Pegasus barge, where it will be ferried 900 miles to NASA’s Kennedy Space Center in Florida. Once at Kennedy, engineers will prepare it in the Vehicle Assembly Building for attachment to other rocket and Orion spacecraft elements. The SLS rocket’s core stage is the largest NASA has ever produced. At 212 feet tall, it consists of five major elements, including two huge propellant tanks that collectively hold more than 733,000 gallons of super-chilled liquid propellant to feed four RS-25 engines. During launch and flight, the stage will operate for just over eight minutes, producing more than 2 million pounds of thrust to propel four astronauts inside NASA’s Orion spacecraft toward the Moon. Watch a timelapse video of the SLS core stage rollout. Image credit: NASA/Eric Bordelon & Michael DeMocker View the full article
-
Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers NASA invites a global community of innovators, technologists, storytellers, and problem solvers to register for the 2024 NASA Space Apps Challenge, the largest annual global hackathon. The annual event, held this year on October 5-6, fosters innovation through international collaboration by providing an opportunity for participants to utilize NASA’s free and open data and space-based data from space agency partners. “It takes a variety of skills and perspectives to launch a mission into space, and NASA’s Space Apps Challenge brings people together across cultures and borders toward solving real world problems on Earth and in space,” said Nicky Fox, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “I am excited that this year’s NASA Space Apps Challenge participants will join in our global Heliophysics Big Year celebration. I look forward to seeing all the innovative ideas that our future generation puts forth.” This year, the NASA Space Apps Challenge welcomes 15 international space agency partners, including two new agencies: the Communications, Space & Technology Commission of Saudi Arabia and the Spanish Space Agency. NASA Space Apps also welcomes back the Australian Space Agency, Brazilian Space Agency, Canadian Space Agency, European Space Agency, Indian Space Research Organization, Italian Space Agency, Japan Aerospace Exploration Agency, Mexican Space Agency, National Space Activities Commission of Argentina, National Space Science Agency of Bahrain, Paraguayan Space Agency, South African National Space Agency, and the Turkish Space Agency. During the NASA Space Apps Challenge, participants around the world gather at hundreds of simultaneous in-person and virtual local events to address challenges submitted by subject matter experts across NASA divisions. These challenges range in complexity and topic, tasking participants with everything from creating artistic visualizations of NASA data to conceptualizing and developing informational apps and software programs. In keeping with this year’s theme, “The Sun Touches Everything,” NASA Space Apps invites participants to consider the far-reaching influence of the Sun on Earth and space science. The theme connects participants with NASA’s Heliophysics Division’s celebration of the Helio Big Year. After the hackathon, project submissions are judged by space agency experts. Winners are selected for one of 10 global awards and invited to an in-person celebration with NASA leadership and subject matter experts. NASA Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse. The theme for the 2024 NASA Space Apps Challenge is funded by NASA Heliophysics Division. We invite you to register for the 2024 NASA Space Apps Challenge and choose a virtual or in-person local event near you at: spaceappschallenge.org Stay up to date with #SpaceApps by following these accounts: X: @SpaceApps Instagram: @nasa_spaceapps Facebook: @spaceappschallenge YouTube: @NASASpaceAppsChallenge View the full article
-
1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Ames Center Director Eugene Tu, left, and New Zealand Prime Minister Christopher Luxon, left, pose in front of the NASA Advanced Supercomputing facility hyperwall as it displays New Zealand and Earth’s ocean currents.NASA/ Brandon Torres Navarrete As one of eight nations that helped to develop the Artemis Accords, New Zealand is a valuable NASA partner. On July 12, New Zealand Prime Minister Christopher Luxon visited NASA’s Ames Research Center in California’s Silicon Valley to learn more about how Ames supports efforts to return humans to the Moon and the ongoing collaboration between NASA and New Zealand to observe and study Earth’s interconnected systems. Share Details Last Updated Jul 18, 2024 Related TermsAmes Research CenterGeneral Explore More 4 min read July 2024 Transformer of the Month: Brooke Weborg Article 4 hours ago 5 min read Experience the Launch of NASA’s SpaceX Crew-9 Mission Article 23 hours ago 1 min read Robotic Assembly and Outfitting for NASA Space Missions Article 2 days ago Keep Exploring Discover Related Topics Ames Research Center Artemis Accords SOFIA The Flying Observatory SOFIA, the Stratospheric Observatory for Infrared Astronomy, was a Boeing 747SP aircraft modified to carry a 2.7-meter… 6 Things to Know About Supercomputing at NASA View the full article
-
5 min read NASA: Life Signs Could Survive Near Surfaces of Enceladus and Europa Europa, a moon of Jupiter, and Enceladus, a moon of Saturn, have evidence of oceans beneath their ice crusts. A NASA experiment suggests that if these oceans support life, signatures of that life in the form of organic molecules (e.g. amino acids, nucleic acids, etc.) could survive just under the surface ice despite the harsh radiation on these worlds. If robotic landers are sent to these moons to look for life signs, they would not have to dig very deep to find amino acids that have survived being altered or destroyed by radiation. “Based on our experiments, the ‘safe’ sampling depth for amino acids on Europa is almost 8 inches (around 20 centimeters) at high latitudes of the trailing hemisphere (hemisphere opposite to the direction of Europa’s motion around Jupiter) in the area where the surface hasn’t been disturbed much by meteorite impacts,” said Alexander Pavlov of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, lead author of a paper on the research published July 18 in Astrobiology. “Subsurface sampling is not required for the detection of amino acids on Enceladus – these molecules will survive radiolysis (breakdown by radiation) at any location on the Enceladus surface less than a tenth of an inch (under a few millimeters) from the surface.” The frigid surfaces of these nearly airless moons are likely uninhabitable due to radiation from both high-speed particles trapped in their host planet’s magnetic fields and powerful events in deep space, such as exploding stars. However, both have oceans under their icy surfaces that are heated by tides from the gravitational pull of the host planet and neighboring moons. These subsurface oceans could harbor life if they have other necessities, such as an energy supply as well as elements and compounds used in biological molecules. Dramatic plumes, both large and small, spray water ice and vapor from many locations along the famed “tiger stripes” near the south pole of Saturn’s moon Enceladus. NASA/JPL/Space Science Institute The research team used amino acids in radiolysis experiments as possible representatives of biomolecules on icy moons. Amino acids can be created by life or by non-biological chemistry. However, finding certain kinds of amino acids on Europa or Enceladus would be a potential sign of life because they are used by terrestrial life as a component to build proteins. Proteins are essential to life as they are used to make enzymes which speed up or regulate chemical reactions and to make structures. Amino acids and other compounds from subsurface oceans could be brought to the surface by geyser activity or the slow churning motion of the ice crust. This view of Jupiter’s icy moon Europa was captured by JunoCam, the public engagement camera aboard NASA’s Juno spacecraft, during the mission’s close flyby on Sept. 29, 2022. The picture is a composite of JunoCam’s second, third, and fourth images taken during the flyby, as seen from the perspective of the fourth image. North is to the left. The images have a resolution of just over 0.5 to 2.5 miles per pixel (1 to 4 kilometers per pixel). As with our Moon and Earth, one side of Europa always faces Jupiter, and that is the side of Europa visible here. Europa’s surface is crisscrossed by fractures, ridges, and bands, which have erased terrain older than about 90 million years. Citizen scientist Kevin M. Gill processed the images to enhance the color and contrast. NASA/JPL-Caltech/SwRI/MSSS Image processing: Kevin M. Gill CC BY 3.0 To evaluate the survival of amino acids on these worlds, the team mixed samples of amino acids with ice chilled to about minus 321 Fahrenheit (-196 Celsius) in sealed, airless vials and bombarded them with gamma-rays, a type of high-energy light, at various doses. Since the oceans might host microscopic life, they also tested the survival of amino acids in dead bacteria in ice. Finally, they tested samples of amino acids in ice mixed with silicate dust to consider the potential mixing of material from meteorites or the interior with surface ice. This image shows experiment samples loaded in the specially designed dewar which will be filled with liquid nitrogen shortly after and placed under gamma radiation. Notice that the flame-sealed test tubes are wrapped in cotton fabric to keep them together because test tubes become buoyant in liquid nitrogen and start floating around in the dewar, interfering with the proper radiation exposure. Candace Davison The experiments provided pivotal data to determine the rates at which amino acids break down, called radiolysis constants. With these, the team used the age of the ice surface and the radiation environment at Europa and Enceladus to calculate the drilling depth and locations where 10 percent of the amino acids would survive radiolytic destruction. Although experiments to test the survival of amino acids in ice have been done before, this is the first to use lower radiation doses that don’t completely break apart the amino acids, since just altering or degrading them is enough to make it impossible to determine if they are potential signs of life. This is also the first experiment using Europa/Enceladus conditions to evaluate the survival of these compounds in microorganisms and the first to test the survival of amino acids mixed with dust. The team found that amino acids degraded faster when mixed with dust but slower when coming from microorganisms. “Slow rates of amino acid destruction in biological samples under Europa and Enceladus-like surface conditions bolster the case for future life-detection measurements by Europa and Enceladus lander missions,” said Pavlov. “Our results indicate that the rates of potential organic biomolecules’ degradation in silica-rich regions on both Europa and Enceladus are higher than in pure ice and, thus, possible future missions to Europa and Enceladus should be cautious in sampling silica-rich locations on both icy moons.” A potential explanation for why amino acids survived longer in bacteria involves the ways ionizing radiation changes molecules — directly by breaking their chemical bonds or indirectly by creating reactive compounds nearby which then alter or break down the molecule of interest. It’s possible that bacterial cellular material protected amino acids from the reactive compounds produced by the radiation. The research was supported by NASA under award number 80GSFC21M0002, NASA’s Planetary Science Division Internal Scientist Funding Program through the Fundamental Laboratory Research work package at Goddard, and NASA Astrobiology NfoLD award 80NSSC18K1140. Share Details Last Updated Jul 18, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms Astrobiology Enceladus Europa Goddard Space Flight Center The Search for Life The Solar System Explore More 8 min read Europa’s Ocean Exploration Stories: Favorite Historical Moments – Robert Pappalardo Interview Article 7 years ago 2 min read Enceladus: What Lies Beneath? Article 16 years ago 8 min read Are Water Plumes Spraying from Europa? NASA’s Europa Clipper is on the Case Finding plumes at Europa is an exciting prospect, but scientists warn it’ll be tricky, even… Article 3 years ago View the full article
-
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 18 min read Summary of the 2023 Sun – Climate Symposium Introduction Observations of the Sun and Earth from space continue to revolutionize our view and understanding of how solar variability and other natural and anthropogenic forcings impact Earth’s atmosphere and climate. For more than four decades (spanning four 11-year solar cycles and now well into a fifth), the total and spectral solar irradiance and global terrestrial atmosphere and surface have been observed continuously, providing an unprecedented, high-quality time series of data for Sun–climate studies, such as the Total Solar Irradiance (TSI) composite record – see Figure 1. Figure 1. The Total Solar Irradiance (TSI) composite record spans almost 5 decades and includes measurements from 13 different instruments (9 NASA and 4 international). Figure credit: Greg Kopp, Laboratory for Atmospheric and Space Physics (LASP)/University of Colorado (UC). Sun–Climate Symposia, originally called SOlar Radiation and Climate Experiment (SORCE) Science Team Meetings, have been held at a regular cadence since 1999 – before the launch of SORCE in 2003. These meetings provide an opportunity for experts from across the solar, Earth atmosphere, climate change, stellar, and planetary communities to present and discuss their research results about solar variability, climate influences and the Earth-climate system, solar and stellar variability comparative studies, and stellar impacts on exoplanets. The latest iteration was the eighteenth in the series and occurred in October 2023. (As an example of a previous symposium, see Summary of the 2022 Sun–Climate Symposium, in the January–February 2023 issue of The Earth Observer [Volume 35, Issue 1, pp. 18–27]). The 2023 Sun–Climate Symposium took place October 17–20 in Flagstaff, AZ – with a focus topic of “Solar and Stellar Variability and its Impacts on Earth and Exoplanets.” The Sun–Climate Research Center – a joint venture between NASA’s Goddard Space Flight Center (GSFC) and the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado (UC) with the Lowell Observatory hosting the meeting. The in-person meeting had 75 attendees – including 7 international participants – with diverse backgrounds covering a wide range of climate change and solar-stellar variability research topics – see Photo. Photo. Attendees at the 2023 Sun–Climate Symposium in Flagstaff, AZ. Photo credit: Kelly Boden/LASP Update on NASA’s Current and Planned TSIS Missions The current NASA solar irradiance mission, the Total and Spectral Solar Irradiance Sensor (TSIS-1), marks a significant advance in our ability to measure the Sun’s energy input to Earth across various wavelengths. Following in the footsteps of its predecessors, most notably SORCE, TSIS-1 contributes to the continuous time series of solar energy data dating back to 1978 – see Figure 1. The two instruments on TSIS-1 improve upon those on previous missions, enabling scientists to study the Sun’s natural influence on Earth’s ozone layer, atmospheric circulation, clouds, and ecosystems. These observations are essential for a scientific understanding of the effects of solar variability on the Earth system. TSIS-1 launched to the International Space Station (ISS) in December 2017 and is deployed on the Station’s EXpedite the PRocessing of Experiments to Space Station (ExPRESS) Logistics Carrier–3 (ELC-3). Its payload includes the Total Irradiance Monitor (TIM) for observing the TSI and the Spectral Irradiance Monitor (SIM) for measuring the Solar Spectral Irradiance (SSI) – see comparison in Figure 2. The mission completed its five-year prime science mission in March 2023. SIM measures from 200–2400 nm with variable spectral resolution ranging from about 1 nm in the near ultraviolet (NUV) to about 10 nm in the near infrared (NIR). TSIS-1 has been extended by at least three more years as part of the Earth Sciences Senior Review process. TSIS-2 is intended as the follow-on to TSIS-1. The mission is currently in development at LASP and GSFC with a planned launch around mid 2025. The TSIS-2 payload is nearly identical to that of TSIS-1, except that the payload will ride on a free-flying spacecraft rather than be mounted on a solar pointing platform on the ISS. NASA hopes to achieve 1–2 years of overlap between TSIS-1 and TSIS-2. Achieving such measurement overlap between missions is crucial to the continuity of the long-term records of the TSI and SSI without interruption and improving the solar irradiance composite. In addition to the current solar irradiance mission and its planned predecessor, NASA is always looking ahead to plan for the inevitable next solar irradiance mission. Two recent LASP CubeSat missions – called Compact SIM (CSIM) and Compact TIM (CTIM) – have tested miniaturized versions of the SIM and TIM instruments, respectively. Both CSIM and CTIM have performed extremely well in space – with measurements that correlate well with the larger instruments – and are being considered as continuity options for the SSI and TSI measurements. Based on the success of CSIM and CTIM, LASP has developed a concept study report about the Compact-TSIS (CTSIS) as a series of small satellites viable for a future TSIS-3 mission. Figure 2. The Solar Spectral Irradiance (SSI) variability from TSIS-1 Spectral Irradiance Monitor (SIM) is compared to the Total Solar Irradiance (TSI) variability from TSIS-1 Total Irradiance Monitor (TIM). The left panel shows the SIM SSI integrated over its wavelength range of 200–2400 nm, which is in excellent agreement with the TSI variability during the rising phase of solar cycle 25. The right panels show comparison of SSI variability at individual wavelengths to the TSI variability, revealing linear relationships with ultraviolet variability larger than TSI variability, visible variability similar to TSI variability, and near infrared variability smaller than TSI variability. Figure credit: Erik Richard/LASP Meeting Overview After an opening plenary presentation in which Erik Richard [LASP] covered the information on TSIS-1, TSIS-2, CSIM, and CTIM presented in the previous section on “NASA’s Current and Planned Solar Irradiance Missions,” the remainder of the four-day meeting was divided into five science sessions each with oral presentations, and a poster session featuring 23 contributions. The five session topics were: Solar and Stellar Activity Cycles Impacts of Stellar Variability on Planetary Atmospheres Evidence of Centennial and Longer-term Variability in Climate Change Evidence of Short-term Variability in Climate Change Trending of Solar Variability and Climate Change for Solar Cycle 25 (present and future) There was also a banquet held on the final evening of the meeting (October 19) with special presentations focusing on the water drainage system and archaeology of the nearby Grand Canyon – see Sun-Climate Symposium Banquet Special Presentation on the Grand Canyon National Park. The remainder of this report summarizes highlights from each of the science sections. To learn more, the reader is referred to the full presentations from the 2023 Sun–Climate Symposium, which can be found on the Symposium website by clicking on individual presentation titles in the Agenda tab. Session 1: Solar and Stellar Activity Cycles Sun-like stars (and solar analogs, solar twins) provide a range of estimates for how the Sun’s evolution may affect its solar magnetic cycle variability. Recent astrophysics missions (e.g., NASA’s Kepler mission) have added thousands of Sun-like stars to study, compared to just a few dozen from a couple decades ago when questions remained if the Sun is a normal G star or not. Tom Ayres [UC Center for Astrophysics and Space Astronomy (CASA)] gave the session’s keynote presentation on Sun-like stars. He pointed out that the new far ultraviolet (FUV) and X-ray stellar observations have been used to clarify that our Sun is a normal G-type dwarf star with low activity relative to most other G-type dwarf stars. Travis Metcalfe [White Dwarf Research Corporation (WDRC)] discussed the recent progress in modeling of the physical processes that generate a star’s magnetic field – or stellar dynamo. He explained how the presence of stellar wind can slow down a star’s rotation, which in turn lengthens the period of the magnetic cycle. He related those expectations to the Sun and to the thousands of Sun-like stars observed by Kepler. Continuing on the topic of solar dynamo, Lisa Upton [Space Systems Research Corporation (SSRC)] and Greg Kopp [LASP] discussed their recent findings using a solar surface magnetic flux transport model, which they can use to reconstruct an estimated TSI record back in time to the anomalously low activity during the Maunder Minimum in the 1600s. Dan Lubin [University of California San Diego (UCSD)] described efforts to identify grand-minimum stars – which exhibit characteristics similar to our Sun during the Maunder Minimum. Using Hamilton Echelle Spectrograph observations, they have identified about two dozen candidate grand-minimum stars. In other presentations and posters offered during this session, Adam Kowalski [LASP]) discussed stellar and solar flare physics and revealed that the most energetic electrons generated during a flare are ten times more than previously thought, while Moira Jardine [University of St. Andrews, Scotland]) discussed the related subject of space weather on the Sun and stars and how the coronal extent was likely much larger for the younger Sun. Three presenters – Debi Choudhary [California State University, Northridge], Garrett Zills [Augusta University], and Serena Criscuoli [National Solar Observatory] –discussed how solar emission line variability from both line intensity and line width are good indicators of magnetic activity on the Sun and thus relevant for studies of Sun-like star variability. Andres Munoz-Jaramillo [Southwest Research Institute (SWRI)] highlighted the importance of archiving large datasets showing the Harvard dataverse as an example. Juan Arjona [LASP] discussed the solar magnetic field observations made using the Max Planck Institute for Solar System Research’s GREGOR solar telescope. Session 2: Impacts of Stellar Variability on Planetary Atmospheres Presenters in this session focused on how the stellar variability can impact exoplanet evolution and climate. By analyzing data from NASA’s Kepler mission, scientists have discovered numerous Earth-like planets orbiting other stars – or exoplanets, which has enabled comparative studies between planets in our Solar System and exoplanets. Aline Vidotto [University of Leiden, Netherlands] gave this session’s keynote presentation in which he discussed the impact of stellar winds on exoplanets. In general, younger stars rotate faster and thus have more stellar variability. The evolution of the exoplanet’s atmosphere is dependent on its star’s variability and also modulated by the exoplanet’s own magnetic field. Robin Ramstad [LASP] further clarified a planetary magnetic field’s influences on atmospheric evolution for planets in our solar system. Vladimir Airapetian [GSFC] presented an overview of how laboratory measurements used to simulate pre-biosignatures – characteristics that precede those elements, molecules, or substances that would indicate past or present life – could be created in an exoplanet atmosphere by highly energetic particles and X-rays from stars with super flares, very large-scale magnetic eruptions on a star that can be thousands of times brighter than a typical solar flare. While the probability of a super flare event is low for our Sun (perhaps 1 every 400 years), super flares are routinely observed on more active stars. The stellar flares and the spectral distribution of the flare’s released energy can have large impacts on exoplanet’s atmospheres. Laura Amaral [Arizona State University] presented on the super-flare influences on the habitable zone of exoplanets and explained how the flare’s significantly enhanced X-ray emissions would greatly accelerate water escape from the exoplanet’s atmosphere. Ward Howard [ UC CASA] showed that exoplanet transits can also provide information about starspots (akin to the dark sunspots on the Sun) when a transit event happens to occult a starspot – see Figure 3. Ward also explained the importance of observing the transit events at multiple wavelengths, referred to as transit spectroscopy, to understand the physical characteristics of the starspots. Yuta Notsu [LASP] compared the energetics observed in many different stars using X-ray and far ultraviolet (FUV) observations to estimate stellar magnetic field strengths, which in turn can be used to estimate the stellar extreme ultraviolet (EUV) spectra. Those results provide new information on how the stellar spectra could evolve during the lifetime of Sun-like stars, and how those spectral changes can affect the atmospheric escape rates on their exoplanets. Nina-Elisabeth Nemec [University of Göttingen, Germany] described how Kepler observations of exoplanets rely on tracking their transits across its host star’s disk. She explained some of the challenges that arise with analyzing such transits when there are large starspots present. Figure 3. Illustration of an exoplanet transit that will occult a starspot. The transit light curve can provide information about the size of the starspot, and transit observations at multiple wavelengths can reveal physical parameters, such as temperature, of the starspot. Figure credit: Ward Howard, CASA/University of Colorado Session 3: Evidence of Centennial and Longer-term Variability in Climate Change Venkatachalam “Ram” Ramaswamy [National Oceanic and Atmospheric Administration’s (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL)] gave the keynote for this session in which he discussed Earth’s variable climate change over the past two centuries. He explained in detail Earth’s energy budget and energy imbalance, which leads to less land and sea ice, warmer temperatures at the surface and in the atmosphere and ocean, and more extreme weather. These weather changes have different regional impacts, such as more floods in some regions and more drought in different regions – see Figure 4. Figure 4. The rainfall amount has shifted over the past fifty years (red is less and blue is more) with strong regional impacts on droughts and floods. Figure credit: Ram Ramaswamy/NOAA/GFDL Bibhuti Kumar Jha [SWRI], Bernhard Hofer [Max Planck Institute for Solar System Research, Germany], and Serena Criscuoli [National Solar Observatory] discussed long-term solar measurements from the Kodaikanal Solar Observatory and showed that the chromospheric plages (Ca K images) have 1.6% faster solar rotation rate than sunspots (white light images). Timothy Jull [University of Arizona (UA)], Fusa Miyake [Nagoya University, Japan], Georg Fueulner [Potsdam Institute for Climate Impact Research, Germany], and Dan Lubin discussed the impact that solar influences (i.e., solar flares, solar energetic particles) have had on Earth’s climate over hundreds of years through their impact on phenomena such as the natural distribution of carbon dioxide in the atmosphere and fluctuations in the North Atlantic Oscillation. Hisashi Hayawawa [Nagoya University] and Kalevi Mursula [University of Oulu, Finland] discussed the influence that ever-changing sunspots and magnetic fields on the Sun are having on climate – with a focus on the Maunder Minimum period. Irina Panyushkina [UA] and Timothy Jull presented tree ring radioisotope information as it relates to climate change trends as well as long-term, solar variability trends. According to Lubin, if a reduction in solar input similar to what happened during the Maunder Minimum would happen today, the resulting reduction in temperature would be muted due to the higher concentration of greenhouse gases (GHG) in the atmosphere. Session 4: Evidence of Short-term Variability in Climate Change Session 4 focused on discussions that examined shorter-term variations of solar irradiance and climate change. Bill Collins [Lawrence Berkeley National Laboratory (LBNL)] started off the session with a presentation on Earth albedo asymmetry across the hemispheres from Nimbus-7 observations, and then showed some important differences when looking at the Clouds and the Earth’s Radiant Energy System (CERES) record – shown in Figure 5. Lon Hood [UA] discussed the changes in atmospheric circulation patterns which might be the consequence of Arctic sea ice loss increasing the sea level pressure over northern Eurasia. Alexi Lyapustin [GSFC] described how higher temperatures are causing an extension of the wildfire season in the Northern hemisphere by 1–3 months. Figure 5. The albedo difference between the visible and near-infrared bands are shown for the southern hemisphere (red line) and the northern hemisphere (blue lines) for CERES [left] and Nimbus 7 [right]. The southern hemisphere albedo difference is higher than the northern hemisphere albedo difference, both for the 1980s as measured by Nimbus-7 and for the recent two decades as measured by CERES. These hemispheric differences are related mostly to differences in cloud coverage. The seasonal effect on the albedo difference values is about 2%, but the changes from 1980s to 2010s appear to be about 10%. Figure credit: Bill Collins/Lawrence Berkeley National Laboratory Jae Lee [GSFC/University of Maryland, Baltimore County] discussed changes in the occurrence and intensity of the polar mesosphere clouds (PMCs), showing high sensitivity to mesospheric temperature and water, and fewer PMCs for this solar cycle. In addition, some presenters discussed naturally driven climate changes. Luiz Millan [JPL], whose research has found that the water-laden plume from the Hunga-Tonga-Hunga-Ha’apai (HT-HH) volcano eruption in January 2022 has had a warming effect on the atmosphere as well as the more typical cooling effect at the surface from the volcanic aerosols. In another presentation, Jerry Raedar [University of New Hampshire, Space Science Center] showed results from his work indicating about 5% reductions in temperature and pressure following major solar particle storms, but noted differences in dependence between global and regional effects. Session 5: Trending of Solar Variability and Climate Change for Solar Cycle 25 (present and future) Session 5 focused on trends during Solar cycle 25 (SC-25), which generated lively discussions about predictions. It appears the SC-25 maximum sunspot number could be about 15% higher than the original SC-25 maximum predictions. Those differences between the sunspot observations and this prediction may be related to the timing of SC-25 ramp up. Lisa Upton started off Session 5 by presenting both the original and latest predictions from the NASA–NOAA SC-25 Prediction Panel. Her assessment of the Sun’s polar magnetic fields and different phasing of magnetic fields over the Sun’s north and south poles suggests that the SC-25 maximum will be larger than the prediction – see Figure 6. The next several speakers – Matt DeLand [Science Systems and Applicatons Inc. (SSAI)], Sergey Marchenko [SSAI], Dave Harber [LASP], Tom Woods [LASP], and Odele Coddington [LASP] – showed a variety of TSI and SSI (NUV, visible, and NIR) variability observations during SC-25. The group consensus was that the difference between the SC-24 and SC-25 maxima may be due to the slightly higher solar activity during SC-25 as compared to the time of the SC-24 maximum – which was an anomalously low cycle. The presenters all agreed that SC-25 maximum may not have been reached yet (and SC-25 maximum may not have occurred yet in 2024). Figure 6. The sunspot number progression (black) during solar cycle 25 is higher than predicted (red). The original NASA–NOAA panel prediction was for a peak sunspot number of 115 in 2025. Lisa Upton’s updated prediction is for a sunspot number peak of 134 in late 2024. Figure credit: NOAA Space Weather Prediction Center On the climate change side, Don Wuebbles [University of Illinois, Urbana-Champaign] provided a thorough overview of climate change science showing that: the largest impacts result from the activities of humans, land is warming faster than the oceans, the Arctic is warming two times faster than rest of the world, and 2023 was the hottest year on record with an unprecedented number of severe weather events. There were several presentations about the solar irradiance observations. Leah Ding [American University] presented new analysis techniques using machine learning with Solar Dynamics Observatory (SDO) solar images to study irradiance variability. Steve Penton [LASP] discussed new SIM algorithm improvements for TSIS-1 SIM data product accuracy. Margit Haberreiter [Physikalisch-Meteorologisches Observatorium Davos (PMOD), Switzerland] discussed new TSI observations from the Compact Lightweight Absolute Radiometer (CLARA) on the Norwegian NorSat-1 microsatellite. Marty Snow [South African National Space Agency] discussed a new TSI-proxy from the visible light (green filter) Solar Position Sensor (SPS) flown on the NOAA Geostationary Operational Environmental Satellites (GOES-R). (The first of four satellites in the GOES-R series launched in 2016 (GOES-16) followed by GOES-17 and GOES-18 in 2018 and 2022 respectively. The final satellite in the series – GOES-U – launched June 25, 2024 will become GOES-19 after checkout is complete.) Peter Pilewskie [LASP] discussed future missions, focusing on the Libera mission for radiative energy budget, on which he is Principal Investigator. Selected as the first Earth Venture Continuity mission (EVC-1), Libera will record how much energy leaves our planet’s atmosphere on a day-by-day basis providing crucial information about how Earth’s climate is evolving. In Roman mythology, Libera was Ceres’ daughter. The mission name is thus fitting as Libera will act as a follow-on mission to maintain the decades long data record of observation from NASA’s suite of CERES instruments. Figure 7 shows the CERES climate data record trends over the past 20 years. Figure 7. The CERES Earth Radiation Budget (ERB) climate data record shows a positive trend for the absorbed solar radiation [left] and the net radiation [right] and a small negative trend for the emitted terrestrial radiation [middle]. Figure credit: Peter Pilewskie/adapted from a 2021 paper in Geophysical Research Letters Susan Breon [GSFC] discussed the plans for and status of TSIS-2 , and Tom Patton [LASP] discussed CTSIS as an option for TSIS-3 – both of these topics were discussed earlier in this article in the section on “NASA’s Current and Planned Solar Irradiance Missions.” Angie Cookson [California State University, San Fernando Observatory (SFO)] shared information about the SFO’s 50-year history, and how analyses of solar image observations taken at SFO are used to derive important indicators of solar irradiance variability – see Figure 8. Figure 8. The San Fernando Observatory (SFO) [left] has been making visible [middle] and near ultraviolet (NUV) [right] solar images from the ground for more than 50 years. Those solar images have been useful for understanding the sources of solar irradiance variability. Figure credit: Angie Cookson/SFO Sun-Climate Symposium Banquet Special Presentation on the Grand Canyon National Park At the Thursday evening banquet, two speakers – Mark Nebel and Anne Millar – from the National Park Service (NPS) presented some of their geological research on the nearby Grand Canyon. Nebel discussed the water drainage systems surrounding the Grand Canyon while Millar described the many different fossils that have been found in the surrounding rocks. Nebel explained how the Grand Canyon’s water drainage system into the Colorado River is complex and has evolved over the past few decades – see map and photo below. Millar brought several samples of the plant and insect fossils found in the Grand Canyon to share with banquet participants. Those fossils ranged in time from the Bright Angel Formation ocean period 500 million years ago to the Hermit Formation period 285 million years ago – when the Grand Canyon was semi-arid land with slow-moving rivers. Map and photo credit: Mark Nebel/NPS Conclusion Altogether, 80 presentations during the 2023 Sun–Climate Symposium spread across 6 sessions about solar analogs, exoplanets, long-term climate change, short-term climate change, and solar/climate recent trending. The multidisciplinary group of scientists attending made for another exciting conference for learning more about the TSIS solar irradiance observations. Sun–Climate recent results have improved perception of our Sun’s variability relative to many other Sun-like stars, solar impact on Earth and other planets and similar type impacts of stellar variability on exoplanets, and better characterization of anthropogenic climate drivers (e.g., increases in GHG) and natural climate drivers (Sun and volcanoes). The next Sun–Climate Symposium will be held in spring 2025 with a potential focus on polar climate records, including polar ice trends and long-term solar variabilities derived from ice-core samples. Readers who may be interested in participating in the 2025 science organizing committee should contact Tom Woods and/or Dong Wu [GSFC]. Acknowledgments The three co-authors were all part of the Science Organizing Committee for this meeting and wish to acknowledge the other members for their work in planning for and participating in another successful Sun–Climate Symposium. They include: Odele Coddington, Greg Kopp, and Ed Thiemann [all at LASP]; Jae Lee, Doug Rabin, and Dong Wu [all at GSFC]; Jeff Hall, Joe Llama, and Tyler Ryburn [all at Lowell Observatory]; Dan Lubin [UCSD’s Scripps Institution of Oceanography (SIO)]; and Tom Stone [U.S. Geological Survey’s Astrogeology Science Center]. The authors and other symposium participants are also deeply grateful to Kelly Boden [LASP] for organizing the logistics and management of the conference, and to the Lowell Observatory, the Drury Inn conference center staff, and the LASP data system engineers for their excellent support in hosting this event. Tom Woods University of Colorado, Laboratory for Atmospheric and Space Research tom.woods@lasp.colorado.edu Peter Pilewskie University of Colorado, Laboratory for Atmospheric and Space Research peter.pilewskie@lasp.colorado.edu Erik Richard University of Colorado, Laboratory for Atmospheric and Space Research erik.richard@lasp.colorado.edu Share Details Last Updated Jul 18, 2024 Related Terms Earth Science Uncategorized View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) These yellow crystals were revealed after NASA’s Curiosity happened to drive over a rock and crack it open on May 30. Using an instrument on the rover’s arm, scientists later determined these crystals are elemental sulfur — and it’s the first time this kind of sulfur has been found on the Red Planet.NASA/JPL-Caltech/MSSS NASA’s Curiosity captured this close-up image of a rock nicknamed “Snow Lake” on June 8, 2024, the 4,209th Martian day, or sol, of the mission. Nine days earlier, the rover had crushed a similar-looking rock and revealed crystalline textures — and elemental sulfur — inside.NASA/JPL-Caltech/MSSS Among several recent findings, the rover has found rocks made of pure sulfur — a first on the Red Planet. Scientists were stunned on May 30 when a rock that NASA’s Curiosity Mars rover drove over cracked open to reveal something never seen before on the Red Planet: yellow sulfur crystals. Since October 2023, the rover has been exploring a region of Mars rich with sulfates, a kind of salt that contains sulfur and forms as water evaporates. But where past detections have been of sulfur-based minerals — in other words, a mix of sulfur and other materials — the rock Curiosity recently cracked open is made of elemental, or pure, sulfur. It isn’t clear what relationship, if any, the elemental sulfur has to other sulfur-based minerals in the area. While people associate sulfur with the odor from rotten eggs (the result of hydrogen sulfide gas), elemental sulfur is odorless. It forms in only a narrow range of conditions that scientists haven’t associated with the history of this location. And Curiosity found a lot of it — an entire field of bright rocks that look similar to the one the rover crushed. Pan around this 360-degree video to explore Gediz Vallis channel, the location where NASA’s Curiosity Mars rover discovered sulfur crystals and drilled its 41st rock sample. The images that make up this mosaic were captured by the rover’s MastCam in June. Credit: NASA/JPL-Caltech/MSSS “Finding a field of stones made of pure sulfur is like finding an oasis in the desert,” said Curiosity’s project scientist, Ashwin Vasavada of NASA’s Jet Propulsion Laboratory in Southern California. “It shouldn’t be there, so now we have to explain it. Discovering strange and unexpected things is what makes planetary exploration so exciting.” It’s one of several discoveries Curiosity has made while off-roading within Gediz Vallis channel, a groove that winds down part of the 3-mile-tall (5-kilometer-tall) Mount Sharp, the base of which the rover has been ascending since 2014. Each layer of the mountain represents a different period of Martian history. Curiosity’s mission is to study where and when the planet’s ancient terrain could have provided the nutrients needed for microbial life, if any ever formed on Mars. NASA’s Curiosity Mars rover captured this view of Gediz Vallis channel on March 31. This area was likely formed by large floods of water and debris that piled jumbles of rocks into mounds within the channel.NASA/JPL-Caltech/MSSS Floods and Avalanches Spotted from space years before Curiosity’s launch, Gediz Vallis channel is one of the primary reasons the science team wanted to visit this part of Mars. Scientists think that the channel was carved by flows of liquid water and debris that left a ridge of boulders and sediment extending 2 miles down the mountainside below the channel. The goal has been to develop a better understanding of how this landscape changed billions of years ago, and while recent clues have helped, there’s still much to learn from the dramatic landscape. Since Curiosity’s arrival at the channel earlier this year, scientists have studied whether ancient floodwaters or landslides built up the large mounds of debris that rise up from the channel’s floor here. The latest clues from Curiosity suggest both played a role: some piles were likely left by violent flows of water and debris, while others appear to be the result of more local landslides. While exploring Gediz Vallis channel in May, NASA’s Curiosity captured this image of rocks that show a pale color near their edges. These rings, also called halos, resemble markings seen on Earth when groundwater leaks into rocks along fractures, causing chemical reactions that change the color. NASA/JPL-Caltech/MSSS Those conclusions are based on rocks found in the debris mounds: Whereas stones carried by water flows become rounded like river rocks, some of the debris mounds are riddled with more angular rocks that may have been deposited by dry avalanches. Finally, water soaked into all the material that settled here. Chemical reactions caused by the water bleached white “halo” shapes into some of the rocks. Erosion from wind and sand has revealed these halo shapes over time. “This was not a quiet period on Mars,” said Becky Williams, a scientist with the Planetary Science Institute in Tucson, Arizona, and the deputy principal investigator of Curiosity’s Mast Camera, or Mastcam. “There was an exciting amount of activity here. We’re looking at multiple flows down the channel, including energetic floods and boulder-rich flows.” A Hole in 41 All this evidence of water continues to tell a more complex story than the team’s early expectations, and they’ve been eager to take a rock sample from the channel in order to learn more. On June 18, they got their chance. While the sulfur rocks were too small and brittle to be sampled with the drill, a large rock nicknamed “Mammoth Lakes” was spotted nearby. Rover engineers had to search for a part of the rock that would allow safe drilling and find a parking spot on the loose, sloping surface. After Curiosity bored its 41st hole using the powerful drill at the end of the rover’s 7-foot (2-meter) robotic arm, the six-wheeled scientist trickled the powderized rock into instruments inside its belly for further analysis so that scientists can determine what materials the rock is made of. Curiosity has since driven away from Mammoth Lakes and is now off to see what other surprises are waiting to be discovered within the channel. More About the Mission Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington. For more about Curiosity, visit: science.nasa.gov/mission/msl-curiosity News Media Contacts Andrew Good Jet Propulsion Laboratory, Pasadena, Calif. 818-393-2433 andrew.c.good@jpl.nasa.gov Karen Fox / Alana Johnson NASA Headquarters, Washington 202-358-1600 / 202-358-1501 karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov 2024-100 Share Details Last Updated Jul 18, 2024 Related TermsCuriosity (Rover)Jet Propulsion LaboratoryMarsMars Science Laboratory (MSL) Explore More 6 min read Here’s How AI Is Changing NASA’s Mars Rover Science Article 2 days ago 4 min read NASA’s Planetary Radar Tracks Two Large Asteroid Close Approaches Article 2 weeks ago 3 min read NASA’s ECOSTRESS Maps Burn Risk Across Phoenix Streets Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
“She gets things done.” This is how colleagues describe Brooke Weborg, machine learning data scientist and engineer at NASA. Weborg was nominated as Digital Transformer of the Month for her work on the AI/ML (artificial intelligence/machine learning) consultation portal, the type of ambitious project that computer scientist Herb Schilling had seen fail in the past. “Some of these things that you try to do just get bogged down in people saying no. But [Brooke] was never fazed by that at all…she just went ahead with it.” Reflecting on what makes Weborg a Digital Transformer, Schilling says, “A big part of digital transformation is communication, and she’s just a really good communicator.” Although Weborg grew up near the Glenn Research Center in Cleveland, Ohio, she did not envision a career at NASA until college, where she studied computer science and engineering. Her professor Brent Nowlin, who still currently works at Glenn Research Center, encouraged her to apply for a Pathways internship, which she began in 2017. When considering how her educational background has led her to where she is today, Weborg says, “What I learned in college was that I really liked the algorithm portion of computer science. I enjoy puzzles and I feel I’m very much a middleman when it comes to projects…I love machine learning because it’s kind of this middle process of figuring out the intricacies of the model.” Her focus on the “middle” also comes through in how she describes the AI/ML consultation portal as a bridge, connecting the knowledge gap between users and experts at NASA. We're entering a new era of discovery with all these AI/ML tools that are at our disposal, which is really cool. I’m excited to see how my work is going to impact that. Brooke Weborg NASA Machine Learning Data Scientist and Engineer Weborg’s idea for the portal stemmed from a need she noticed in her own work. “I was struggling to find projects that were truly ready to begin the ML modeling and exploratory data analysis process. I found myself bouncing between projects because I ended up doing a lot of consulting and feasibility work for them versus actually getting to create machine learning models.” To properly prepare for the modeling process, many teams would have benefitted from expert support during the experiment design phase to ensure proper data collection and sampling. Weborg envisioned a way to support data scientists and machine learning engineers by providing relevant projects while ensuring those projects get the necessary assistance for leveraging AI/ML solutions. The first successful use case, the CH2ARGE project, initially reached out to Weborg for a consultation in fall 2023, before the portal officially launched. What began as project proposal support has led to Weborg’s current role on the CH2ARGE team doing exploratory data analysis and investigating potential AI/ML use cases for cryogenic material and fuel cell data. This initiated what would become the AI/ML consultation portal. With support from Herb Schilling, data scientist Douglas Trent, and intern Eva Ternovska, the AI/ML consultation portal launched on April 9, 2024. Although the portal started small, it gained significant traction during an agency-wide AI upskilling initiative, with over 230 people attending Weborg’s presentation on using the AI/ML Portal and becoming an advisor. “How we’re measuring success right now is how many advisors are we getting to sign up, which is showing that experts see the vision and realize its importance to our mission,” says Weborg. Since its launch, the portal has doubled capacity in just two months, going from 10 to 21 advisors across NASA with regular inquiries for new advisor sign-ups. Dave Salvagnini, NASA’s Chief AI Officer, sees Weborg and the AI Portal as drivers of intellectual curiosity around AI and its possibilities. “She has fostered a movement that gives learners a place to seek expert advice about their AI ideas and use cases,” says Salvagnini. “The AI portal is quickly becoming a key AI enabler at NASA.” The portal has already led to seven successful use cases for machine learning and AI solutions by connecting talent across the different centers, highlighting Weborg’s commitment to inclusive teaming. As a fearless pursuer of big ideas, Weborg was unsurprisingly excited for the future of digital transformation at NASA. “We’re entering a new era of discovery with all these AI/ML tools that are at our disposal, which is really cool. I’m excited to see how my work is going to impact that.” View the full article
-
NASA-supported scientists have examined the long and intricately linked history of microbial life and the Earth’s environment. By reviewing the current state of knowledge across fields like microbiology, molecular biology, and geology, the study looks at how microorganisms have both shaped and been shaped by chemical properties of our planet’s oceans, land, and atmosphere. The study combines data across multiple fields of study and discusses how information on the complicated history of life on our planet from a single field cannot be viewed in isolation. An artist interpretation of the hazy atmosphere of Archean Earth – a pale orange dot. NASA’s Goddard Space Flight Center/Francis Reddy The first life on Earth was microbial. Today the vast majority of our planet’s biomass is still made up of tiny, single-celled microorganisms. Although they’re abundant, the history of microbes can be a challenge for astrobiologists to study. Microbes don’t leave bones, shells or other large fossils behind like dinosaurs, fish or other large organisms. Because of this, scientists must look at different evidence to understand the evolution of microbial life through time. In order to study ancient microbes on Earth, astrobiologists look for isotopic fingerprints in rocks that can be used to identify the metabolisms of ancient communities. Metabolism refers to the conversion of food into energy, and happens in all living things. Many elements (think carbon (C), nitrogen (N), Sulfur (S), iron (Fe)) are involved in microbial metabolism. As microbes process these elements, they cause isotopic changes that scientists can spot in the rock record. Microbes also help to control how these elements are deposited and cycled in the environment, affecting geology and chemistry at both local and global scales (consider the role of microbes in the carbon cycle on Earth today). This photograph shows a section of the Marble Bar formation in the Pilbara region of north-western Western Australia. The bands of color in the rock are the result of high amounts of certain minerals, including iron, that may have resulted from microbial activity on the ancient Earth. NASA Astrobiology/Mike Toillion For an example of geological evidence of microbial metabolism, we can consider the formation of banded iron formations (BIFs) on the ancient seafloor. These colorful layers of alternating iron- and silicon-rich sediment were formed from 3.8 billion to 1.8 billion years ago and are associated with some of the oldest rock formations on Earth. The red colors they exhibit are from their high iron content, showing us that the ocean of Earth was rich in iron during the 2 billion years in which these rocks were forming. Another way to study ancient microbial life is to look back along the evolutionary information contained in the genetics of life today. Combining this genetic information from molecular biology with geobiological information from the rock record can help astrobiologists understand the connections between the shared evolution of the early Earth and early life. In the new study, the team of researchers provide a review of current knowledge, gleaning information into the early metabolisms used by microbial life, the timing of when these metabolisms evolved, and how these processes are linked to major chemical and physical changes on Earth, such as the oxygenation of the oceans and atmosphere. Over time, the prevalence of oxygen on Earth has varied dramatically, in the ocean, in the atmosphere, and on land. These changes impacted both the evolution of the biosphere and the environment. For instance, as the activity of photosynthetic organisms raised oxygen levels in the atmosphere, creating new environments for microbial life to inhabit. Different nutrients were made accessible to life to fuel growth. At the same time, microbes that couldn’t survive in the presence of oxygen had to adapt, perish, or find a way to survive in environments where oxygen didn’t persist, such as deep in the Earth’s subsurface. Rocks along the shoreline of Lake Salda in Turkey were formed over time by microbes that trap minerals in the water. These microbialites were once a major form of life on Earth. The new study explains our understanding of how oxygen levels have changed over time and spatial scales. The authors map different types of microbial metabolism, such as photosynthesis, to this history to better understand the “cause-and-effect relationship” between oxygen and the evolution of life on Earth. The paper provides important context for major changes in the course of evolution for the biosphere and the planet. By carefully considering the history of different types of microbial metabolisms on Earth, the review paper shows how biogeochemical cycles on our planet are inextricably linked through time over both local and global scales. The authors also discuss significant gaps in our knowledge that limit interpretations. For instance, we do not know how large the young biosphere on Earth was, which limits our ability to estimate the global effects of various metabolisms during Earth’s earliest years. Similarly, when using genetic information to look back along the tree of life, scientists can estimate when certain genes first appeared (and thereby what types of metabolisms could have been used at the time in living cells). However, the evolution of a new type of metabolism at a point in history does not necessarily mean that that metabolism was common or had a large enough effect in the environment to leave evidence in the rock record. According to the authors, “The history of microbial life marched in step with the history of the oceans, land and atmosphere, and our understanding remains limited by how much we still do not know about the environments of the early Earth.” This is an illustration of exoplanet WASP-39 b, also known as Bocaprins. NASA’s James Webb Space Telescope provided the most detailed analysis of an exoplanet atmosphere ever with WASP-39 b analysis released in November 2022. Webb’s Near-Infrared Spectrograph (NIRSpec) showed unambiguous evidence for carbon dioxide in the atmosphere, while previous observations from NASA’s Hubble and Spitzer Space Telescopes, as well as other telescopes, indicate the presence of water vapor, sodium, and potassium. The planet probably has clouds and some form of weather, but it may not have atmospheric bands like those of Jupiter and Saturn. This illustration is based on indirect transit observations from Webb as well as other space and ground-based telescopes. Webb has not captured a direct image of this planet. NASA, ESA, CSA, Joseph Olmsted (STScI) The study also has wider implications in the search for life beyond Earth. Understanding the co-evolution of life and the environment can help scientists better understand the conditions necessary for a planet to be habitable. The interconnections between life and the environment also provide important clues in the search for biosignature gases in the atmospheres of planets that orbit distant stars. The study, “Co‐evolution of early Earth environments and microbial life,” was published in the journal Nature Reviews. Additional information on the study is available from the University of California, Riverside. Click here to return to the NASA Astrobiology page. View the full article
-
15 Min Read The Marshall Star for July 17, 2024 NASA Ships Moon Rocket Stage Ahead of First Crewed Artemis Flight NASA rolled out the SLS (Space Launch System) rocket’s core stage for the Artemis II test flight from its Michoud Assembly Facility on Tuesday for shipment to the agency’s Kennedy Space Center. The rollout is key progress on the path to NASA’s first crewed mission to the Moon under the Artemis campaign. Using highly specialized transporters, engineers maneuvered the giant core stage from inside Michoud to NASA’s Pegasus barge. The barge will ferry the stage more than 900 miles to Kennedy, where engineers will prepare it in the Vehicle Assembly Building for attachment to other rocket and Orion spacecraft elements. Move teams with NASA and Boeing, the SLS core stage lead contractor, position the massive rocket stage for NASA’s SLS rocket on special transporters to strategically guide the flight hardware the 1.3-mile distance from the factory floor onto the agency’s Pegasus barge on July 16. The core stage will be ferried to NASA’s Kennedy Space Center in Florida, where it will be integrated with other parts of the rocket that will power NASA’s Artemis II mission. Pegasus is maintained at NASA’s Michoud Assembly Facility.Credit: NASA “With Artemis, we’ve set our sights on doing something big and incredibly complex that will inspire a new generation, advance our scientific endeavors, and move U.S. competitiveness forward,” said Catherine Koerner, associate administrator for NASA’s Exploration Systems Development Mission Directorate at NASA Headquarters. “The SLS rocket is a key component of our efforts to develop a long-term presence at the Moon.” Technicians moved the SLS rocket stage from inside Michoud on the 55th anniversary of the launch of Apollo 11 on July 16, 1969. The move of the rocket stage for Artemis marks the first time since the Apollo Program that a fully assembled Moon rocket stage for a crewed mission rolled out from Michoud. The NASA Michoud Assembly Facility workforce and with other agency team members take a “family photo” with the SLS (Space Launch System) core stage for Artemis II in the background on July 16 at Michoud. The core stage will help launch the first crewed flight of NASA’s SLS rocket for the agency’s Artemis II mission. NASA The SLS rocket’s core stage is the largest NASA has ever produced. At 212 feet tall, it consists of five major elements, including two huge propellant tanks that collectively hold more than 733,000 gallons of super-chilled liquid propellant to feed four RS-25 engines. During launch and flight, the stage will operate for just over eight minutes, producing more than 2 million pounds of thrust to propel four astronauts inside NASA’s Orion spacecraft toward the Moon. “The delivery of the SLS core stage for Artemis II to Kennedy Space Center signals a shift from manufacturing to launch readiness as teams continue to make progress on hardware for all major elements for future SLS rockets,” said John Honeycutt, SLS program manager at NASA’s Marshall Space Flight Center. “We are motivated by the success of Artemis I and focused on working toward the first crewed flight under Artemis.” Team members on July 16 move the first core stage that will help launch the first crewed flight of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission. The move marked the first time a fully assembled Moon rocket stage for a crewed mission has rolled out from NASA’s Michoud Assembly Facility in New Orleans since the Apollo Program. NASA After arrival at Kennedy, the stage will undergo additional outfitting inside the Vehicle Assembly Building. Engineers then will join it with the segments that form the rocket’s twin solid rocket boosters. Adapters for the Moon rocket that connect it to the Orion spacecraft will be shipped to Kennedy this fall, where the interim cryogenic propulsion stage is already. Engineers at Kennedy continue to prepare Orion and exploration ground systems for launch and flight. All major structures for every SLS core stage are fully manufactured at Michoud. Inside the factory, core stages and future exploration upper stages for the next evolution of SLS, called the Block 1B configuration, currently are in various phases of production for Artemis III, IV, and V. Beginning with Artemis III, to better optimize space at Michoud, Boeing – the SLS core stage prime contractor – will use space at Kennedy for final assembly and outfitting activities. Team members at Michoud Assembly Facility load the first core stage that will help launch the first crewed flight of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission onto the Pegasus barge on July 16. The barge will ferry the core stage on a 900-mile journey from the agency’s Michoud Assembly Facility in New Orleans to its Kennedy Space Center in Florida. NASA Building, assembling, and transporting the SLS core stage is a collaborative effort for NASA, Boeing, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3Harris Technologies company. All 10 NASA centers contribute to its development with more than 1,100 companies across the United States contributing to its production. NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. › Back to Top NASA Barge Preparations for Artemis II Rocket Stage Delivery Team members installed pedestals aboard NASA’s Pegasus barge to hold and secure the massive core stage of NASA’s SLS (Space Launch System) rocket, preparing NASA barge crews for their first delivery to support the Artemis II test flight around the Moon. The barge ferried the core stage on a 900-mile journey from the agency’s Michoud Assembly Facility to its Kennedy Space Center. Team members at NASA’s Michoud Assembly Facility install pedestals aboard the Pegasus barge to hold and secure the massive core stage of NASA’s SLS (Space Launch System) rocket ahead.NASA/Eric Bordelon The Pegasus crew began installing the pedestals July 10. The barge, which previously was used to ferry space shuttle external tanks, was modified and refurbished to compensate for the much larger and heavier core stage for the SLS rocket. Measuring 212 feet in length and 27.6 feet in diameter, the core stage is the largest rocket stage NASA has ever built and the longest item ever shipped by a NASA barge. Pegasus now measures 310 feet in length and 50 feet in width, with three 200-kilowatt generators on board for power. Tugboats and towing vessels moved the barge and core stage from Michoud to Kennedy, where the core stage will be integrated with other elements of the rocket and prepared for launch. Pegasus is maintained at NASA Michoud. NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. NASA’s Marshall Space Flight Center manages the SLS Program and Michoud. › Back to Top Michoud Marks Artemis II Milestone with Employee Event Featuring NASA Astronaut Victor Glover Moon to Mars Program Deputy Associate Administrator Amit Kshatriya, left, and NASA astronaut Victor Glover, right, speak to Michoud Assembly Facility team members on July 15 as part of a Space Flight Awareness event marking Artemis II’s core stage completion. The core stage was rolled out of Michoud’s rocket factory on July 16 for transportation to NASA’s Kennedy Space Center, where it will be integrated with the Orion spacecraft and the remaining components of the SLS (Space Launch System) rocket. (NASA) › Back to Top Tawnya Laughinghouse Named Director of Marshall’s Materials and Processes Laboratory Tawnya Plummer Laughinghouse has been named to the Senior Executive Service position of director of the Materials and Processes Laboratory in the Engineering Directorate at NASA’s Marshall Space Flight Center, effective July 7. Tawnya Plummer Laughinghouse has been named to the Senior Executive Service position of director of the Materials and Processes Laboratory in the Engineering Directorate at NASA’s Marshall Space Flight Center.NASA The Materials and Processes Laboratory provides science, technology, and engineering support in materials, processes, and products for use in space vehicle applications, including related ground facilities, test articles and support equipment. As director, Laughinghouse will oversee a workforce of science and engineering experts, as well as several research and development efforts in world-class facilities, including the National Center for Advanced Manufacturing. Laughinghouse has more than 20 years of experience at NASA holding various technical leadership, supervisory, and programmatic positions. Since October 2018, she has been manager of the Technology Demonstration Missions (TDM) Program for the Agency, managing the implementation of a diverse portfolio of advanced space technology projects led by NASA Centers and industry partners across the nation with a goal to rapidly develop, demonstrate, and infuse revolutionary, high-payoff technologies. Under her leadership, the program helped expand the boundaries of the aerospace enterprise with the launch of 10 advanced technologies to space between 2018 and 2024. In January 2017, she was competitively selected as deputy manager of the TDM Level 2 Program Office within Marshall’s Science and Technology Office. In 2014, she was selected as a member of the NASA Mid-Level Leadership Program. During that time, she completed a detail at NASA Headquarters supporting an Office of Chief Engineer/Office of Chief Technologist joint study on NASA’s Technology Readiness Assessment (TRA) Process. Laughinghouse began her NASA career at Marshall in 2004 in the Materials and Processes Laboratory as lead materials engineer for the Space Shuttle Reusable Solid Rocket Motor (RSRM) Booster Separation Motor aft closure assembly. In this role, she also provided technical expertise in advanced materials for high temperature applications and thermal protection systems for solid and liquid rocket propulsion systems. Over the next 12 years, she served the lab in various capacities, including technical lead of the Ceramics & Ablatives team from 2010 to 2016, and developmental assignments such as assistant chief of the Space and Environmental Effects Branch, and chief of the Nonmetallic Materials Branch. Prior to joining Marshall, Laughinghouse spent six years in the U.S. manufacturing industry as a process chemist and product engineer. Laughinghouse has been awarded the NASA Exceptional Achievement Medal, the NASA Exceptional Service Medal, and a host of group achievement and external awards, including the distinguished Merit Award from the National Alumnae Association of Spelman College in 2021. She has been recognized extensively in the community for her advocacy for women in STEM and mentoring. A federally certified senior/expert program and project manager, Laughinghouse is a graduate of several leadership programs, including the Office of Personnel Management Federal Executive Institute’s Leadership for a Democratic Society. She is a May 2024 graduate of Leadership Greater Huntsville’s Connect-26 Class. A native of Columbus, Ohio, Laughinghouse was raised in Huntsville and graduated salutatorian of her class at Sparkman High School in Toney, Alabama. After completing a NASA Summer High School Apprenticeship Research Program (SHARP) internship at Marshall, she applied for the NASA Women in Science and Engineering (WISE) dual-degree program and went on to earn a bachelor’s degree in chemistry and a bachelor’s degree in chemical engineering from Spelman College and the Georgia Institute of Technology, respectively. She also holds a Master of Science in management (concentration in management of technology) from the University of Alabama in Huntsville. › Back to Top Marshall Engineers Unveil Versatile, Low-cost Hybrid Engine Testbed By Rick Smith In June, engineers at NASA’s Marshall Space Flight Center unveiled an innovative, 11-inch hybrid rocket motor testbed. The new hybrid testbed, which features variable flow capability and a 20-second continuous burn duration, is designed to provide a low-cost, quick-turnaround solution for conducting hot-fire tests of advanced nozzles and other rocket engine hardware, composite materials, and propellants. Paul Dumbacher, right, lead test engineer for the Propulsion Test Branch at NASA’s Marshall Space Flight Center, confers with Meredith Patterson, solid propulsion systems engineer, as they install the 11-inch hybrid rocket motor testbed into its cradle in Marshall’s East Test Stand.NASA/Charles Beason Solid rocket propulsion remains a competitive, reliable technology for various compact and heavy-lift rockets as well as in-space missions, offering low propulsion element mass, high energy density, resilience in extreme environments, and reliable performance. “It’s time consuming and costly to put a new solid rocket motor through its paces – identifying how materials perform in extreme temperatures and under severe structural and dynamic loads,” said Benjamin Davis, branch chief of the Solid Propulsion and Pyrotechnic Devices Branch of Marshall’s Engineering Directorate. “In today’s fast-paced, competitive environment, we wanted to find a way to condense that schedule. The hybrid testbed offers an exciting, low-cost solution.” Initiated in 2020, the project stemmed from NASA’s work to develop new composite materials, additively manufactured – or 3D-printed – nozzles, and other components with proven benefits across the spacefaring spectrum, from rockets to planetary landers. After analyzing future industry requirements, and with feedback from NASA’s aerospace partners, the Marshall team recognized that their existing 24-inch rocket motor testbed – a subscale version of the Space Launch System booster – could prove too costly for small startups. Additionally, conventional, six-inch test motors limited flexible configuration and required multiple tests to achieve all customer goals. The team realized what industry needed most was an efficient, versatile third option. “The 11-inch hybrid motor testbed offers the instrumentation, configurability, and cost-efficiency our government, industry, and academic partners need,” said Chloe Bower, subscale solid rocket motor manufacturing lead at Marshall. “It can accomplish multiple test objectives simultaneously – including different nozzle configurations, new instrumentation or internal insulation, and various propellants or flight environments.” Assessing components of the 11-inch hybrid rocket motor testbed in the wake of successful testing are, from left, Chloe Bower, Marshall’s subscale solid rocket motor manufacturing lead; Jacobs manufacturing engineer Shelby Westrich; and Precious Mitchell, Marshall’s solid propulsion design lead.NASA/Benjamin Davis “That quicker pace can reduce test time from months to weeks or days,” said Precious Mitchell, solid propulsion design lead for the project. Another feature of great interest is the on/off switch. “That’s one of the big advantages to a hybrid testbed,” Mitchell said. “With a solid propulsion system, once it’s ignited, it will burn until the fuel is spent. But because there’s no oxidizer in hybrid fuel, we can simply turn it off at any point if we see anomalies or need to fine-tune a test element, yielding more accurate test results that precisely meet customer needs.” The team expects to deliver to NASA leadership final test data later this summer. For now, Davis congratulates the Marshall propulsion designers, analysts, chemists, materials engineers, safety personnel, and test engineers who collaborated on the new testbed. “We’re not just supporting the aerospace industry in broad terms,” he said. “We’re also giving young NASA engineers a chance to get their hands dirty in a practical test environment solving problems. This work helps educate new generations who will carry on NASA’s mission in the decades to come.” For nearly 65 years, Marshall teams have led development of the U.S. space program’s most powerful rocket engines and spacecraft, from the Apollo-era Saturn V rocket and the space shuttle to today’s cutting-edge propulsion systems, including NASA’s newest rocket, the Space Launch System. NASA technology testbeds designed and built by Marshall engineers and their partners have shaped the reliable technologies of spaceflight and continue to enable discovery, testing, and certification of advanced rocket engine materials and manufacturing techniques. Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications. › Back to Top NASA Honors 25 Years of Chandra at July National Space Club Breakfast Andrew Schnell, acting manager of the Chandra X-ray Observatory at NASA’s Marshall Space Flight Center, honored 25 years of the project’s mission success at National Space Club – Huntsville’s breakfast event on July 16. Schnell provided insight into Chandra’s history – sharing photos and stories from the project’s initial development, launch, first light images, and some of the most iconic images captured by the telescope to date. Chandra launched on STS-93 Shuttle Columbia July 23, 1999. Originally designed as a five-year mission, the telescope’s prolonged success is a testament to the agency’s engineering capabilities. “One of the things that excites me about working with Chandra is that are we not only changing our understanding of the universe today, but the data we collect now may help answer questions astrophysicists haven’t even asked yet.” Schnell said. “One day, an astrophysicist – maybe one that hasn’t been born yet – will have a theory, and our data will be there to help them test that theory.” (Photo Credit: Face to Face Marketing) › Back to Top Take a Summer Cosmic Road Trip with NASA’s Chandra and Webb It’s time to take a cosmic road trip using light as the highway and visit four stunning destinations across space. The vehicles for this space get-away are NASA’s Chandra X-ray Observatory and James Webb Space Telescope. The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth. Rho Ophiuchi is a cloud complex filled with gas and stars of different sizes and ages. Being one of the closest star-forming regions, Rho Ophiuchi is a great place for astronomers to study stars. In this image, X-rays from Chandra are purple revealing infant stars that violently flare and produce X-rays. Infrared data from Webb are red, yellow, cyan, light blue and darker blue and provide views of the spectacular regions of gas and dust. The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth.X-ray: NASA/CXC/MIT/C. Canizares; IR: NASA/ESA/CSA/STScI/K. Pontoppidan; Image Processing: NASA/ESA/STScI/Alyssa Pagan, NASA/CXC/SAO/L. Frattare and J. Major The next destination is the Orion Nebula. Still located in the Milky Way galaxy, this region is a little bit farther from our home planet at about 1,500 light-years away. If you look just below the middle of the three stars that make up the “belt” in the constellation of Orion, you may be able to see this nebula through a small telescope. With Chandra and Webb, however, we get to see so much more. Chandra reveals young stars that glow brightly in X-rays, colored in red, green, and blue, while Webb shows the gas and dust in darker red that will help build the next generation of stars here. The Orion Nebula.X-ray: NASA/CXC/Penn State/E.Fei It’s time to leave our galaxy and visit another. Like the Milky Way, NGC 3627 is a spiral galaxy that we see at a slight angle. NGC 3627 is known as a “barred” spiral galaxy because of the rectangular shape of its central region. From our vantage point, we can also see two distinct spiral arms that appear as arcs. X-rays from Chandra in purple show evidence for a supermassive black hole in its center while Webb finds the dust, gas, and stars throughout the galaxy in red, green, and blue. This image also contains optical data from the Hubble Space Telescope in red, green, and blue. Spiral galaxy NGC 3627.X-ray: NASA/CXC/SAO; Optical: NASA/ESO/STScI, ESO/WFI; Infrared: NASA/ESA/CSA/STScI/JWST; Image Processing:/NASA/CXC/SAO/J. Major Our final landing place on this trip is the farthest and the biggest. MACS J0416 is a galaxy cluster, which are among the largest objects in the Universe held together by gravity. Galaxy clusters like this can contain hundreds or even thousands of individual galaxies all immersed in massive amounts of superheated gas that Chandra can detect. In this view, Chandra’s X-rays in purple show this reservoir of hot gas while Hubble and Webb pick up the individual galaxies in red, green, and blue. ACS J0416 galaxy cluster.X-ray: NASA/CXC/SAO/G. Ogrean et al.; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI/Jose M. Diego (IFCA), Jordan C. J. D’Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri) NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. › Back to Top View the full article
-
NASA’s VIPER – short for the Volatiles Investigating Polar Exploration Rover – sits assembled inside the cleanroom at the agency’s Johnson Space Center.Credit: NASA Following a comprehensive internal review, NASA announced Wednesday its intent to discontinue development of its VIPER (Volatiles Investigating Polar Exploration Rover) project. NASA stated cost increases, delays to the launch date, and the risks of future cost growth as the reasons to stand down on the mission. The rover was originally planned to launch in late 2023, but in 2022, NASA requested a launch delay to late 2024 to provide more time for preflight testing of the Astrobotic lander. Since that time, additional schedule and supply chain delays pushed VIPER’s readiness date to September 2025, and independently its CLPS (Commercial Lunar Payload Services) launch aboard Astrobotic’s Griffin lander also has been delayed to a similar time. Continuation of VIPER would result in an increased cost that threatens cancellation or disruption to other CLPS missions. NASA has notified Congress of the agency’s intent. “We are committed to studying and exploring the Moon for the benefit of humanity through the CLPS program,” said Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “The agency has an array of missions planned to look for ice and other resources on the Moon over the next five years. Our path forward will make maximum use of the technology and work that went into VIPER, while preserving critical funds to support our robust lunar portfolio.” Moving forward, NASA is planning to disassemble and reuse VIPER’s instruments and components for future Moon missions. Prior to disassembly, NASA will consider expressions of interest from U.S. industry and international partners by Thursday, Aug. 1, for use of the existing VIPER rover system at no cost to the government. Interested parties should contact HQ-CLPS-Payload@mail.nasa.gov after 10 a.m. EDT on Thursday, July 18. The project will conduct an orderly close out through spring 2025. Astrobotic will continue its Griffin Mission One within its contract with NASA, working toward a launch scheduled for no earlier than fall 2025. The landing without VIPER will provide a flight demonstration of the Griffin lander and its engines. NASA will pursue alternative methods to accomplish many of VIPER’s goals and verify the presence of ice at the lunar South Pole. A future CLPS delivery – the Polar Resources Ice Mining Experiment-1 (PRIME-1) — scheduled to land at the South Pole during the fourth quarter of 2024, will search for water ice and carry out a resource utilization demonstration using a drill and mass spectrometer to measure the volatile content of subsurface materials. Additionally, future instruments as part of NASA’s crewed missions – for example, the Lunar Terrain Vehicle — will allow for mobile observations of volatiles across the south polar region, as well as provide access for astronauts to the Moon’s permanently shadowed regions for dedicated sample return campaigns. The agency will also use copies of three of VIPER’s four instruments for future Moon landings on separate flights. The VIPER rover was designed to search Earth’s Moon for ice and other potential resources – in support of NASA’s commitment to study the Moon and help unravel some of the greatest mysteries of our solar system. Through NASA’s lunar initiatives, including Artemis human missions and CLPS, NASA is exploring more of the Moon than ever before using highly trained astronauts, advanced robotics, U.S. commercial providers, and international partners. For more information about VIPER, visit: https://www.nasa.gov/viper -end- Karen Fox / Erin Morton Headquarters, Washington 202-358-1600 / 202-805-9393 karen.c.fox@nasa.gov / erin.morton@nasa.gov Share Details Last Updated Jul 17, 2024 LocationNASA Headquarters Related TermsVIPER (Volatiles Investigating Polar Exploration Rover)Commercial Lunar Payload Services (CLPS)Earth's MoonScience Mission Directorate View the full article
-
Digital content creators are invited to register to attend the launch of the ninth SpaceX Dragon spacecraft and Falcon 9 rocket that will carry astronauts to the International Space Station for a science expedition mission. This mission is part of NASA’s Commercial Crew Program. Launch of NASA’s SpaceX Crew-9 mission is targeted for no earlier than mid-August from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The launch will carry NASA astronauts Zena Cardman, commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; along with Roscosmos cosmonaut Alexander Gorbunov, mission specialist. If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the #Crew9 mission launch. A maximum of 50 social media users will be selected to attend this two-day event and will be given access similar to news media. NASA Social participants will have the opportunity to: View a crewed launch of the SpaceX Falcon 9 rocket and Dragon spacecraft Tour NASA facilities at Kennedy Space Center Meet and interact with Crew-9 subject matter experts Meet fellow space enthusiasts who are active on social media Registration for this event opens on Wednesday, July 17, and the deadline to apply is at 10 a.m. EDT on Monday, July 22. All social applications will be considered on a case-by-case basis. APPLY NOW Do I need to have a social media account to register? Yes. This event is designed for people who: Actively use multiple social networking platforms and tools to disseminate information to a unique audience. Regularly produce new content that features multimedia elements. Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences. Must have an established history of posting content on social media platforms. Have previous postings that are highly visible, respected and widely recognized. Users on all social networks are encouraged to use the hashtag #NASASocial and #Crew9. Updates and information about the event will be shared on X via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram. How do I register? Registration for this event opens on Wednesday, July 17, and the deadline to apply is at 10 a.m. EDT on Monday, July 22. All social applications will be considered on a case-by-case basis. Can I register if I am not a U.S. citizen? Because of the security deadlines, registration is limited to U.S. citizens. If you have a valid permanent resident card, you will be processed as a U.S. citizen. When will I know if I am selected? After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by August 7. What are NASA Social credentials? All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria. If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here. What are the registration requirements? Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities. Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly. Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas. IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted. For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements. All registrants must be at least 18 years old. What if the launch date changes? Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email. If the launch is postponed, attendees will be invited to attend a later launch date. NASA cannot accommodate attendees for delays beyond 72 hours. NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible. What if I cannot come to the Kennedy Space Center? If you cannot come to the Kennedy Space Center and attend in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial. You can watch the launch on NASA+ or plus.nasa.gov. NASA will provide regular launch and mission updates on @NASA, @NASAKennedy, and @Commercial_Crew, as well as on NASA’s Commercial Crew Program blog. If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! Keep Exploring Discover More Topics From NASA International Space Station Launch Pad 39B Kennedy Space Center Commercial Crew Program View the full article
-
Official NASA’s SpaceX Crew-9 portraits with Zena Cardman, Nick Hague, Stephanie Wilson and Aleksandr Gorbunov. Credit: NASA Media accreditation now is open for the launch of NASA’s ninth rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft that will carry astronauts to the International Space Station for a science expedition. This mission is part of NASA’s Commercial Crew Program. Launch of NASA’s SpaceX Crew-9 mission is targeted for no earlier than mid-August from Launch Complex 39A at the agency’s Kennedy Space Center in Florida, pending completion of the company’s ongoing Falcon 9 investigation. Crew safety and mission assurance are top priorities for NASA and its partners. The launch will carry NASA astronauts Zena Cardman, commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; along with Roscosmos cosmonaut Alexander Gorbunov, mission specialist. This is the first spaceflight for Cardman and Gorbunov, the second mission to the orbiting laboratory for Hague, and fourth spaceflight for Wilson, who has spent 42 days in space aboard three space shuttle Discovery missions – STS-120, STS-121, and STS-131. U.S. media, international media without U.S. citizenship, and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Wednesday, July 31. All accreditation requests must be submitted online at: https://media.ksc.nasa.gov NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Thursday, Aug. 1. For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371. For launch coverage and more information about the mission, visit: https://www.nasa.gov/commercialcrew -end- Joshua Finch / Claire O’Shea Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov Leah Cheshier Johnson Space Center, Houston 281-483-5111 leah.d.cheshier@nasa.gov Share Details Last Updated Jul 17, 2024 LocationNASA Headquarters Related TermsHumans in SpaceCommercial CrewCommercial SpaceInternational Space Station (ISS)ISS ResearchJohnson Space CenterKennedy Space Center View the full article
-
23 Min Read The Next Full Moon is the Buck or Thunder Moon Mule deer buck, Yellowstone National Park The Next Full Moon is the Buck or Thunder Moon; the Hay or Mead Moon; Guru Purnima; Asalha Puja (aka Dharma Day or Esala Poya); and the start of Vassa. The next full Moon will be Sunday morning, July 21, 2024, appearing opposite the Sun (in Earth-based longitude) at 6:17 AM EDT. For the International Date Line West and the American Samoa and Midway time zones this will be late Saturday night. For Line Islands Time this will be early Monday morning. The Moon will appear full for about three days around this time, from Friday evening through Monday morning, making this a full Moon weekend. The Maine Farmers’ Almanac began publishing “Indian” names for full Moons in the 1930s and these names are now widely known and used. According to this almanac, as the full Moon in June the Algonquin tribes of what is now the northeastern United States called this the Buck Moon. Early summer is normally when the new antlers of buck deer push out of their foreheads in coatings of velvety fur. They also called this the Thunder Moon because of early Summer’s frequent thunderstorms. Europeans called this the Hay Moon for the haymaking of early summer, and sometimes the Mead Moon (although this name was also used for the previous full Moon). Mead is created by fermenting honey mixed with water, sometimes adding fruits, spices, grains, or hops. For Hindus, Buddhists, and Jains, this is the Guru Full Moon (Guru Purnima), celebrated as a time for clearing the mind and honoring the guru or spiritual master. For Theravada Buddhists this full Moon is Asalha Puja, also known as Dharma Day or Esala Poya, an important festival celebrating the Buddha’s first sermon after reaching nirvana, which started Buddhism. This sermon became the core of Buddhist teachings and includes the four noble truths. In addition, with this full Moon the Buddhist Monks start Vassa, the annual three-month retreat during the rainy season. In many traditional lunisolar and lunar calendars full Moons fall on or near the middle of the lunar months. This full Moon is near the middle of the sixth month of the Chinese year of the Dragon, Tammuz in the Hebrew calendar, and Muharram in the Islamic calendar. Muharram is one of the four sacred months during which warfare is forbidden. Since this is the Thunder Moon, a quick note on lightning safety. Most of the lightning that strikes the ground arcs from the negatively charged bottom of the storm to the ground underneath the storm. Much rarer is positive lightning, which arcs from the top of a thunderstorm to strike much farther away. Positive lightning can sometimes strike areas where the sky is clear (hence the term “bolt out of the blue”). NOAA’s Lightning FAQ Page says that almost all lightning will occur within 10 miles of its parent thunderstorm, but that lightning detection equipment has confirmed bolts striking up to almost 50 miles away. Because positive lightning arcs across a greater distance it tends to be 5 to 10 times more powerful than regular ground strikes. It can strike dry areas outside of the storm’s rainfall, so positive lightning tends to start more fires than negative lightning. Although positive lightning is rare (less than 5% of all lightning strikes), the lack of warning and its greater power make it more lethal. A good rule to follow is, if you can hear the thunder, you can be struck by lightning. As a bicycle enthusiast and daily commuter (before I retired) I am well aware that the inch or so of rubber tire between my metal bicycle and the ground will make little difference to a bolt that can arc across miles of air from the top of a thunderstorm to where I am riding. As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Be safe (especially during thunderstorms), avoid starting wars, and take a moment to clear your mind. As for other celestial events between now and the full Moon after next (with specific times and angles based on the location of NASA Headquarters in Washington, D.C.): As summer continues the daily periods of sunlight continue to shorten from their longest on the summer solstice on June 20, 2024. On Sunday, July 21, (the day of the full Moon), morning twilight will begin at 4:52 AM, sunrise will be at 6:00 AM, solar noon at 1:15 PM when the Sun will reach its maximum altitude of 71.4 degrees, sunset will be at 8:28 PM, and evening twilight will end at 9:37 PM. By Monday, Aug. 21, (the day of the full Moon after next), morning twilight will begin at 5:24 AM, sunrise will be at 6:26 AM, solar noon at 1:11 PM when the Sun will reach its maximum altitude of 63.6 degrees, sunset will be at 7:57 PM, and evening twilight will end at 8:58 PM. Six meteor showers are predicted to peak during this lunar cycle, including one of the best meteor showers of the year for the Southern Hemisphere and one of the best meteor showers of the year for the Northern Hemisphere. On July 31, 2024, the Southern Delta Aquariids (005 SDA) meteor shower is predicted to peak at 25 meteors per hour (under ideal conditions). This shower is one of the most active annual sources for the Southern Hemisphere, but viewing it from our more northern latitudes will be difficult. As reported by the International Meteor Organization, this shower has a broad peak, and in past years observers from Australia (in 1977) and Crete (in 2003) have reported outbursts of 40 meteors per hour several days before the predicted peak. On the morning of the predicted peak (July 31), the best time to look (from the Washington, D.C. area) will likely be from after midnight until about 2 AM. The radiant (the point from which the meteors appear to radiate out from) will rise on the east-southeastern horizon on July 30 at about 10:15 PM. Since half of the meteors are hidden by the horizon at radiant rise, waiting until the radiant is higher in the sky should make more meteors visible. But moonrise will be at 1:58 AM (when the radiant will be about 30 degrees above the south-southeastern horizon). After moonrise moonlight will interfere with seeing these meteors, making our window for seeing these meteors fairly short. The parent body for this meteor shower is not certain, but they are caused by dust entering our atmosphere at 41 kilometers per second (92,000 miles per hour), so fast that air gets compressed and heated until it glows white-hot. This should be a good year for the annual Perseid meteor shower. The Perseids (007 PER) meteor shower is predicted to peak on Monday, Aug. 12, 2024, between 9 AM and Noon EDT (when we can’t see them). At its peak (under ideal conditions) the Perseids can produce about 100 visible meteors per hour, making it one of the three best meteor showers of the year for the Northern Hemisphere (the others being the Quadrantids in early January and the Geminids in mid December). The time closest to the predicted peak that we can see will be the early morning of Aug. 12. Moonset will be a little before midnight on Aug. 11, and the radiant will rise higher in the north-northeastern sky until the sky shows the first signs of dawn (before morning twilight begins at 5:16 AM). The peak is broad, and in past years high activity has been reported well after the peak, so keep an eye on the sky between moonset and the first hints of dawn for the nights before and after the predicted peak. The Perseid meteor shower is caused by dust from the comet 109P/Swift-Tuttle entering our atmosphere at 59 kilometers per second (132,000 miles per hour) – as previously noted, so fast that air gets compressed and heated until it glows white-hot. The best conditions for viewing these meteors would be if the weather is clear with no clouds or high hazes, you go to a place far from any light sources or urban light pollution, and you have a clear view of a wide expanse of the sky. Be sure to give your eyes plenty of time to adapt to the dark. The rod cells in your eyes are more sensitive to low light levels but play little role in color vision. Your color-sensing cone cells are concentrated near the center of your view with more of the rod cells on the edge of your view. Since some meteors are faint, you will tend to see more meteors from the “corner of your eye” (which is why you need a view of a large part of the sky). Your color vision (cone cells) will adapt to darkness in about 10 minutes, but your more sensitive night vision will continue to improve for an hour or more (with most of the improvement in the first 35 to 45 minutes). The more sensitive your eyes are, the more chance you have of seeing meteors. Even a short exposure to light (from passing car headlights, etc.) will start the adaptation over again (so no turning on a light or your cell phone to check what time it is). The other four meteor showers, the July Gamma Draconids (184 GDR), Alpha Capricornids (001 CAP), Eta Eridanids (191 ERI), and Kappa Cygnids (012 KCG), are all expected to produce less than five meteors per hour under ideal conditions (which most of us don’t have in our urban and suburban environs) but if you happen to be out with a clear sky late at night or in the early morning, your odds of spotting a meteor are a little higher than usual. No comets are expected to be visible this lunar cycle. Evening Sky Highlights On the evening of Sunday, July 21, 2024 (the evening of the day of the full Moon), as twilight ends (at 9:37 PM EDT), the rising Moon will be 3 degrees above the east-southeastern horizon. The bright planet Mercury will be 1 degree above the west-northwestern horizon and six minutes away from setting. The planet Venus will set 22 minutes before twilight ends, but will be bright enough to see in the glow of dusk, low on the west-northwestern horizon before it sets. The bright object appearing closest to overhead will be Vega, the brightest star in the constellation Lyra the lyre, at 65 degrees above the eastern horizon. Vega is one of the three bright stars in the “Summer Triangle,” along with Deneb and Altair. It is the fifth-brightest star in our night sky, about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun. As this lunar cycle progresses the background of stars will appear to shift westward each evening (as the Earth moves around the Sun), while the planet Mercury will initially dwell low on the west-northwestern horizon, shifting towards the left. On July 24 Mercury will be 2 degrees below the bright star Regulus, and this will be the last evening Mercury will be above the horizon as twilight ends (although it may remain visible in the glow of dusk before twilight ends into early August). The bright planet Venus will also be visible in the glow of dusk, gradually shifting away from the Sun, but will not be above the horizon as twilight ends until late August. The bright star Regulus will appear about 1 degree to the lower right of Venus on Aug. 4, low on the west-northwestern horizon, with Regulus setting 17 minutes before evening twilight ends. The waxing Moon will pass by Venus and Regulus on Aug. 5 (setting before evening twilight ends), Spica on Aug. 9 and 10, and Antares on Aug. 13. Aug. 16 will be the first evening that the planet Saturn will be above the eastern horizon as evening twilight ends. By the evening of Monday, Aug. 19 (the evening of the day of the full Moon after next), as twilight ends (at 8:58 PM), the rising Moon will be 7 degrees above the east-southeastern horizon. The only visible planet in the sky will be Saturn at 1.5 degrees above the eastern horizon. The planet Venus will set four minutes before twilight ends but will be bright enough to see in the glow of dusk, low on the western horizon before it sets. The bright object appearing closest to overhead will still be Vega at 80 degrees above the eastern horizon. Morning Sky Highlights On the morning of Sunday, July 21, 2024 (the morning of the day of the full Moon), as twilight begins (at 4:52 AM EDT), the setting Moon will be 7 degrees above the southwestern horizon. The brightest planet in the sky will be Jupiter at 25 degrees above the eastern horizon. Mars will be 33 degrees above the eastern horizon and Saturn 45 degrees above the southern horizon. The bright object appearing closest to overhead will be the star Deneb at 56 degrees above the west-northwestern horizon. Deneb is the 19th brightest star in our night sky and is the brightest star in the constellation Cygnus the swan. Deneb is one of the three bright stars of the Summer Triangle (along with Vega and Altair). It is about 20 times more massive than our Sun but has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of Earth. Deneb is about 2,600 light-years from us. As this lunar cycle progresses, Jupiter, Saturn, and the background of stars will appear to shift westward each evening, with Mars shifting more slowly and to the left toward Jupiter. The waning Moon will pass by Saturn on July 25, Mars on July 30, Jupiter on July 31, and Pollux on Aug. 2 and 3. Jupiter and Mars will appear at their closest on Aug. 14, after which they will separate again. By the morning of Monday, Aug. 19 (the morning of the day of the full Moon after next), as twilight begins (at 5:24 AM), the setting full Moon will be 5 degrees above the southwestern horizon. The brightest planet in the sky will be Jupiter at 49 degrees above the eastern horizon. Near Jupiter will be Mars at 47 degrees above the eastern horizon. Saturn will be 29 degrees above the southwestern horizon. The bright object appearing closest to overhead will be the star Capella, the brightest star in the constellation Auriga the charioteer, at 55 degrees above the east-northeastern horizon. Although we see Capella as a single star (the sixth-brightest in our night sky), it is actually four stars (two pairs of stars orbiting each other). Capella is about 43 light-years from us. Detailed Daily Guide Here for your reference is a day-by-day listing of celestial events between now and the full Moon after next. The times and angles are based on the location of NASA Headquarters in Washington, D.C., and some of these details may differ for where you are (I use parentheses to indicate times specific to the D.C. area). Wednesday night into early Thursday morning, July 17 to 18, 2024, the bright star Antares will appear near the waxing gibbous Moon. As evening twilight ends (at 9:40 PM EDT) Antares will be 3 degrees to the upper right of the Moon. The Moon will reach its highest in the sky 27 minutes later (at 10:07 PM). As Antares sets (at 2:21 AM) it will be 5 degrees to the lower right of the Moon. For much of the southern part of Africa the Moon will pass in front of Antares earlier on Wednesday. See http://lunar-occultations.com/iota/bstar/0717zc2366.htm (external link) for a map and information on the locations that will see this occultation. As mentioned above, the full Moon will be Sunday morning, July 21, 2024, appearing opposite the Sun (in Earth-based longitude) at 6:17 AM EDT. This will be late Saturday night in the International Date Line West and the American Samoa and Midway time zones, and early Monday morning in the Line Islands Time zone. The Moon will appear full for about three days around this time, from Friday evening through Monday morning, making this a full Moon weekend. Early Monday morning, July 22, 2024, will be when the planet Mercury reaches its greatest angular separation from the Sun as seen from Earth for this apparition (called greatest elongation). Because the angle between the line from the Sun to Mercury and the line of the horizon changes with the seasons, the date when Mercury and the Sun appear farthest apart as seen from Earth is not always the same as when Mercury appears highest above the horizon as evening twilight ends (which occurred on July 13). Early Wednesday morning, July 24, 2024, at 1:43 AM EDT, the Moon will be at perigee, its closest to Earth for this orbit. Wednesday evening, July 24, 2024, will be the last evening that the planet Mercury will be above the west-northwestern horizon as evening twilight ends (at 9:34 PM EDT), setting one minute later. This will also be the evening when Mercury will appear closest to the bright star Regulus, which will be 2 degrees above Mercury on the horizon. Wednesday night into Thursday morning, July 24 to 25, 2024, the planet Saturn will appear near the waning gibbous Moon. At moonrise on the eastern horizon (at 10:45 PM EDT) Saturn will be 4 degrees to the upper right of the Moon. By the time the Moon reaches its highest (at 4:42 AM) Saturn will be 7 degrees to the lower right, with morning twilight beginning 14 minutes later. See http://lunar-occultations.com/iota/planets/0724saturn.htm (external link) for a map and information on where the Moon will block Saturn from view. Saturday evening July 27, 2024, the waning Moon will appear half-full as it reaches its last quarter at 10:52 PM EDT (when we can’t see it). Tuesday, July 30, 2024, the planet Mars will appear 4 degrees to the lower right of the waning crescent Moon with the Pleiades star cluster to the upper right of the Moon. Mars will rise on the east-northeastern horizon (at 1:39 AM EDT) with the Pleiades star cluster 5 degrees to the upper right of the Moon. Morning twilight will begin more than three hours later (at 5:01 AM) with the Pleiades 7 degrees to the upper right. As described earlier in this posting, early Wednesday morning, July 31, 2024, from about midnight until moonrise (at 1:58 AM EDT) will likely be the best time to look toward the southeast for the Southern Delta Aquariids (005 SDA) meteor shower. Although viewing from our more northern latitudes will be limited, this shower is one of the most active annual sources for the Southern Hemisphere (with a predicted peak of 25 meteors per hour under ideal conditions). This shower has a broad peak, and rare outbursts of up to 40 meteors per hour have been reported days before the predicted peak (in 1977 and 2003). You might have an increased chance of seeing meteors in the early mornings from after midnight to before moonrise around this date. Friday morning, Aug. 2, 2024, the bright star Pollux (the brighter of the twin stars in the constellation Gemini) will appear 8 degrees to the lower left of the waning crescent Moon. Pollux will rise after the Moon on the northeastern horizon (at 4:24 AM EDT) and morning twilight will begin 41 minutes later (at 5:05 AM). The next morning, Saturday, Aug. 3, 2024, the thin, waning crescent Moon will have shifted to 7 degrees below Pollux. The Moon will rise (at 4:59 AM EDT) on the east-northeastern horizon just six minutes before morning twilight begins. Throughout this lunar cycle the planet Mars will be passing above the bright star Aldebaran as it moves towards the bright planet Jupiter. Sunday morning, Aug. 4, 2024, will be when Mars and Aldebaran will be at their closest, about 5 degrees apart. Jupiter, Mars, and Aldebaran will form a triangle, with Mars above, Aldebaran to the lower right (matching Mars in brightness), and bright Jupiter to the lower left. Aldebaran will rise last (at 1:53 AM EDT) on the east-northeastern horizon and will be 37 degrees above the eastern horizon as morning twilight begins (at 5:07 AM). The constellation Orion will appear on the horizon below this triangle. Sunday morning, Aug. 4, 2024, at 7:13 AM EDT, will be the new Moon, when the Moon passes between the Earth and the Sun and will not be visible from the Earth. The day of, or the day after the New Moon marks the start of the new month for most lunisolar calendars. Aug. 4 is the start of the seventh month of the Chinese Year of the Dragon. Sundown on Aug. 4 is the start of Av in the Hebrew calendar. In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Sunday, Aug. 4, will probably mark the start of Safar, the second month of the Islamic calendar. Monday evening, Aug. 5, 2024, if you have a very clear view of the western to west-northwestern horizon (particularly with binoculars), you might be able to see the thin, waxing crescent Moon less than a degree above the bright planet Venus, with the bright star Regulus 1.5 degrees below Venus. The planet Mercury (less bright than Regulus) will be 6 degrees to the lower left of Venus. There may only be a short window between when dusk will have faded enough to see Mercury and when Mercury sets 36 minutes after sunset (at 8:50 PM EDT). Regulus will set next nine minutes after Mercury (45 minutes after sunset), followed by Venus eight minutes later (53 minutes after sunset), and the Moon six minutes after that (59 minutes after sunset), six minutes before evening twilight ends (at 9:19 PM). Venus and Regulus will have been at their closest (1 degree apart) the evening before and Mercury and Venus will be at their closest (6 degrees apart) two evenings later, but these will be hard to spot, low on the horizon in the glow of dusk. Thursday, Aug. 8, 2024, at 9:32 PM EDT, the Moon will be at apogee, its farthest from the Earth for this orbit. Friday evening, Aug. 9, 2024, the bright star Spica will appear 5 degrees to the upper left of the waxing crescent Moon. The Moon will be 14 degrees above the west-southwestern horizon as evening twilight ends (at 9:13 PM EDT). The Moon will set first a little more than an hour later (at 10:35 PM). Saturday morning, for part of the western Pacific north of Australia and Indonesia, the Moon will block Spica from view. See http://lunar-occultations.com/iota/bstar/0810zc1925.htm (external link) for a map and information on locations that can see this occultation. By Saturday evening, Aug. 10, 2024, the waxing crescent Moon will have shifted to 7 degrees to the left of the star Spica as evening twilight ends and the pair will separate as the night progresses. Saturday night, Aug. 10, 2024, will be the night of the seventh day of the seventh month of the Chinese calendar, known as the double seventh festival, Qixi in China, Chilseok in Korea, and Thất Tịch in Vietnam. The double seventh festival is sometimes called the Chinese Valentine’s Day. There are many variations on the legend, but basically they involve the Milky Way and the three bright stars we know as the Summer Triangle. The star Vega represents the weaver girl and the star Altair represents the cowherd. They fall in love and neglect their duties, so the Goddess of Heaven puts a wide river in the sky, the Milky Way, to keep them apart. They are allowed to meet only one night a year, on the seventh night of the seventh month, when the star Deneb forms a bridge across the Milky Way. In some versions of the legend, the bridge is formed by magpies, so another name is the Magpie Festival. The Japanese Tanabata or Star Festival is related, but is no longer tied to the lunisolar date (it is now celebrated on July 7, the double seventh of the Gregorian Calendar). On average there are a little more than seven days between each quarter of the Moon, so the first quarter Moon tends to occur a day or two after the seventh day of the lunisolar month. As described earlier in this post, this should be a good year for the annual Perseids (007 PER) meteor shower, which can peak at more than 100 meteors per hour (under ideal conditions). The time closest to the predicted peak that we can see (from the Washington, D.C. area) will be the early morning of Monday, Aug. 12, 2024. Moonset will be a little before midnight on Aug. 11 and the radiant will rise higher in the north-northeastern sky until the sky shows the first signs of dawn (before morning twilight begins at 5:16 AM). The peak is broad, and in past years high activity has been reported well after the peak, so keep an eye on the sky from moonset to the first hints of dawn on the nights before and after as well. See the meteor shower summary near the beginning of this post for more information on viewing these meteors. Monday morning, Aug. 12, 2024, the Moon will appear half-full as it reaches its first quarter at 11:19 AM EDT (when we can’t see it). Tuesday night, Aug. 13, 2024, the bright star Antares will appear near the waxing gibbous Moon. Antares will be 2.5 degrees to the upper left as evening twilight ends (at 9:08 PM EDT). By the time of moonset on the southwestern horizon (Wednesday morning at 12:30 AM) Antares will be 1 degree above the Moon. Viewers in the southern part of South America and the Antarctic Peninsula will see the Moon pass in front of Antares. See http://lunar-occultations.com/iota/bstar/0814zc2349.htm (external link) for a map and information on areas that can see this occultation. Throughout this lunar cycle the planet Mars will drift toward the bright planet Jupiter. They will be at their closest on Wednesday morning, Aug. 14, 2024, just a third of a degree apart, which should be a good show! Bright Jupiter will rise early in the morning (at 1:18 AM EDT) on the east-northeastern horizon below Mars. They will be 45 degrees above the eastern horizon as morning twilight begins four hours later (at 5:18 AM). Friday evening, Aug. 16, 2024, will be the first evening that the planet Saturn will be above the eastern horizon as evening twilight ends (at 9:03 PM EDT). Sunday evening, Aug. 18, 2024, the planet Mercury will be passing between Earth and the Sun as seen from Earth, called inferior conjunction. Planets that orbit inside of the orbit of Earth can have two types of conjunctions with the Sun, inferior (when passing between the Earth and the Sun) and superior (when passing on the far side of the Sun as seen from the Earth). Mercury will be shifting from the evening sky to the morning sky and will begin emerging from the glow of dawn on the east-northeastern horizon at the end of August. The full Moon after next will be Monday afternoon, Aug. 19, 2024, at 2:26 PM EDT. This will be Tuesday morning from Nepal Standard Time eastward across the rest of Asia and Australia to the International Date Line. The Moon will appear full for about three days around this time, from Sunday morning through early Wednesday morning. As the third full Moon in a season with four full Moons, this will be a Blue Moon (by the older, more traditional definition). View the full article
-
3 min read Science Activation’s PLACES Team Facilitates Second Professional Learning Institute The NASA Science Activation Program’s Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES) team successfully led their second Professional Learning (PL) Summer Institute (SI) at Northern Arizona University (NAU) in Flagstaff, Arizona from June 11-13, 2024. The team led a group of 13 educators through a variety of powerful place-based data-rich (PBDR) experiences across the three-day SI. PL kicked off with teachers engaging in an intensive field experience at Hat Ranch that leveraged the ecological expertise of NAU’s subject matter expert, Jared Litson Begay, and using data collection protocols from the NASA-sponsored program, GLOBE (Global Learning and Observations to Benefit the Environment) to better understand piñon pine populations in Flagstaff ecosystems. Following this, teachers moved from their primary data collection experiences to exploring secondary data that expanded on the piñon pine focus by leveraging data and the Data Literacy Cubes from My NASA Data (MND). Using and reflecting on GLOBE protocols created powerful conversations where teachers saw how place influenced how they engaged in data collection and how data can help develop new place-based knowledge and connections in their contexts. One teacher even shared that “collecting data using the GLOBE app and making observations about data helped me better understand how I can use these practices with my students.” The MND data and Data Literacy Cubes offered educators the pathways to move from their primary data collection experiences to ask and answer new and exciting questions. In the follow-up survey, teachers shared that they are interested in exploring “additional resources from NASA,” using “local experts or data for small town/rural areas through NASA,” and implementing PBDR instruction using NASA assets in the coming months. 100% of teachers who were surveyed after the PL indicated (1) they agree or strongly agree that they feel greater connection to NASA and knowledge of NASA assets, and (2) they would recommend the PLACES PL to a colleague. In the coming months, the teachers will participate in a virtual Community of Practice where they will implement PBDR experiences in their own contexts, share examples of student work, and elicit feedback from one another to continue improving their practice. The PLACES team would like to give a huge shout-out to those who contributed to planning, developing, and implementing the NAU Summer Institute! Facilitation Team: Sean Michael Ryan (NAU), Lori Rubino-Hare (NAU), Karen Lionberger (WestEd), Frieda Richsman (Concord Consortium) Support Team: Lauren Schollenberger (NAU) Team Member Participants: Barbie Buckner (NASA Langley), Tracy Ostrom (GLOBE, UC Berkeley), Sara Salisbury (WestEd) Observers: Kirsten Dehler, Nicole Wong (WestEd) PLACES is supported by NASA under cooperative agreement award number 80NSSC22M0005 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn Summer Institute participant uses the GLOBE observer app in the field to gather data on the height of trees at Hat Ranch in Flagstaff, AZ. Share Details Last Updated Jul 17, 2024 Editor NASA Science Editorial Team Related Terms Earth Science Science Activation Explore More 2 min read Celebrate the Heliophysics Big Year with Free Heliophysics and Math Webinars from NASA HEAT Article 1 week ago 2 min read NASA’s Neurodiversity Network Interns Speak at National Space Development Conference Article 1 week ago 1 min read NASA Science Activation Teams Present at National Rural STEM Summit Article 2 weeks ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) An image of a new lodge on Anishnaabe lands in Ontario, Canada, 2023. NASA NASA has been selected by the International Astronautical Federation to receive its 2024 “3G” Diversity Award, which recognizes organizations for their contributions to fostering geographic, generational, and gender diversity in the space sector. NASA’s Indigenous Community-Based Education (CBE) Program is a consortium of partnerships between NASA and numerous, diverse Indigenous communities which co-create unique educational programs for the youth. Through these partnerships, which have been cultivated for the past two decades, Indigenous Knowledge and Western science come together in a community-based way to support the development of learners’ cultural and science, technology, engineering, and mathematics (STEM) identities. The Indigenous CBE Program is part of NASA’s Minority University Research and Education Project (MUREP) American Indian and Alaska Native STEM Engagement activity and is supported by NASA’s Astrobiology Program and Planetary Science Division. The Indigenous CBE Program also works toward more equitable practices in science and supports a diverse workforce by offering working groups that connect Indigenous and Western scientists and educators, as well as mentoring for emerging Indigenous STEM scholars. “Relationships and collaboration are at the heart of this work,” said Daniella Scalice, NASA lead for the Indigenous CBE Program. “This award is shared with all my community-based partners. The women I work with who are serving their youth and community every day – they are the real heroes.” “NASA has had a longstanding commitment to equity in STEM education and research.” said Torry Johnson, deputy associate administrator of STEM Engagement Programs at NASA Headquarters. “MUREP American Indian and Alaska Native STEM Engagement provides avenues for NASA to build and nurture relationships, new partnerships, and collaborations with Indigenous communities, and to empower the next generation of Indigenous STEM leaders.” Starting in January, awardees were nominated to the International Astronautical Federation by representatives from other member organizations. NASA will receive the award during the International Astronautical Federation’s annual conference in October. For more information on NASA’s MUREP American Indian and Alaska Native STEM Engagement program, visit: https://go.nasa.gov/3vEyhOp Share Details Last Updated Jul 17, 2024 Related TermsGeneral Explore More 1 min read Robotic Assembly and Outfitting for NASA Space Missions Article 21 hours ago 1 min read Telepong Article 2 days ago 3 min read NASA Transmits Hip-Hop Song to Deep Space for First Time Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
4 min read Discovery Alert: With Six New Worlds, 5,500 Discovery Milestone Passed! NASA’s Exoplanet Archive confirmed four new worlds, bringing the total past 5,500. On Aug. 24, 2023, more than three decades after the first confirmation of planets beyond our own solar system, scientists announced the discovery of six new exoplanets, stretching that number to 5,502. From zero exoplanet confirmations to over 5,500 in just a few decades, this new milestone marks another major step in the journey to understand the worlds beyond our solar system. The Discovery With the discovery of six new exoplanets, scientists have tipped the scales and surpassed 5,500 exoplanets found (there are now 5,502 known exoplanets, to be exact). Just about 31 years ago, in 1992, the first exoplanets were confirmed when scientists detected twin planets Poltergeist and Phobetor orbiting the pulsar PSR B1257+12. In March 2022, just last year, scientists celebrated passing 5,000 exoplanets discovered. Key Facts Scientists have discovered six new exoplanets — HD 36384 b, TOI-198 b, TOI-2095 b, TOI-2095 c, TOI-4860 b, and MWC 758 c — this has pushed the total number of confirmed exoplanets discovered to 5,502. Details HD 36384 b is a super-Jupiter that orbits an enormous M giant star. This planet was discovered using the radial velocity method, which measures the “wobble” of far-off stars that is caused by the gravitational tug of orbiting planets. Orbits a star so large that it clocks in at nearly 40 times the size of our Sun. TOI-198 b is a potentially rocky planet that orbits on the innermost edge of the habitable zone around its star, an M dwarf. This planet was discovered using the transit method, which detects exoplanets as they cross the face of their stars in their orbit, causing the star to temporarily dim. TOI-2095 b and TOI-2095 c are both large, hot super-Earths that orbit in the same system around a shared star, an M dwarf. Planets were both discovered using the transit method. Are close enough to their star that they are likely more similar to Venus than Earth. TOI-4860 b is a Jupiter-sized gas giant, or a “hot Jupiter,” that orbits an M dwarf star. This planet was discovered using the transit method. Completes an orbit every 1.52 days, meaning it is very close to its star. While it is extremely rare for giant planets like this to orbit so closely to Sun-like stars, it is even rarer for them to orbit M-dwarf stars as is the case here. MWC 758 c is a giant protoplanet that orbits a very young star. This star still has its protoplanetary disk, which is a rotating disc of gas and dust that can surround a young star. This planet was discovered using direct imaging. Was found carving spiral arms into its star’s protoplanetary disk. Is one of the first exoplanets discovered in a system where the star has a protoplanetary disk. The field of exoplanet science has exploded since the first exoplanet confirmation in 1992, and with evolving technology, the future for this field looks brighter than ever. In March 2022, NASA passed 5,000 confirmed exoplanets. Tis data sonification allows us to hear the pace of the discovery of those worlds. In this animation, exoplanets are represented by musical notes played across decades of discovery. Circles show location and size of orbit, while their color indicates the detection method. Lower notes mean longer orbits, higher notes mean shorter orbits. Credit: NASA/JPL-Caltech/M. Russo, A. Santaguida (SYSTEM Sounds) Watch this video in 3D There are a number of both space and ground-based instruments and observatories that scientists have used to detect and study exoplanets. NASA’s Transiting Exoplanet Survey Satellite (TESS) launched in 2018 and has identified thousands of exoplanet candidates and confirmed over 320 planets. NASA’s flagship space telescopes Spitzer, Hubble, and most recently the James Webb Space Telescope have also been used to discover and study exoplanets. NASA’s Nancy Grace Roman Space Telescope is set to launch in May 2027. Roman will be carrying a technology demonstration called the Roman Coronagraph Instrument. This coronagraph will work by using a series of complex masks and mirrors to distort the light coming from far-away stars. By distorting this starlight, the instrument will reveal and directly-image hidden exoplanets. With the success of the Roman Coronagraph Instrument, NASA could push the envelope even further with is a concept for the mission the Habitable Worlds Observatory, which would search for “signatures of life on planets outside of our solar system,” according to the 2020 Decadal Survey on Astronomy and Astrophysics. The Discoverers These six exoplanets were discovered by different teams as part of five separate studies: TOI-4860 b TOI-2095 b & c HD 36384 b TOI-198 b MWC 758 c Share Details Last Updated Jul 16, 2024 Related Terms Exoplanet Discoveries Exoplanet Exploration Program Exoplanets Gas Giant Exoplanets Studying Exoplanets Super-Earth Exoplanets Terrestrial Exoplanets Explore More 6 min read NASA’s Webb Investigates Eternal Sunrises, Sunsets on Distant World Article 2 days ago 5 min read Webb Finds Plethora of Carbon Molecules Around Young Star Article 1 month ago 4 min read Discovery Alert: Spock’s Home Planet Goes ‘Poof’ Article 2 months ago Keep Exploring Discover More Topics From NASA Exoplanets Universe Roman Exoplanet Catalog View the full article
-
NASA’s Galileo spacecraft took this image of Earth’s Moon on Dec. 7, 1992, on its way to explore the Jupiter system in 1995-97. The distinct bright ray crater at the bottom of the image is the Tycho impact basin.Credit: NASA NASA will hold a media teleconference at 4 p.m. EDT, Wednesday, July 17, to provide an update on a program within NASA’s Exploration Science Strategy and Integration Office. Audio of the teleconference will stream live on the agency’s website at: https://www.nasa.gov/nasatv Participants in the teleconference include: Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters To ask questions during the teleconference, media must RSVP no later than two hours before the event to Erin Morton at: erin.morton@nasa.gov. NASA’s media accreditation policy is available online. The Exploration Science Strategy Integration Office in NASA’s Science Mission Directorate ensures science is infused into all aspects of lunar exploration. Through researching the Moon and its environment, and by using the Moon as an observation platform, NASA strives to gain a greater understanding of the Moon itself, the solar system, the universe, and the deep space environment. To learn more about NASA’s missions for lunar discovery, visit: https://science.nasa.gov/lunar-science -end- Karen Fox / Erin Morton Headquarters, Washington 202-358-1275 / 202-805-9393 karen.fox@nasa.gov / erin.morton@nasa.gov Share Details Last Updated Jul 16, 2024 LocationNASA Headquarters Related TermsLunar ScienceScience & ResearchScience Mission Directorate View the full article
-
Move teams with NASA and Boeing, the SLS (Space Launch System) core stage lead contractor, position the massive rocket stage for NASA’s SLS rocket on special transporters to strategically guide the flight hardware the 1.3-mile distance from the factory floor onto the agency’s Pegasus barge on July 16. The core stage will be ferried to NASA’s Kennedy Space Center in Florida, where it will be integrated with other parts of the rocket that will power NASA’s Artemis II mission. Pegasus is maintained at NASA’s Michoud Assembly Facility. Credit: NASA NASA rolled out the SLS (Space Launch System) rocket’s core stage for the Artemis II test flight from its manufacturing facility in New Orleans on Tuesday for shipment to the agency’s spaceport in Florida. The rollout is key progress on the path to NASA’s first crewed mission to the Moon under the Artemis campaign. Using highly specialized transporters, engineers maneuvered the giant core stage from inside NASA’s Michoud Assembly Facility in New Orleans to the agency’s Pegasus barge. The barge will ferry the stage more than 900 miles to NASA’s Kennedy Space Center in Florida, where engineers will prepare it in the Vehicle Assembly Building for attachment to other rocket and Orion spacecraft elements. “With Artemis, we’ve set our sights on doing something big and incredibly complex that will inspire a new generation, advance our scientific endeavors, and move U.S. competitiveness forward,” said Catherine Koerner, associate administrator for NASA’s Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “The SLS rocket is a key component of our efforts to develop a long-term presence at the Moon.” Technicians moved the SLS rocket stage from inside NASA Michoud on the 55th anniversary of the launch of Apollo 11 on July 16, 1969. The move of the rocket stage for Artemis marks the first time since the Apollo Program that a fully assembled Moon rocket stage for a crewed mission rolled out from NASA Michoud. The SLS rocket’s core stage is the largest NASA has ever produced. At 212 feet tall, it consists of five major elements, including two huge propellant tanks that collectively hold more than 733,000 gallons of super-chilled liquid propellant to feed four RS-25 engines. During launch and flight, the stage will operate for just over eight minutes, producing more than 2 million pounds of thrust to propel four astronauts inside NASA’s Orion spacecraft toward the Moon. “The delivery of the SLS core stage for Artemis II to Kennedy Space Center signals a shift from manufacturing to launch readiness as teams continue to make progress on hardware for all major elements for future SLS rockets,” said John Honeycutt, SLS program manager at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “We are motivated by the success of Artemis I and focused on working toward the first crewed flight under Artemis.” After arrival at NASA Kennedy, the stage will undergo additional outfitting inside the Vehicle Assembly Building. Engineers then will join it with the segments that form the rocket’s twin solid rocket boosters. Adapters for the Moon rocket that connect it to the Orion spacecraft will be shipped to NASA Kennedy this fall, while the interim cryogenic propulsion stage is already in Florida. Engineers continue to prepare Orion, already at Kennedy, and exploration ground systems for launch and flight. All major structures for every SLS core stage are fully manufactured at NASA Michoud. Inside the factory, core stages and future exploration upper stages for the next evolution of SLS, called the Block 1B configuration, currently are in various phases of production for Artemis III, IV, and V. Beginning with Artemis III, to better optimize space at Michoud, Boeing, the SLS core stage prime contractor, will use space at NASA Kennedy for final assembly and outfitting activities. Building, assembling, and transporting the SLS core stage is a collaborative effort for NASA, Boeing, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3Harris Technologies company. All 10 NASA centers contribute to its development with more than 1,100 companies across the United States contributing to its production. NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. For more on NASA’s Artemis campaign, visit: http://www.nasa.gov/artemis -end- Madison Tuttle/Rachel Kraft Headquarters, Washington 202-358-1600 madison.e.tuttle@nasa.gov/rachel.h.kraft@nasa.gov Corinne Beckinger Marshall Space Flight Center, Huntsville, Ala. 256-544-0034 corinne.m.beckinger@nasa.gov Share Details Last Updated Jul 16, 2024 LocationNASA Headquarters Related TermsSpace Launch System (SLS)ArtemisArtemis 2Common Exploration Systems Development DivisionExploration Systems Development Mission DirectorateMarshall Space Flight CenterMichoud Assembly Facility View the full article
-
NASA Deputy Administrator Pam Melroy and senior NASA leaders conduct the first bilateral meeting with KASA’s administrator, Dr. Young-bin Yoon on Monday, July 15, 2024 in Busan, Korea. NASA/Amber Jacobson NASA Deputy Administrator Pam Melroy conducted the first bilateral meeting on Monday with Dr. Young-bin Yoon, administrator of the newly established KASA (Korea AeroSpace Administration), which opened on May 27. The creation of KASA underscores the Republic of Korea’s commitment to advancing space exploration. The bilateral meeting marks a pivotal moment for a NASA’s relationship with KASA, building upon decades of bilateral ties with several Korean ministries and institutions. Melroy emphasized enhancing cooperation under the Artemis program and expanding science collaboration during discussions with Yoon. Looking ahead, NASA and KASA are exploring a wide range of opportunities and fostering innovation in new areas. Over the past year, the U.S.-Korea space relationship has seen significant progress, highlighted by increased engagements and collaborative initiatives across various space disciplines. These efforts include sharing data from the Korea Pathfinder Lunar Orbiter and leveraging NASA’s Deep Space Network, showcasing Korea’s commitment to open science, and enabling scientists globally to access valuable data for future lunar activities. Historically, NASA has collaborated across a wide range of disciplines with KARI (Korea Aerospace Research Institute) and KASI (Korea Astronomy and Space Science Institute). The establishment of KASA allows Korea to focus its space efforts under one agency, further enhancing space collaboration and cooperation. View the full article
-
4 Min Read NASA Celebrates 20 Years of Earth-Observing Aura Satellite The Aura spacecraft, shown in this artist’s concept, is a NASA atmospheric chemistry mission that monitors Earth’s protective atmosphere. Credits: NASA Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers From monitoring the hole in the ozone above the Antarctic to studying air quality around the entire planet, NASA’s Aura satellite has provided scientists with essential measurements during its two decades in orbit. “The Aura mission has been nothing short of transformative for scientific research and applied sciences,” said Bryan Duncan, project scientist for NASA’s Aura satellite mission. “The mission’s data have given scientists and applied scientists an unparalleled view of air pollution around the world.” Aura has revealed the effects of industrialization, environmental regulations, wildfires, the COVID-19 pandemic, and many other aspects of the air we breathe. The satellite paved the way for recent missions to study the atmosphere and its inner workings, including PACE and TEMPO. As the Aura mission team celebrates its launch anniversary of July 15, 2004, here are a few of the many highlights from the last 20 years. Aura Eyes Ozone Hole over Antarctica The first publicly released image from the Aura mission (autumn 2004) showed dramatically depleted levels of ozone in the stratosphere over Antarctica. NASA Study: First Direct Proof of Ozone Hole Recovery Due to Chemicals Ban In a 2018 study, scientists showed for the first time through direct satellite observations that levels of chlorine in the atmosphere declined, resulting in less ozone depletion. Because of an international ban on chlorine-containing manmade chemicals called chlorofluorocarbons, there was about 20% less ozone depletion during the Antarctic winter in 2016 than there was in 2005. New NASA Satellite Maps Show Human Fingerprint on Global Air Quality This global map shows the concentration of nitrogen dioxide in the troposphere as detected by the Ozone Monitoring Instrument aboard the Aura satellite, averaged over 2014. NASA Using high-resolution global maps of air quality indicators made with data from the Aura satellite, NASA scientists tracked air pollution trends between 2005 and 2015 in various regions and 195 cities around the globe. The study found that the United States, Europe, and Japan saw improved air quality due to emission control regulations, while China, India, and the Middle East, with their fast-growing economies and expanding industry, saw more air pollution. How NASA is Helping the World Breathe More Easily Many of NASA’s Earth-observing satellites, including Aura, can see what the human eye can’t — including potentially harmful pollutants lingering in the air we breathe. These satellites help us measure and track air pollution as it moves around the globe and have contributed significantly to a decades-long quest for cleaner air. For example, data from Aura’s Ozone Monitoring Instrument helped the EPA and NASA identify a drop in nitrogen dioxide that researchers cited as evidence of the success of the Clean Air Act. Air Quality: A Tale of Three Cities Air quality in Beijing, Los Angeles, and Atlanta — like air quality across the globe — is dynamic. This video describes how scientists use instruments like Aura’s Ozone Monitoring Instrument to study questions including what causes ozone, sulfur dioxide, and nitrogen dioxide emissions. It also explores why reductions in volatile organic carbon pollution worked to reduce ground-level ozone in Los Angeles, but not in Atlanta. Seeing the COVID-19 Pandemic from Space Economic and social shutdowns in response to the COVID-19 pandemic led to noticeable changes in Earth’s environment, at least in the short term. NASA researchers used satellite and ground-based observations – including nitrogen dioxide levels from Ozone Monitoring Instrument – to track these impacts on our air, land, water, and climate. A Satellite’s View of Ship Pollution With natural-color satellite imagery of the atmosphere over the ocean, scientists have observed “ship tracks” — bright, linear trails amidst the cloud layers that are created by particles and gases from ships. Scientists used Ozone Monitoring Instrument data to detect the almost invisible tracks of nitrogen dioxide along several shipping routes from 2005 to 2012. First Global Maps of Volcanic Emissions Use NASA Satellite Data Volcanic sulfur dioxide emissions from Indonesia’s many volcanoes are shown in shades of orange. The data was produced from observations from NASA’s Aura satellite. With the Ozone Monitoring Instrument data, researchers compiled emissions data from 2005 to 2015 create the first global inventory for volcanic sulfur dioxide emissions. The data set helped refine climate and atmospheric chemistry models and provided more insight into human and environmental health risks. Scientists Show Connection Between Gas Flaring and Arctic Pollution Flaring of excess natural gas from industrial oil fields in the Northern Hemisphere was found to be a potentially significant source of nitrogen dioxide and black carbon emissions polluting the Arctic, according to a 2016 NASA study that included data from Aura. 2023 Ozone Hole Ranks 16th Largest, NASA and NOAA Researchers Find Researchers continue to rely on Aura data to monitor the Antarctic ozone hole, two decades after the satellite launched. Each Southern Hemisphere spring, NASA and NOAA (National Oceanic and Atmospheric Administration) use satellite and balloon-based measurements to measure the maximum size of the ozone hole. The story above notes the 2023 result; stay tuned for what Aura helps us discover in 2024 and beyond. This map shows the size and shape of the ozone hole over the South Pole on Sept. 21, 2023, the day of its maximum extent that year, as calculated by the NASA Ozone Watch team. Moderate ozone losses (orange) are visible amid widespread areas of more potent ozone losses (red). By Erica McNamee and Kate Ramsayer NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Jul 16, 2024 Editor Erica McNamee Contact Erica McNamee erica.s.mcnamee@nasa.gov Location Goddard Space Flight Center Related Terms Aura Earth Tropospheric Emissions: Monitoring of Pollution (TEMPO) Explore More 5 min read Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere Article 3 weeks ago 4 min read NASA Announces New System to Aid Disaster Response Article 1 month ago 2 min read North Carolina Volunteers Work Toward Cleaner Well Water When the ground floods during a storm, floodwaters wash bacteria and other contaminants into private… Article 1 month ago Keep Exploring Discover More Topics From NASA Aura Earth Orbiter Earth Your home. Our Mission. And the one planet that NASA studies more than any other. Climate Change NASA is a global leader in studying Earth’s changing climate. PACE PACE will help us better understand our ocean and atmosphere by measuring key variables associated with cloud formation, particles and… View the full article
-
NASA 55 years ago on July 16, 1969, NASA’s Apollo 11 spacecraft launched from the agency’s Kennedy Space Center in Florida, as seen in this photo. Astronauts Neil Armstrong, Michael Collins, and Buzz Aldrin were aboard. Apollo 11’s primary mission objective was to fulfill a national goal set by President John F. Kennedy on May 25, 1961: perform a crewed lunar landing and return safely to Earth before the decade ended. Additional flight objectives included scientific exploration by the lunar module (LM) crew, deployment of a television camera to transmit signals to Earth, and deployment of a solar wind composition experiment, seismic experiment package, and a Laser Ranging Retroreflector. During the exploration, Armstrong and Aldrin were to gather samples of lunar-surface materials for return to Earth. They also were to extensively photograph the lunar terrain, the deployed scientific equipment, the LM spacecraft, and each other, both with still and motion picture cameras. Experience the countdown to liftoff. Image credit: NASA View the full article