Members Can Post Anonymously On This Site
-
Posts
5,745 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
With a look back at 2024, NASA is celebrating its many innovative and inspiring accomplishments this year including for the first time, landing new science and technology on the Moon with an American company, pushing the boundaries of exploration by launching a new mission to study Jupiter’s icy moon Europa; maintaining 24 years of continuous human exploration off the Earth aboard the International Space Station, and unveiling the first look at its supersonic quiet aircraft for the benefit of humanity. The agency also shared the wonder of a total eclipse with millions of Americans, conducted the final flight of its Ingenuity helicopter on the Red Planet, demonstrated the first laser communications capability in deep space, tested the next generation solar sail in space, made new scientific discoveries with its James Webb Space Telescope, completed a year-long Mars simulation on Earth with crew, announced the newest class of Artemis Generation astronauts, and much more. “In 2024, NASA made leap after giant leap to explore, discover, and inspire – all while bringing real, tangible, and substantial benefits to the American people and to all of humanity,” said NASA Administrator Bill Nelson. “We deepened the commercial and international partnerships that will help NASA lead humanity back to the Moon and then to the red sands of Mars. We launched new missions to study our solar system and our universe in captivating new ways. We observed our changing Earth through our eyes in the sky – our ever-growing fleet of satellites and instruments – and shared that data with all of humanity. And we opened the doors to new possibilities in aviation, new breakthroughs on the International Space Station, and new wonders in space travel.” Through its Moon to Mars exploration approach, the agency continued moving forward with its Artemis campaign, including progress toward its first mission around the Moon with crew in more than 50 years and advancing plans to explore more of the Moon than ever before. So far in 2024, 15 countries signed the Artemis Accords, committing to the safe, transparent, and responsible exploration of space with the United States. As part of efforts to monitor climate change, the agency launched multiple satellites to study our changing planet and opened its second Earth Information Center to provide data to a wider audience. With the release of its latest Economic Impact Report, NASA underscored the agency’s $75.6 billion impact on the U.S. economy, value to society, and return on investment for taxpayers. “To invest in NASA is to invest in American workers, American innovation, the American economy, and American economic competitiveness. Through continued investments in our workforce and our infrastructure, NASA will continue to propel American leadership on Earth, in the skies, and in the stars,” said Nelson. Key 2024 agency highlights across its mission areas include: Preparing for Moon, Mars This year, NASA made strides toward the Artemis Generation of scientific discovery at the Moon while validating operations and systems to prepare for human missions to Mars. The agency advanced toward Artemis II, the first crewed flight under Artemis: NASA announced results of its Orion heat shield investigation and updated its timelines for Artemis II and III. Teams delivered the core stage and launch vehicle stage adapter of the SLS (Space Launch System) rocket from NASA’s Michoud Assembly Facility in New Orleans to NASA’s Kennedy Space Center in Florida and began stacking the rocket’s booster segments. Engineers carried out a series of tests of the mobile launcher and systems at NASA Kennedy’s Launch Pad 39B ahead of the test flight and added an emergency egress system to keep crew and other personnel at the launch pad safe in the case of an emergency. NASA performed key integrated testing of the Orion spacecraft that will send four astronauts around the Moon and bring them home, including testing inside an altitude chamber simulating the vacuum conditions of deep space. The crew and other teams performed key training activities to prepare for flight, including practicing recovery operations at sea, as well as launch countdown and mission simulations. In February, the first Moon landing through the agency’s CLPS (Commercial Lunar Payload Services) initiative brought NASA science to the lunar surface on Intuitive Machines’ Nova-C lander successfully capturing data that will help us better understand the Moon’s environment and improve landing precision and safety. In August, NASA announced that a new set of NASA science experiments and technology demonstrations will arrive at the lunar South Pole in 2027 following the agency’s latest CLPS initiative delivery award. To return valuable samples from Mars to Earth, NASA sought innovative designs and announced a new strategy review team to assess various design studies to reduce cost, risk, and complexity. NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft celebrated 10 years of exploration of the Red Planet’s upper atmosphere. After three years, NASA’s Ingenuity Mars Helicopter ended its mission in January, with dozens more flights than planned. In September, the NASA Space Communications and Navigation team awarded a contract to Intuitive Machines to support the agency’s lunar relay systems as part of the Near Space Network, operated by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA identified an updated set of nine potential landing regions near the lunar South Pole for its Artemis III mission. Capturing the current state of the Moon to Mars architecture, NASA released the second revision of its Architecture Definition Document. NASA formalized two international agreements for key Artemis elements, including with the United Arab Emirates for the Gateway airlock module, and with Japan to provide a pressurized rover for the lunar surface. Astronauts, scientists, and engineers took part in testing key technologies and evaluating hardware needed to work at the Moon, including simulating moonwalks in geologically Moon-like areas of Arizona, practiced integration between the crew and mission controllers, participated in human factors testing for Gateway, and evaluated the developmental hardware. NASA worked collaboratively with SpaceX and Blue Origin on their human lunar landers for Artemis missions, exercising an option under existing contracts to develop cargo variants of their human landers. In August, as part of its commitment to a robust, sustainable lunar exploration program for the benefit of all, NASA announced it issued a Request for Information to seek interest from American companies and institutions in conducting a mission using the agency’s VIPER (Volatiles Investigating Polar Exploration Rover) Moon rover. The agency selected three companies to advance capabilities for a lunar terrain vehicle that Artemis astronauts will use to travel around the lunar surface. NASA completed a critical design review on the second mobile launcher, which will launch the more powerful Block 1B version of the SLS rocket. Engineers at NASA Kennedy continued outfitting the Artemis III and IV Orion crew modules and received the European-built Orion service module for Artemis III; they also received several sections of the Artemis III and IV SLS core stages, and upgraded High Bay 2 in the Vehicle Assembly Building. NASA completed its second RS-25 certification test series at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, setting the stage for production of new engines to help power future Artemis missions to the Moon and beyond. The CHAPEA (Crew Health and Performance Exploration Analog) 1 crew completed a 378-day mission in a ground-based Mars habitat at NASA’s Johnson Space Center in Houston. A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024. After launch, the spacecraft plans to fly by Mars in February 2025, then back by Earth in December 2026, using the gravity of each planet to increase its momentum. With help of these “gravity assists,” Europa Clipper will achieve the velocity needed to reach Jupiter in April 2030.Credit: NASA/Kim Shiflett NASA newest class of astronauts, selected in 2021, graduate during a ceremony on March 5, 2024, at the at the agency’s Johnson Space Center in Houston.Credit: NASA NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 10:01 p.m. MDT Sept. 6, 2024, at the White Sands Space Harbor in New Mexico. Credit: NASA NASA’s X-59 quiet supersonic research aircraft sits on the apron outside Lockheed Martin’s Skunk Works facility at dawn in Palmdale, California. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to address one of the primary challenges to supersonic flight over land by making sonic booms quieter.Credit: Lockheed Martin Skunk Works Five NASA astronauts wore eye-protecting specs in anticipation of viewing the solar eclipse from the International Space Station’s cupola. The Expedition 70 crewmates had three opportunities on April 8 to view the Moon’s shadow as it tracked across the Earth surface during the eclipse.Credit: NASA/Loral O’Hara This enhanced color view of NASA’s Ingenuity Mars Helicopter was generated using data collected by the Mastcam-Z instrument aboard the agency’s Perseverance Mars rover on Aug. 2, 2023, the 871st Martian day, or sol, of the mission. The image was taken a day before the rotorcraft’s 54th flight.Credit: NASA The CHAPEA crew egress from their simulated Mars mission July 6, 2024, at NASA’s Johnson Space Center in Houston. From left: Kelly Haston, Nathan Jones, Anca Selariu, and Ross Brockwell.Credit: NASA/Josh Valcarcel An artist’s concept of NASA’s Advanced Composite Solar Sail System spacecraft in orbit.Credit: NASA/Aero Animation/Ben Schweighart Office of STEM Engagement Deputy Associate Administrator Kris Brown, right, and U.S. Department of Education Deputy Secretary Cindy Marten, left, watch as a student operates a robot during a STEM event to kickoff the 21st Century Community Learning Centers NASA and U.S. Department of Education partnership, Monday, Sept. 23, 2024, at Wheatley Education Campus in Washington. Students engaged in NASA hands-on activities and an engineering design challenge. Credit: NASA/Aubrey Gemignani On Feb. 22, 2024, Intuitive Machines’ Odysseus lunar lander captures a wide field of view image of Schomberger crater on the Moon approximately 125 miles (200 km) uprange from the intended landing site, at approximately 6 miles (10 km) altitude.Credit: Intuitive Machines NASA’s Artemis II crew members from left to right CSA (Canadian Space Agency) astronaut Jeremy Hansen, and NASA astronauts Christina Koch, Victor Glover, and Reid Wiseman walk in the well deck of the USS San Diego during Underway Recovery Test 11 (URT-11), as NASA’s Exploration Ground System’s Landing and Recovery team and partners from the Department of Defense aboard the ship practice recovery procedures using the Crew Module Test Article off the coast of San Diego, California on Tuesday, Feb. 27, 2024. URT-11 is the eleventh in a series of Artemis recovery tests, and the first time NASA and its partners put their Artemis II recovery procedures to the test with the astronauts.Credit: NASA/Isaac Watson Observing, Learning About Earth NASA collects data about our home planet from space and on land, helping understand how our climate on Earth is changing. Some of the agency’s key accomplishments in Earth science this year include: After launching into space in February, NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) satellite mission is successfully transmitting first-of-their-kind measurements of ocean health, air quality, and the effects of a changing climate. Using the agency’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument, NASA made available new near-real time data providing air pollution observations at unprecedented resolutions – down to the scale of individual neighborhoods. Launched in May and June, NASA’s PREFIRE (Polar Radiant Energy in the Far-Infrared Experiment) CubeSats started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. NASA rolled out the Disaster Response Coordination System, a new resource that delivers up-to-date information on fires, earthquakes, landslides, floods, tornadoes, hurricanes, and other extreme events to emergency managers. The agency partnered with the Smithsonian National Museum of Natural History to open the Earth Information Center exhibit. Exploring Our Solar System, Universe NASA’s Europa Clipper embarked Oct. 14 on its long voyage to Jupiter, where it will investigate Europa, a moon with an enormous subsurface ocean that may have conditions to support life. NASA collaborated with multiple partners on content and social media related to the launch, including engagements with the National Hockey League, U.S. Figure Skating, 7-Eleven, e.l.f., Girl Scouts, Crayola, Library of Congress, and others. NASA’s 2024 space exploration milestones also include: NASA’s groundbreaking James Webb Space Telescope marked more than two years in space, transforming our view of the universe as designed, by studying the most distant galaxies ever observed, while raising exciting new questions about the atmospheres of planets outside our solar system. As part of an asteroid sample exchange, NASA officially transferred to JAXA (Japan Aerospace Exploration Agency) a portion of the asteroid Bennu sample collected by the agency’s OSIRIS-Rex (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission in a ceremony on Aug. 22. After surviving multiple challenges this year, NASA’s Voyager mission continues to collect data on the furthest reaches of our Sun’s influences. NASA selected a new space telescope for development that will survey ultraviolet light across the entire sky, called UVEX (UltraViolet Explorer). This year, all remaining major components were delivered to NASA Goddard to begin the integration phase for the agency’s Nancy Grace Roman Space Telescope. NASA developed, tested, and launched the patch kit that astronauts will use to repair the agency’s NICER (Neutron star Interior Composition Explorer) telescope on the International Space Station. The agency continued preparing the SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to launch by April 2025. To manage the maturation of technologies necessary to develop the Habitable Worlds Observatory telescope, NASA established a project office at NASA Goddard. NASA and partners declared that the Sun reached solar maximum in 2024, a period of heightened solar activity when space weather becomes more frequent. The Solar and Heliospheric Observatory, a joint mission between ESA (European Space Agency) and NASA, discovered its 5,000th comet in March. NASA’s Sounding Rocket Program provided low-cost access to space for scientific research, technology development, and educational missions. NASA launched 14 sounding rocket missions in 2024. Scientists announced findings from a sounding rocket launched in 2022 that confirmed the existence of a long-sought global electric field at Earth. The agency established a new class of astrophysics missions, called Astrophysics Probe Explorers, designed to fill a gap between NASA’s flagship and smaller-scale missions. Living, Conducting Research in Space In 2024, a total of 25 people lived and worked aboard the International Space Station, helping to complete science for the benefit of humanity, open access to space to more people, and support exploration to the Moon in preparation for Mars. A total of 14 spacecraft visited the microgravity laboratory in 2024, including eight commercial resupply missions from Northrop Grumman and SpaceX, as well as international partner missions, delivering more than 40,000 pounds of science investigations, tools, and critical supplies to the space station. NASA also helped safely return the uncrewed Boeing Starliner spacecraft to Earth, concluding a three-month flight test to the International Space Station. In addition: In March, NASA welcomed its newest class of Artemis Generation astronauts in a graduation ceremony. The agency also sought new astronaut candidates, and more 8,000 people applied. NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, and JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa returned to Earth at the conclusion of NASA’s SpaceX Crew-7 mission aboard the International Space Station. The three crew members, along with Roscosmos cosmonaut Konstantin Borisov, splashed down in March off the coast of Pensacola, Florida, completing a six-and-a-half-month mission contributing to hundreds of experiments and technology demonstrations. In June, NASA astronauts Butch Wilmore and Suni Williams safely arrived at the space station aboard Boeing’s Starliner spacecraft following launch of their flight test. With Starliner’s arrival, it was the first time in station history three different spacecraft that carried crew to station were docked at the same time. Starliner returned uncrewed in September following a decision by NASA. Wilmore and Williams, now serving as part of the agency’s Crew-9 mission, will return to Earth in February 2025. NASA astronaut Don Pettit, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, arrived at the orbital laboratory in September to begin a six-month mission. Completing a six-month research mission in September, NASA astronaut Tracy C. Dyson returned to Earth with Roscosmos cosmonauts Oleg Kononenko and Nikolai Chub aboard the Soyuz MS-25 spacecraft. NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov launched on the agency’s SpaceX Crew-9 mission to the space station. Concluding a nearly eight-month science mission, NASA’s SpaceX Crew-8 mission safely returned to Earth, splashing down on Oct. 25, off the coast of Pensacola, Florida. NASA and Axiom Space successfully completed the third private astronaut mission to the space station in February, following an 18-day mission, where the crew conducted 30 experiments, public outreach, and commercial activities in microgravity. The agency announced SpaceX was selected to develop and deliver the U.S. Deorbit Vehicle, which will safely move the space station out of orbit and into a remote area of an ocean at the end of its operations. NASA and SpaceX monitored operations as the company’s Dragon spacecraft performed its first demonstration of reboost capabilities for the space station. NASA concluded the final mission of its Spacecraft Fire Safety Experiment, or Saffire, putting a blazing end to an eight-year series of investigations looking at fire’s behavior in space. A robotic surgical tool aboard space station was successfully controlled remotely by surgeons on Earth. The Robotic Surgery Tech Demo tested the performance of a small robot to evaluate the effects of microgravity and time delays between space and ground. The first successful metal 3D print was conducted aboard the space station, depositing a small s-curve in liquified stainless steel for the Metal 3D Printer investigation to test additive manufacturing of small metal parts in microgravity for equipment maintenance on future long-duration missions. In 2024, 17 NASA Biological and Physical Science research payloads were delivered to the orbital laboratory, spanning quantum, plant biology, and physical sciences investigations. More than 825,000 photos of Earth were taken from the space station in 2024 so far, contributing to research tracking how our planet’s landscapes are changing over time. Expedition 71 produced more than 630,000 images, the most taken during a single mission. In total, more than 5.3 million photos have been taken from the space station, providing imagery for urban light studies, studies of lightning flashes, and 14 natural disaster events in 2024 alone. Imagining Future Flight NASA researchers worked to advance innovations that will transform U.S. aviation, furthering the Sustainable Flight National Partnership and other efforts to help the country reach net zero carbon emissions by 2050. NASA also unveiled its X-59 quiet supersonic aircraft, the centerpiece of its Quesst mission to make quiet overland supersonic flight a reality. NASA aeronautics initiatives also worked to bring air taxis, delivery drones, and other revolutionary technology closer to deployment to benefit the U.S. public and industry. Over the past year, the agency: Began testing the quiet supersonic X-59’s engine ahead of its first flight. Made further progress in research areas of Quesst mission, including ground recording station testing and advancement and structural tests on the aircraft. Publicly unveiled the X-59 in January, providing the first look at this unique aircraft. Tested a wind-tunnel model of the X-66, an experimental aircraft designed to reduce the carbon footprint. Began building the X-66 simulator that will allow pilots and engineers to run real-life scenarios in a safe environment. Funded new studies looking at the future of sustainable aircraft for the 2050 timeframe and beyond. Built a new simulator to study how passengers may experience air taxi rides. The results will help designers create new aircraft types with passenger comfort in mind. Developed a computer software tool called OVERFLOW to predict aircraft noise and aerodynamic performance. This tool is now being used by several air taxi manufacturers to test how propellers or wings perform. In collaboration with Sikorsky and DARPA (Defense Advanced Research Projects Agency), flew two helicopters autonomously using NASA-designed collision avoidance software. Designed and flew a camera pod with sensors to help advance computer vision for autonomous aviation. Launched a new science, technology, engineering, and mathematics kit focused on Advanced Air Mobility so students can learn more about air taxis and drones. Continued to reduce traffic and save fuel at major U.S. airports as part of NASA’s to work to improve air travel and make it more sustainable. Worked with partners to demonstrate a first-of-its-kind air traffic management concept for aircraft to safely operate at higher altitudes. Advanced Hybrid-Electric technologies with GE Aerospace under the Hybrid Thermally Efficient Core project. Conducted new ground and flight tests for the Electrified Powertrain Flight Demonstration project, which works to create hybrid electric powertrains for regional and single-aisle aircraft, alongside GE Aerospace and magniX. Collaborated with the Federal Aviation Administration and police and fire departments to strategize on integrating public safety drones into the national airspace. Launched a new science, technology, engineering, and mathematics kit focused on Advanced Air Mobility so students can learn more about air taxis and drones. Improving Life on Earth, in Space with Technology NASA develops essential technologies to drive exploration and the space economy. In 2024, NASA leveraged partnerships to advance technologies and test new capabilities to help the agency develop a sustainable presence on the lunar surface and beyond, while benefiting life on our home planet and in low Earth orbit. The following are 2024 space technology advancements: Deployed NASA’s Advanced Composite Solar Sail System in space, marking a successful test of its composite boom technology. Performed record-breaking laser communications with NASA’s Deep Space Optical Communications technology demonstration by sending a laser signal from Earth to NASA’s Psyche spacecraft about 290 million miles away. NASA’s Advanced Composite Solar Sail System and Deep Space Optical Communications were named among TIME’s Inventions of 2024, along with the agency’s Europa Clipper spacecraft. Supported 84 tests of technology payloads via 38 flights with six U.S. commercial flight providers through NASA’s Flight Opportunities Program. Enabled the first NASA-supported researcher to fly with their payload aboard a commercial suborbital rocket. Advanced critical capabilities for autonomous networks of small spacecraft with NASA’s Starling demonstration, the first satellite swarm to autonomously distribute information and operations data between spacecraft. Demonstrated space-age fuel gauge technology, known as a Radio Frequency Mass Gauge, on Intuitive Machines’ Nova-C lunar lander, to develop technology to accurately measure spacecraft fuel levels. Performed an in-space tank to tank transfer of cryogenic propellent (liquid oxygen) on the third flight test of SpaceX’s Starship. Licensed a new 3-D printed superalloy, dubbed GRX-810, to four American companies to make stronger, more durable airplane and spacecraft parts. Manufactured 3D-printed, liquid oxygen/hydrogen thrust chamber hardware as part of NASA’s Rapid Analysis and Manufacturing Propulsion Technology project, which earned the agency’s 2024 “Invention of The Year” award for its contributions to NASA and commercial industry’s deep space exploration goals. Pioneered quantum discovery using the Cold Atom Lab, including producing the first dual-species Bose-Einstein Condensates in space, the first dual-species atom interferometers in space, and demonstrating the first ultra-cool quantum sensor for the first time in space. Announced two new consortia to carry out ground-based research investigations and conduct activities for NASA’s Biological and Physical Sciences Space Biology Program, totaling $5 million. Awarded $4.25 million across the finales of three major NASA Centennial Challenges, including Break the Ice, Watts on the Moon, and Deep Space Food to support NASA’s Artemis missions and future journeys into deep space. Launched a collaborative process to capture the aerospace community’s most pervasive technical challenges, resulting in a ranked list of 187 civil space shortfalls to help guide future technology development projects, investments, and technology roadmaps. Growing Global Partnerships Through the Artemis Accords, almost 50 nations have joined the United States, led by NASA with the U.S. State Department, in a voluntary commitment to engage in the safe, transparent, and responsible exploration of the Moon, Mars, and beyond. The Artemis Accords represent a robust and diverse group of nation states, representing all regions of the world, working together for the safe, transparent, and responsible exploration of the Moon, Mars and beyond with NASA. More countries are expected to sign the Artemis Accords in the weeks and months ahead. During a May workshop with Artemis Accords signatories in Montreal, Canada, NASA led a tabletop exercise for 24 countries centered on further defining and implementing key tenets, including considering views on non-interference, interoperability, and scientific data sharing among nations. A NASA delegation participated in the 75th International Astronautical Congress in Milan. During the congress, NASA co-chaired the Artemis Accords Principals’ Meeting, which brought together 42 nations furthering discussions on the safe and responsible use of space for the benefit of all. Celebrating Total Solar Eclipse During the total solar eclipse on April 8, NASA helped the nation enjoy the event safely and engaged millions of people with in-person events, live online coverage, and citizen science opportunities. NASA also funded scientists around North America to take advantage of this unique position of the Sun, Moon, and Earth to learn more about the Sun and its connection to our home planet. Highlights of the solar celebration include: The space station crew were among the millions viewing the solar eclipse. NASA collaborated with the Indianapolis Motor Speedway, Google, NCAA Women’s Final Four, Peanuts Worldwide, Microsoft, Sésamo, LEGO, Barbie, Major League Baseball, Third Rock Radio, Discovery Education, and others on eclipse-inspired products and social posts to support awareness of the eclipse and the importance of safe viewing. More than 50 student teams participated in NASA’s Nationwide Eclipse Ballooning Project, with some becoming the first to measure atmospheric gravity waves caused by eclipses. Building Low Earth Orbit Economy In August, NASA announced the development of its low Earth orbit microgravity strategy by releasing 42 objectives for stakeholder feedback. The strategy helps to guide the next generation of human presence in low Earth orbit and advance microgravity science, technology, and exploration. NASA is refining the objectives with collected input and will finalize the strategy before the end of the year. Additional advancements include: NASA modified agreements for two funded commercial space station partners that are on track to develop low Earth orbit destinations for the agency and other customers. A NASA-funded commercial space station, Blue Origin’s Orbital Reef, completed multiple testing milestones for its critical life support system as part of the agency’s efforts for new destinations in low Earth orbit. A full-scale ultimate burst pressure test on Sierra Space’s LIFE (Large Integrated Flexible Environment) habitat structure was conducted, an element of a NASA-funded commercial space station. The agency’s industry partners, through the second Collaborations for Commercial Space Capabilities initiative and Small Business Innovation Research Ignite initiative, completed safety milestones, successful flight tests, and major technological advancements. As NASA opens access to space by working with private industry, the agency shared its medical expertise, human system integration knowledge, utilization requirements, and commercial space food insight to aid in developing safe, reliable, innovative, and cost-effective space stations. To address a rapidly changing space operating environment and ensure its preservation for generations to come, NASA released its integrated Space Sustainability Strategy in April. The agency tested the Sierra Space Dream Chaser spaceplane for the extreme environments of space at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. NASA’s Glenn Research Center in Cleveland streamed 4K video footage from an aircraft to the space station and back for the first time using optical, or laser, communications. Inspiring Artemis Generation of STEM Students NASA continues to offer a wide range of science, technology, engineering, and mathematics (STEM) initiatives and activities, reaching and engaging the next generation of scientists, engineers, and explorers. The agency’s STEM engagements are enhanced through collaborations with partner organizations, the distribution of various grants, and additional strategic activities. Key 2024 STEM highlights include: Awarded nearly $45 million to 21 higher-education institutions to help build capacity for research, and announced the recipients of grants that will support scientific and technical research projects for more than 20 universities and organizations across the United States. Planted a “Moon Tree,” a seedling that traveled around the Moon and back aboard the agency’s Artemis I mission in 2022, at the U.S. Capitol in Washington. The event highlighted a partnership with the U.S. Forest Service that invited organizations across the country to host the seedlings. Partnered with Microsoft’s Minecraft to engage students in a game-based learning platform, where players can experience NASA’s discoveries with interactive modules on star formation, planets, and galaxy types, modeled using real James Webb Space Telescope images. Collaborate with the U.S. Department of Education to bring STEM to students during after-school hours under the 21st Century Community Learning Centers program, which aims to reach thousands of students in more than 60 sites across 10 states. Launched NASA Engages, a platform to connect and serve the public by providing agency experts to share their experiences working on agency missions and programs. With more than 55,000 applications for NASA internships across the spring, summer and fall sessions, a new recruitment record, NASA helped students and early-career professionals make real contributions to space and science missions. Expanded the agency’s program to help informal educational institutions like museums, science centers, libraries, and other community organizations bring STEM content to communities, resulting in 42 active awards across 26 states and Puerto Rico. Hosted the 30th Human Exploration Rover Challenge, one of NASA’s longest-standing student challenges, with participation from more than 600 students and 72 teams from around the world. Reaching New, Future Explorers NASA’s future-forward outreach to current and new audiences is key to providing accessibility to the agency’s scientific discoveries and to growing the future STEM workforce. NASA’s creative and inclusive 2024 strategies to reach the public include: NASA’s on-demand streaming service, NASA+, achieved four times the viewership of the agency’s traditional cable channel, marking a major milestone in its ongoing web modernization efforts. As part of the digital transformation, NASA said goodbye to NASA Television, its over-the-air broadcast, streamlining how it delivers the latest space, science, and technology news. NASA+ marked its first year of operation Sept. 23, and visitors have played 1,036,389 hours of programming. April 8, the day of the total solar eclipse, brought in 32 million views to NASA’s websites, more than 15 times additional views than the average this year. On average, NASA websites receive 33.4 million views every month. NASA social media accounts saw an increase of 4% in followers since 2023, from 391.2 million in 2023 to 406.8 million this year. On average, NASA accounts see close to 25 million engagements each month.Notable live social media events in 2024 included the first-ever Reddit Ask Me Anything with the platform’s 23-million member “Explain Like I’m Five” community; the first X Spaces conversation from space; and NASA’s first Instagram Live of a launch, which contributed 410,000 of the 6.6 million views of the Boeing Starliner Crew Flight Test launch. NASA Twitch launched custom emotes, issued channel points for the first time, and collaborated with an external Twitch creator, a how-to conversation with astrophotographers and NASA experts about photographing the Moon. NASA aired live broadcasts for 14 mission launches in 2024. The agency’s official broadcast of the 2024 total solar eclipse and its telescope feed are the top two most-watched livestreams this year on NASA’s YouTube.The agency’s YouTube livestreams in 2024 surpassed 84.7 million total views. NASA broadcasts often were enhanced by the presence of well-known athletes, artists, and cultural figures. The solar eclipse broadcast alone featured musician Lance Bass, actor Scarlett Johannson, NFL quarterback Josh Dobbs, and Snoopy. The agency’s podcasts surpassed 9.7 million all-time plays on Apple Podcasts and Spotify. The NASA app was installed more than 2.1 million times in 2024. The number of subscribers to NASA’s flagship and Spanish newsletters total more than 5 million. NASA celebrated the 5th anniversary of the Hidden Figures Way street renaming. The program honored the legacy of Katherine Johnson, Dorothy Vaughan, Mary Jackson, and Christine M. Darden, and others who were featured in Margot Shetterly’s book – and the subsequent movie – Hidden Figures, and their commitment to science, justice, and humanity. The agency signed Space Act agreements with the National Association for the Advancement of Colored People and the Hispanic Heritage Foundation to increase engagement and equity for underrepresented students pursuing STEM fields and reduce barriers to agency activities and opportunities. As part of its plans to reach new audiences, NASA continued to focus on developing Spanish-language content. This year, the agency:Launched its second season of the Spanish-language podcast Universo curioso de la NASA.More than doubled the number of yearly posts to its science-focused website in Spanish, Ciencia de la NASA, and grew the website’s traffic by five-fold.Produced live broadcasts for the 2024 total solar eclipse and for the launch of the Europa Clipper mission, which reached a combined audience of more than 5 million viewers around the world.Published a video about how NASA and ESA (European Space Agency) cooperate to train astronauts. Released an astrobiology graphic novel and the agency’s economic impact yearly report in Spanish, among other outreach materials. Relaunched the NASA Art Program with two space-themed murals in New York’s Hudson Square neighborhood in Manhattan. The vision of the reimagined NASA Art Program is to inspire and engage the Artemis Generation with community murals and art projects for the benefit of humanity. A DC-8 Airborne Science Laboratory Workshop documented and celebrated the important scientific work conducted aboard NASA’s legendary DC-8 and captured lessons of the past for current and future operators. The Deep Space Network beamed a Missy Elliott song to space on July 12. NASA partnered with Crayola Education to develop content for Crayola’s annual Creativity Week held in January, which reached more than 6 million kids from 100 countries. On the eve of the 55th anniversary of the Apollo 11 Moon landing, NASA Johnson named one of its central buildings the “Dorothy Vaughan Center in Honor of the Women of Apollo.” Actress Octavia Spencer narrated a video for the event. NASA’s Ames Research Center in California’s Silicon Valley hosted social media creators in space, science, and engineering for a behind-the-scenes tour of the center’s world-class facilities. Engaging largely untapped NASA audiences of more than 155,000 in Illinois, Michigan, and Minnesota, NASA’s Glenn launched NASA in the Midwest, an integrated approach to bring awareness to the agency’s connections to the region to large-scale festivals and surrounding community institutions. Reaching 500,000 in-person attendees, NASA Stennis supported the agency’s return to the ESSENCE Festival of Culture in New Orleans. NASA’s Wallops Flight Facility in Virginia developed a dance engagement program in partnership with the Eastern Shore Ballet Theatre, introducing new audiences to the agency while blending arts and science. NASA participated in more than 3,700 events planned with an estimated reach of more than 17 million worldwide. This was accomplished through in-person, hybrid, and virtual outreach activities and events. The agency’s Virtual Guest Program engaged 277,370 virtual guests across 13 events, with an average of 145 countries, regions, and territories represented per event. There also were many notable engagements highlighting the intersection of space and sports in 2024, including the Stanley Cup visiting NASA Kennedy for photographs as part of the agency’s growing partnership with the National Hockey League. NASA Glenn also collaborated with The Ohio State University Marching Band for its halftime show during the university’s football game on Sept. 21. A video greeting from astronauts aboard the International Space Station introduced the show, which featured aerospace-themed music and numerous formations including the final formation the NASA Meatball. For more about NASA’s missions, research, and discoveries, visit: https://www.nasa.gov -end- Meira Bernstein / Cheryl Warner Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / cheryl.m.warner@nasa.gov Share Details Last Updated Dec 06, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsGeneralAeronauticsAeronautics Research Mission DirectorateArtemisArtemis AccordsCommercial CrewCommercial SpaceEarthExploration Systems Development Mission DirectorateHumans in SpaceInternational Space Station (ISS)ISS ResearchLow Earth Orbit EconomyNASA Centers & FacilitiesNASA DirectoratesNASA en españolOffice of International and Interagency Relations (OIIR)People of NASAScience & ResearchScience Mission DirectorateSocial MediaSpace Operations Mission DirectorateSpace Technology Mission DirectorateSTEM Engagement at NASAThe Solar SystemThe Universe View the full article
-
Credit: NASA NASA has selected Nova Space Solutions, LLC of Anchorage, Alaska, to provide operations, services, maintenance, and infrastructure support for NASA’s Stennis Space Center near Bay St. Louis, Mississippi, and NASA’s Michoud Assembly Facility in New Orleans. The Combined Operations, Services, Maintenance, and Infrastructure Contract is a cost-plus-incentive-fee, firm-fixed-price, and indefinite-delivery/indefinite-quantity contract that has a value of approximately $822.7 million. The performance period begins July 1, 2025, and extends eight years and three months, with a 15-month base period, followed by a one-year option period and three two-year option periods. Under the contract, Nova Space Solutions will be responsible for contract management, logistics, safety, health and environmental compliance, engineering and manufacturing support services, site services, facility operations and maintenance services, and environmental services and program management. NASA’s Stennis Space Center is the nation’s largest propulsion test site, with infrastructure to support projects ranging from component and subscale testing to large engine hot fires. Researchers from NASA, other government agencies, and private industry use NASA Stennis test facilities for technology and propulsion research and developmental projects. NASA’s Michoud Assembly Facility, managed by the agency’s Marshall Flight Center in Huntsville, Alabama, is the nation’s premier site for manufacturing and assembly of large-scale space structures and systems. For information about NASA and other agency programs, visit: https://www.nasa.gov -end- Tiernan Doyle Headquarters, Washington 202-358-1600 tiernan.doyle@nasa.gov C. Lacy Thompson Stennis Space Center, Bay St. Louis, Mississippi 228-363-5499 calvin.l.thompson@nasa.gov Lance D. Davis Marshall Space Flight Center, Huntsville, Alabama 256-640-9065 lance.d.davis@nasa.gov Share Details Last Updated Dec 06, 2024 LocationNASA Headquarters Related TermsStennis Space CenterMarshall Space Flight CenterMichoud Assembly Facility View the full article
-
Congratulations to the selected teams and their schools who will participate in the Lunar Autonomy Challenge! 31 teams were selected for the qualifying round, engaging 229 students from colleges and universities in 15 states. Teams will now move on to a Qualifying Round where they will virtually explore and map the lunar surface using a digital twin of NASA’s lunar mobility robot, the ISRU Pilot Excavator (IPEx). Teams will develop software that can perform set actions without human intervention, navigating the digital IPEx in the harsh, low-light conditions of the Moon. The Qualifying Round will extend to February 28, when the top-scoring teams will proceed to the Final Round, with the winners announced in May 2025. The Lunar Autonomy Challenge is a collaboration between NASA, The Johns Hopkins University (JHU) Applied Physics Laboratory (APL), Caterpillar Inc., and Embodied AI. Learn more: https://lunar-autonomy-challenge.jhuapl.edu/ SchoolCityStateAmerican Public University SystemCharles TownWest VirginiaArizona State UniversityTempeArizonaCalifornia Polytechnic Institute, Pomona (1)PomonaCaliforniaCalifornia Polytechnic Institute, Pomona (2)PomonaCaliforniaCarnegie Mellon UniversityPittsburghPennsylvaniaEmbry Riddle Aeronautical UniversityDaytona BeachFloridaEssex County CollegeNewarkNew JerseyGeorgia Institute of Technology & Arizona State UniversityAtlanta & TempeGeorgia & ArizonaHarvard UniversityAllstonMassachusettsJohns Hopkins University Whiting School of EngineeringBaltimoreMarylandMassachusetts Institute of TechnologyCambridgeMassachusettsNew York University Tandon School of EngineeringBrooklynNew YorkNorth Carolina State UniversityRaleighNorth CarolinaPenn State (1)University ParkPennsylvaniaPenn State (2)University ParkPennsylvaniaPurdue UniversityWest LafayetteIndianaRochester Institute of TechnologyRochester New YorkRose Hulman Institue of TechnologyTerre HauteIndianaStanford UniversityStanfordCalifornia Texas A&M UniversityCollege StationTexasUniversity of AlabamaTuscaloosaAlabamaUniversity of Buffalo, State University of New YorkBuffaloNew YorkUniversity of California, StanislausTurlockCaliforniaUniversity of Illinois Urbana Champaign (1)UrbanaIllinoisUniversity of Illinois Urbana Champaign (2)UrbanaIllinoisUniversity of MarylandCollege ParkMarylandUniversity of Pennsylvania (1)Philadelphia PennsylvaniaUniversity of Pennsylvania (2)Philadelphia PennsylvaniaUniversity of Southern California & Stanford UniversityLos Angeles & StanfordCaliforniaWest Virginia UniversityMorgantownWest VirginiaWorcester Polytechnic InstituteWorcesterMassachusetts Keep Exploring Discover More Topics From NASA Space Technology Mission Directorate NASA’s Lunar Surface Innovation Initiative ISRU Pilot Excavator Education & Opportunities We are committed to providing educational opportunities for students interested in pursuing professional experiences in the life science disciplines. Our… View the full article
-
JPL Director Laurie Leshin, flanked by a model of the Voyager spacecraft and an image of Ed Stone, addresses the audience during the unveiling of the Dr. Edward Stone Exploration Trail on Dec. 6, 2024, at the lab. Ed Stone Memorial Plaque Dedication Ceremony Requester: Susie Woodall Date: 06-DEC-2024 Photographer: Ryan Lannom A series of plaques stretching through the heart of the agency’s Jet Propulsion Laboratory offers highlights of the space explorer’s career and the Voyager mission he led. Family members, colleagues, and local dignitaries gathered on Friday, Dec. 6, at NASA’s Jet Propulsion Laboratory in Southern California for the unveiling of a memorial honoring Ed Stone, best known as the longtime project scientist of the agency’s Voyager mission. Stone died in June 2024 at age 88 after leading the mission for half a century and leading JPL for a decade. Stretching through the heart of the lab, the Dr. Edward Stone Exploration Trail traces the arc of Stone’s distinguished career and the long journeys of the twin Voyager space probes. Designed with simple line drawings, 24 disc-shaped plaques along the trail offer career and mission highlights while evoking the Golden Record aboard both spacecraft. The Dr. Edward Stone Exploration Trail begins in front of the building where Stone served as JPL’s director. NASA/JPL-Caltech Launched in the summer of 1977, Voyager 1 and 2 have since traveled more than 15.4 billion and 12.9 billion miles (24 billion and 20 billion kilometers), respectively — farther than any other human-made object. The plaques trace their trajectories to Jupiter and Saturn as well as their diverging paths, with Voyager 2 heading toward Uranus and Neptune as Voyager 1 made a beeline for interstellar space. Other stops along the trail honor Stone’s work creating the W.M. Keck Observatory in 1985, his appointment as JPL’s director in 1991, and his being honored with the Distinguished Service Award 2013. “To follow in the footsteps of Ed Stone is to walk the path of an extraordinary person who dedicated his time on Earth to reaching for the stars, and who paved the way for others to do the same,” said Laurie Leshin, director of JPL. “This trail is a testament to Ed’s bold curiosity, visionary leadership, and passion for science that have enabled us to explore farther into the cosmos than ever before. It’s also a reminder of his influence on so many of our endeavors to reach new frontiers in space.” Embedded in the pavement, 24 additional plaques trace the approximate trajectories of the Voyager spacecraft. The shape and design language of the plaques evoke the design of the Gold Record.NASA/JPL-Caltech Blazing a Trail Stone’s penchant for walking was one of the topics that came up when members of JPL’s Office of the Director, its DesignLab, and the Voyager team began discussing ways to honor his outsize contributions to JPL and science. From those initial brainstorming sessions came the question, “How can we do something to memorialize him at JPL that gets people to walk?” recalled DesignLab’s graphic manager, Lauren Shapiro. The distances between the plaques are roughly proportional the distances between the events they highlight, and the team even tried to make flight trajectories of the probes as accurate as possible, given the challenges of avoiding buildings and the like. Designer Kaelyn Richards relied on the Voyager Golden Record as a guide for the visual language. “I referenced a lot of old scientific diagrams that were made by artists in the ’70s and ’80s, and I used a solar system modeling program to show the exact position of the planets on the day that the ‘Pale Blue Dot’ was taken,” she said, referring to the plaque honoring the famous 1990 image Voyager 1 took of Earth from beyond Neptune. “Everyone seemed to agree that Voyager was Ed Stone. Yes, he did so much more, but this was really his biggest legacy,” Shapiro said. “So we’re honoring both the mission and the person alongside each other. And they both, in a poetic way, have had very long, incredible lives.” Voyager 1 and 2 both carry the Golden Record, a 12-inch gold-plated copper disk intended to communicate a story of our world to extraterrestrials with sounds and images that portray the diversity of life and culture on Earth. NASA/JPL-Caltech After retiring as Voyager’s project scientist, Stone returned to teaching and research at Caltech, which manages JPL for NASA. Before attending the unveiling, Caltech President Thomas Rosenbaum said, “Ed was a whirlwind of activity. I have many good memories of running after Ed in the midst of conversation as he charged across campus. Ed’s ambition, drive, and vision were accompanied by his warmth, humility, and commitment to Caltech and our students. He served as a mentor for generations of scholars who have gone on to be leaders in their fields. He conveyed a curiosity and a thirst for discovery that inspired.” Stone had joined the Caltech faculty as an assistant professor in 1967 and, from 1983 to 1988, chaired the Division of Physics, Mathematics and Astronomy. He went on to serve as vice president for astronomical facilities from 1988 to 1990 and as vice provost for special projects from 2004 to 2022. In 2023, Caltech established a new faculty position, the Edward C. Stone Professorship. But there was another academic honor that Stone also cherished: the 2012 naming of the Edward Stone Middle School in his hometown of Burlington, Iowa. A short walk from the plaque marking that milestone is the final stop of the Exploration Trail, its simple inscription reading: “Ed Stone’s leadership and pursuit of scientific knowledge expanded humanity’s understanding of the universe. His legacy lives on through the Voyager mission, and the countless people he has inspired.” News Media Contacts Matthew Segal / Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 818-354-8307 / 626-808-2469 matthew.j.segal@jpl.nasa.gov / calla.e.cofield@jpl.nasa.gov 2024-165 Share Details Last Updated Dec 06, 2024 Related TermsVoyager ProgramHeliophysicsJet Propulsion LaboratoryVoyager 1Voyager 2 Explore More 4 min read NASA’s C-20A Studies Extreme Weather Events Article 2 days ago 2 min read This Thanksgiving, We’re Grateful for NASA’s Volunteer Scientists! This year, we’re giving thanks to you for Doing NASA Science! You and the millions… Article 1 week ago 5 min read NASA’s Europa Clipper: Millions of Miles Down, Instruments Deploying Article 2 weeks ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
NASA/Michala Garrison, using Landsat data from the U.S. Geological Survey and VIIRS day-night band data from the Suomi National Polar-orbiting Partnership Lava encroaches on the Blue Lagoon, a popular tourist destination in Iceland, in this Nov. 24, 2024, Landsat 9 image overlaid with an infrared signal. The infrared signal helps distinguish the lava’s heat signature. A volcanic fissure burst open on Iceland’s Reykjanes peninsula four days prior, heralded by a series of earthquakes. A plume of gas, consisting primarily of sulfur dioxide, streamed from the lava. The Reykjanes peninsula eruption is the seventh in a series of events that began in December 2023. Image credit: NASA/Michala Garrison, using Landsat data from the U.S. Geological Survey and VIIRS day-night band data from the Suomi National Polar-orbiting Partnership View the full article
-
El 28 de junio de 2024, la nave espacial Orion de Artemis II es retirada de la Celda de Ensamblaje Final y Pruebas del Sistema (FAST, por sus siglas en inglés) y colocada en la cámara de altitud oeste dentro del Edificio de Operaciones y Revisión del Centro Espacial Kennedy de la NASA en Florida. Dentro de la cámara de altitud, la nave espacial se sometió a una serie de pruebas que simulaban las condiciones de vacío del espacio profundo.Crédito de la foto: NASA / Rad Sinyak Read this story in English here. Tras extensos análisis y pruebas, la NASA ha identificado la causa técnica de la pérdida imprevista de material carbonizado en el escudo térmico de la nave espacial Orion de Artemis I. Los ingenieros determinaron que, cuando Orion regresaba de su misión sin tripulación alrededor de la Luna, los gases generados dentro del material ablativo exterior del escudo térmico, denominado Avcoat, no pudieron ventilarse y disiparse como estaba previsto. Esto permitió que se acumulara presión y se produjeran grietas, lo que causó que parte del material carbonizado se desprendiera en varios lugares. “Nuestros primeros vuelos de Artemis son una campaña de prueba, y el vuelo de prueba de Artemis I nos dio la oportunidad de comprobar nuestros sistemas en el entorno del espacio profundo antes de incorporar a la tripulación en futuras misiones”, dijo Amit Kshatriya, administrador asociado adjunto de la Oficina del programa De la Luna a Marte, en la sede de la NASA en Washington. “La investigación sobre el escudo térmico ayudó a garantizar que comprendiéramos completamente la causa y la naturaleza del problema, así como el riesgo que les pedimos a nuestras tripulaciones que asuman cuando emprendan su viaje a la Luna”. Los hallazgos Los equipos técnicos adoptaron un enfoque metódico para comprender e identificar el origen del problema de pérdida de material carbonizado, incluyendo el muestreo detallado del escudo térmico de Artemis I, la revisión de las imágenes y los datos de los sensores de la nave espacial, y pruebas y análisis exhaustivos en tierra. Durante Artemis I, los ingenieros utilizaron la técnica de guiamiento de reentrada atmosférica doble para el regreso de Orion a la Tierra. Esta técnica ofrece más flexibilidad ya que amplía el alcance del vuelo de Orion después del punto de reentrada para llevarlo hasta un lugar de amerizaje en el océano Pacífico. Con esta maniobra, Orion se sumergió en la parte superior de la atmósfera de la Tierra y utilizó la resistencia atmosférica para reducir su velocidad. A continuación, Orion utilizó la sustentación aerodinámica de la cápsula para rebotar y salir de nuevo de la atmósfera, para luego volver a entrar en el descenso final con paracaídas para su amerizaje. Utilizando los datos de la respuesta del material Avcoat de Artemis I, el equipo de investigación pudo simular el entorno de la trayectoria de entrada de Artemis I —una parte clave para comprender la causa del problema— dentro de la instalación de chorro en arco del Centro de Investigación Ames de la NASA en California. Observaron que, durante el período entre las inmersiones en la atmósfera, las tasas de calentamiento disminuyeron y la energía térmica se acumuló dentro del material Avcoat del escudo térmico. Esto condujo a la acumulación de gases que forman parte del proceso de ablación (desgaste) previsto. Debido a que el Avcoat no tenía “permeabilidad”, la presión interna se acumuló y produjo el agrietamiento y el desprendimiento desigual de la capa exterior. Los equipos técnicos realizaron extensas pruebas en tierra para simular el fenómeno de rebote en la reentrada antes de la misión Artemis I. Sin embargo, hicieron pruebas a velocidades de calentamiento mucho más altas que las que la nave espacial experimentó durante su vuelo. Las altas velocidades de calentamiento puestas a prueba en tierra permitieron que el material carbonizado permeable se formara y se desgastara como estaba previsto, liberando la presión del gas. El calentamiento menos severo observado durante la reentrada real de Artemis I desaceleró el proceso de formación de material carbonizado, al tiempo que siguió creando gases en esta capa de material. La presión del gas se acumuló hasta el punto de agrietar el Avcoat y liberar partes de la capa carbonizada. Las mejoras recientes en la instalación de chorro en arco han permitido una reproducción más precisa de los entornos de vuelo registrados por Artemis I, de modo que este comportamiento de agrietamiento pudo demostrarse en pruebas en tierra. Si bien Artemis I no estaba tripulado, los datos del vuelo mostraron que, si la tripulación hubiera estado a bordo, habría estado a salvo. Los datos de la temperatura de los sistemas del módulo de tripulación dentro de la cabina también estaban dentro de los límites y se mantenían estables, con temperaturas alrededor de los 24 grados centígrados (75 grados Fahrenheit). El desempeño del escudo térmico superó las expectativas. Los ingenieros comprenden tanto el fenómeno material como el entorno con el que interactúan los materiales durante la entrada a la atmósfera. Al cambiar el material o el entorno, pueden predecir cómo responderá la nave espacial. Los equipos de la NASA acordaron por unanimidad que la agencia puede desarrollar un análisis de vuelo aceptable que mantenga a la tripulación segura utilizando el actual escudo térmico de Artemis II con cambios operativos para su entrada en la atmósfera. El proceso de investigación de la NASA Poco después de que los ingenieros de la NASA descubrieran las condiciones del escudo térmico de Artemis I, la agencia comenzó un extenso proceso de investigación, el cual contó con un equipo multidisciplinario de expertos en sistemas de protección térmica, aerotermodinámica, pruebas y análisis térmicos, análisis de estrés (fatiga de materiales), pruebas y análisis de materiales, y muchos otros campos técnicos relacionados. El Centro de Ingeniería y Seguridad de la NASA también participó para aportar su experiencia técnica, incluyendo evaluación no destructiva, análisis térmico y estructural, análisis de árbol de fallas y otros métodos de respaldo de las pruebas. “Nos tomamos muy en serio nuestro proceso de investigación del escudo térmico, con la seguridad de la tripulación como la fuerza impulsora que mueve esta investigación”, dijo Howard Hu, gerente del Programa Orion del Centro Espacial Johnson de la NASA en Houston. “El proceso fue extenso. Le dimos al equipo el tiempo necesario para investigar todas las causas posibles, y trabajaron incansablemente para asegurarse de que entendiéramos el fenómeno y los pasos necesarios para mitigar este problema en futuras misiones”. El escudo térmico de Artemis I estaba muy cargado de instrumentos para este vuelo, e incluía sensores de presión, extensómetros y termopares a diferentes profundidades del material ablativo. Los datos de estos instrumentos acrecentaron el análisis de muestras físicas, lo que permitió al equipo validar modelos informáticos, crear reconstrucciones de entornos, proporcionar perfiles de temperatura interna y dar información sobre el momento de la pérdida de material carbonizado. Alrededor de 200 muestras de Avcoat fueron extraídas del escudo térmico de Artemis I en el Centro de Vuelo Espacial Marshall de la NASA en Alabama para su análisis e inspección. El equipo llevó a cabo una evaluación no destructiva para “ver” dentro del escudo térmico. Uno de los hallazgos más importantes que arrojó el examen de estas muestras fue que algunas superficies en la zona del Avcoat permeable, las cuales habían sido identificadas antes del vuelo, no sufrieron agrietamiento ni pérdida de material carbonizado. Dado que estas superficies eran permeables al comienzo de la entrada en la atmósfera, los gases producidos por la ablación pudieron ventilarse adecuadamente, eliminando la acumulación de la presión, el agrietamiento y la pérdida de material carbonizado. Los ingenieros hicieron ocho campañas separadas de pruebas térmicas posteriores al vuelo para respaldar el análisis del origen de estas condiciones, y completaron 121 pruebas individuales. Estas pruebas fueron llevadas a cabo en instalaciones en diferentes lugares de Estados Unidos que cuentan con capacidades únicas, entre ellas: la Instalación de Calentamiento Aerodinámico en el Complejo de Chorro en Arco del centro Ames, para poner a prueba perfiles de calentamiento convectivo con diversos gases de prueba; el Laboratorio de Evaluación de Materiales Endurecidos por Láser en la Base de la Fuerza Aérea Patterson-Wright en Ohio, con el fin de poner a prueba perfiles de calentamiento radiativo y proporcionar radiografías en tiempo real; y la Instalación de Calentamiento por Interacción del centro Ames, para poner a prueba perfiles combinados de calentamiento convectivo y radiativo en el aire en bloques completos, esto es, aplicando todas las pruebas en cada bloque de material. Los expertos en aerotermia también completaron dos campañas de pruebas en el túnel de viento hipersónico del Centro de Investigación Langley de la NASA en Virginia y en las instalaciones de pruebas aerodinámicas del CUBRC en Buffalo, Nueva York, para realizar pruebas con una diversidad de configuraciones de pérdida de material carbonizado, y mejorar y validar los modelos analíticos. También se realizaron pruebas de permeabilidad en el centro Kratos en Alabama, en la Universidad de Kentucky y en el centro Ames para caracterizar aún mejor el volumen elemental y la porosidad del Avcoat. La instalación de pruebas del centro de investigaciones Advanced Light Source, una instalación para usuarios científicos del Departamento de Energía de Estados Unidos en el Laboratorio Nacional Lawrence Berkeley, también fue utilizada por los ingenieros para examinar el comportamiento del calentamiento del Avcoat a nivel microestructural. En la primavera de 2024, la NASA creó un equipo de revisión independiente que realizó una revisión exhaustiva del proceso de investigación, los hallazgos y los resultados de la agencia. La revisión independiente fue dirigida por Paul Hill, un exdirectivo de la NASA que se desempeñó como director principal de vuelo del transbordador espacial para el programa Return to Flight (Regreso a los vuelos) después del accidente del Columbia, quien también dirigió la Dirección de Operaciones de Misiones de la NASA y es miembro actual del Panel Asesor de Seguridad Aeroespacial de la agencia. La revisión se llevó a cabo durante un período de tres meses a fin de evaluar las condiciones del escudo térmico posteriores al vuelo, los datos del entorno para la entrada a la atmósfera, la respuesta térmica del material ablativo y el avance de las investigaciones de la NASA. El equipo de revisión estuvo de acuerdo con los hallazgos de la NASA sobre la causa técnica del comportamiento físico del escudo térmico. Avances en el escudo térmico Al saber que la permeabilidad de Avcoat es un parámetro clave para evitar o minimizar la pérdida de material carbonizado, la NASA tiene la información correcta para garantizar la seguridad de la tripulación y mejorar el desempeño de los futuros escudos térmicos del programa Artemis. A lo largo de su historia, la NASA ha aprendido de cada uno de sus vuelos e incorporado mejoras en el hardware y las operaciones. Los datos recopilados a lo largo del vuelo de prueba de Artemis I han proporcionado a los ingenieros información valiosísima para guiar futuros diseños y refinamientos. Los datos de desempeño del vuelo de retorno lunar y un sólido programa de calificación de pruebas en tierra, mejorado después de la experiencia del vuelo de Artemis I, están respaldando las mejoras en la producción del escudo térmico de Orion. Los futuros escudos térmicos para el regreso de Orion en las misiones de alunizaje de Artemis están en producción para lograr una uniformidad y permeabilidad consistente. El programa de calificación se está completando actualmente, junto con la producción de bloques de Avcoat más permeables, en la Instalación de Ensamblaje Michoud de la NASA en Nueva Orleans. Para obtener más información sobre las campañas Artemis de la NASA, visita el sitio web (en inglés): https://www.nasa.gov/artemis -fin- Meira Bernstein / Rachel Kraft / María José Viñas Sede, Washington 202-358-1600 meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov / maria-jose.vinasgarcia@nasa.gov View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s IXPE (Imaging X-ray Polarimetry Explorer) has helped astronomers better understand the shapes of structures essential to a black hole – specifically, the disk of material swirling around it, and the shifting plasma region called the corona. The stellar-mass black hole, part of the binary system Swift J1727.8-1613, was discovered in the summer of 2023 during an unusual brightening event that briefly caused it to outshine nearly all other X-ray sources. It is the first of its kind to be observed by IXPE as it goes through the start, peak, and conclusion of an X-ray outburst like this. This illustration shows NASA’s Imaging X-ray Polarimetry Explorer (IXPE) spacecraft, at lower left, observing the newly discovered binary system Swift J1727.8-1613 from a distance. At the center is a black hole surrounded by an accretion disk, shown in yellow and orange, and a hot, shifting corona, shown in blue. The black hole is siphoning off gas from its companion star, seen behind the black hole as an orange disk. Jets of fast-moving, superheated particles stream from both poles of the black hole. Author: Marie Novotná Swift J1727 is the subject of a series of new studies published in The Astrophysical Journal and Astronomy & Astrophysics. Scientists say the findings provide new insight into the behavior and evolution of black hole X-ray binary systems. “This outburst evolved incredibly quickly,” said astrophysicist Alexandra Veledina, a permanent researcher at the University of Turku, Finland. “From our first detection of the outburst, it took Swift J1727 just days to peak. By then, IXPE and numerous other telescopes and instruments were already collecting data. It was exhilarating to observe the outburst all the way through its return to inactivity.” Until late 2023, Swift J1727 briefly remained brighter than the Crab Nebula, the standard X-ray “candle” used to provide a baseline for units of X-ray brightness. Such outbursts are not unusual among binary star systems, but rarely do they occur so brightly and so close to home – just 8,800 light years from Earth. The binary system was named in honor of the Swift Gamma-ray Burst Mission which initially detected the outburst with its Burst Alert Telescope on Aug. 24, 2023, resulting in the discovery of the black hole. X-ray binary systems typically include two close-proximity stars at different stages of their lifecycle. When the elder star runs out of fuel, it explodes in a supernova, leaving behind a neutron star, white dwarf, or black hole. In the case of Swift J1727, the powerful gravity of the resulting black hole stripped material from its companion star, heating the material to more than 1.8 million degrees Fahrenheit and producing a vast outpouring of X-rays. This matter formed an accretion disk and can include a superheated corona. At the poles of the black hole, matter also can escape from the binary system in the form of relativistic jets. IXPE, which has helped NASA and researchers study all these phenomena, specializes in X-ray polarization, the characteristic of light that helps map the shape and structure of such ultra-powerful energy sources, illuminating their inner workings even when they’re too distant for us to see directly. Because light itself can’t escape their gravity, we can’t see black holes. We can only observe what is happening around them and draw conclusions about the mechanisms and processes that occur there. IXPE is crucial to that work. /wp-content/plugins/nasa-blocks/assets/images/article-templates/anne-mcclain.jpg Alexandra Veledina NASA Astrophysicist “Because light itself can’t escape their gravity, we can’t see black holes,” Veledina said. “We can only observe what is happening around them and draw conclusions about the mechanisms and processes that occur there. IXPE is crucial to that work.” Two of the IXPE-based studies of Swift J1727, led by Veledina and Adam Ingram, a researcher at Newcastle University in Newcastle-upon-Tyne, England, focused on the first phases of the outburst. During the brief period of months when the source became exceptionally bright, the corona was the main source of observed X-ray radiation. “IXPE documented polarization of X-ray radiation traveling along the estimated direction of the black hole jet, hence the hot plasma is extended in the accretion disk plane,” Veledina said. “Similar findings were reported in the persistent black hole binary Cygnus X-1, so this finding helps verify that the geometry is the same among short-lived eruptive systems.” The team further monitored how polarization values changed during Swift J1727’s peak outburst. Those conclusions matched findings simultaneously obtained during studies of other energy bands of electromagnetic radiation. A third and a fourth study, led by researchers Jiří Svoboda and Jakub Podgorný, both of the Czech Academy of Sciences in Prague, focused on X-ray polarization at the second part of the Swift J1727’s outburst and its return to a highly energetic state several months later. For Podgorný’s previous efforts using IXPE data and black hole simulations, he recently was awarded the Czech Republic’s top national prize for a Ph.D. thesis in the natural sciences. The polarization data indicated that the geometry of the corona did not change significantly between the beginning and the end of the outburst, even though the system evolved in the meantime and the X-ray brightness dropped dramatically in the later energetic state. The results represent a significant step forward in our understanding of the changing shapes and structures of accretion disk, corona, and related structures at black holes in general. The study also demonstrates IXPE’s value as a tool for determining how all these elements of the system are connected, as well as its potential to collaborate with other observatories to monitor sudden, dramatic changes in the cosmos. “Further observations of matter near black holes in binary systems are needed, but the successful first observing campaign of Swift J1727.8–1613 in different states is the best start of a new chapter we could imagine,” said Michal Dovčiak, co-author of the series of papers and leader of the IXPE working group on stellar-mass black holes, who also conducts research at the Czech Academy of Sciences. More about IXPE IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. Ball Aerospace, headquartered in Broomfield, Colorado, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder. Learn more about IXPE’s ongoing mission here: https://www.nasa.gov/ixpe Elizabeth Landau NASA Headquarters elizabeth.r.landau@nasa.gov 202-358-0845 Lane Figueroa NASA’s Marshall Space Flight Center 256-544-0034 lane.e.figueroa@nasa.gov Share Details Last Updated Dec 06, 2024 Related TermsIXPE (Imaging X-ray Polarimetry Explorer)Marshall Science Research & ProjectsMarshall Space Flight Center Explore More 3 min read NASA, USAID Launch SERVIR Central American Hub Article 7 mins ago 4 min read NASA AI, Open Science Advance Disaster Research and Recovery By Lauren Perkins When you think of NASA, disasters such as hurricanes may not be… Article 1 week ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) U.S. Ambassador to El Salvador, William H. Duncan, speaks to attendees at the SERVIR Central America launch in San Salvador. SERVIR SERVIR, NASA’s flagship partnership with the U.S. Agency for International Development (USAID), launched a new regional center, or hub, in Central America on Dec. 3. The new hub is in partnership with the Tropical Agricultural Research and Higher Education Center in Turrialba, Costa Rica, and is supported by the USAID Central America and Mexico Regional Program. The launch event took place in San Salvador, El Salvador. The event introduced guests to the structure and mission of the new hub, featuring remarks from SERVIR Global Program Manager Dan Irwin and video overviews of some of its planned projects. Karen St Germain, director of NASA’s Earth Science Division and U.S. Ambassador to El Salvador, William H. Duncan, provided recorded remarks congratulating the new program. Central America holds a special place in SERVIR’s history. Over three decades ago, Dan Irwin, research scientist at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and SERVIR’s founder and Global Program Manager, was working in Guatemala to use satellite data to map a new forest reserve. During this time, Irwin met with representatives from Central American environmental ministries to demonstrate how NASA Earth data could help to address environmental challenges and reduce disaster risk. “In this meeting, I realized that NASA has a vast library of Earth data, but this information wasn’t being used by experts across the globe who have the best understanding of local development issues. I wanted to find a way to bridge that gap,” Irwin shared. Under Irwin’s leadership, NASA and USAID partnered to create the SERVIR program, which was formally established in 2005. SERVIR’s mission is to “connect space to village,” increasing global access to NASA Earth data to support locally led environmental and development efforts. SERVIR Global Program Manager Dan Irwin from NASA’s Marshall Space Flight Center speaks about the history of the SERVIR program at the Central America launch in San Salvador. SERVIR SERVIR soon expanded its partnerships across the globe, with regional hubs in South America, Asia, and Africa. SERVIR Central America will work to serve more than 40 million people throughout the region, collaborating with governments, universities, and civil society organizations to support existing natural resource management and development decision-making. The hub will support resilience against environmental challenges including hurricanes, droughts, deforestation, and biodiversity loss. SERVIR Central America will also strengthen the region’s technical capacity to use Earth observations and promote opportunities in science, technology, engineering, and math. The hub will expand the use of geospatial technology by young people and other groups with limited access to these tools. “The launch of SERVIR Central America marks a milestone in the collaboration between space-based technology and Central America’s local needs,” said Irwin. “This initiative represents NASA and USAID’s commitment to putting advanced technology at the service of the region.” To learn more about SERVIR, visit: https://www.nasa.gov/servir Elizabeth Vlock Headquarters, Washington 202-358-1600 elizabeth.a.vlock@nasa.gov Lane Figueroa Huntsville, Alabama 256.544.0034 lane.e.figueroa@nasa.gov Share Details Last Updated Dec 06, 2024 LocationMarshall Space Flight Center Related TermsSERVIR (Regional Visualization and Monitoring System)Marshall Earth SciencesMarshall Science Research & ProjectsMarshall Space Flight Center Explore More 5 min read NASA’s IXPE Details Shapes of Structures at Newly Discovered Black Hole Article 4 mins ago 4 min read NASA AI, Open Science Advance Disaster Research and Recovery By Lauren Perkins When you think of NASA, disasters such as hurricanes may not be… Article 1 week ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
3 min read Annual Science Conference to Highlight NASA Research NASA scientists will be presenting research at the annual American Geophysical Union conference, beginning on December 9, including results from science experiments conducted during the 2024 solar eclipse. In this image, a total solar eclipse is seen from the Indianapolis Motor Speedway, Monday, April 8, 2024, in Indianapolis, Indiana. NASA/Joel Kowsky NASA researchers will present findings on Earth science, planetary science, and heliophysics at the upcoming American Geophysical Union (AGU) 2024 annual meeting in Washington, DC, beginning on Monday, Dec. 9. New NASA science results will be presented regarding the 2024 solar eclipse, the future of rotorcraft on other planets, a new initiative to create the most comprehensive airborne mineral map in the United States, and studies of the most volcanic body in our solar system, Jupiter’s Moon Io. Throughout the conference, in-depth roundtable chats with NASA scientists – including discussing NASA and IBM’s work to use AI to advance studies of our home planet, the Moon, the Sun, and beyond, as well as information about the U.S. Greenhouse Gas Center and Parker Solar Probe’s upcoming visit to the Sun — are also set to take place. Several AGU media events will feature NASA scientists. News Briefings, Events with NASA Participation (All Times EST) Monday, Dec. 9 2:30 p.m. Media Availability Securing a Sustainable Energy Future: GEMx Mineral Map of the US 3:30 p.m. Media Workshop Explore the Latest Freshwater Data from NASA and USGS Tuesday, Dec. 10 9:00 a.m. News Briefing Science from the Shadow: NASA’s Initial Findings From the 2024 Solar Eclipse 1:30 p.m. Media Roundtable Parker Solar Probe Preps for Record-Breaking Closest Approach to the Sun 3:30 p.m. Media Workshop How to Use NASA Data to Map Urban Heat and Drought Wednesday, Dec. 11 9:00 a.m. News Briefing The First Aircraft Crash Investigation on Another World – Results, and Legacy of the Ingenuity Mars Helicopter and the Future of Exo-Atmospheric Aviation 10:00 a.m. Media Availability NASA and IBM Team Up to Advance AI, Making Science More Accessible Thursday, Dec. 12 9:00 a.m. News Briefing The Heart of Io’s Rage – What Makes the Most Volatile World in the Solar System Tick? 10:00 a.m. Media Availability The US Greenhouse Gas Center: Supporting cooperation in public and private GHG information 11:00 a.m. News Briefing The View from the Top: Perseverance’s First Results from the Summit of Jezero Crater 4:30 p.m. Media Availability Understanding Arctic Sea Ice Melt, Clouds, and a Changing Climate with NASA’s ARCSIX Mission Media can register on AGU’s website to participate in live briefings online. All briefings will be posted afterward on AGU’s YouTube channel. For those attending the meeting, 50 hyperwall talks at the NASA Exhibit will highlight the current state of NASA Earth, planetary, and heliophysics science. Media Contacts Karen Fox / Liz Vlock Headquarters, Washington 202-358-1600 karen.fox@nasa.gov / elizabeth.a.vlock@nasa.gov View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) When it comes to NASA’s ASTRO CAMP®, the numbers – and impact – of the initiative to help students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics) just continue to grow and grow and grow. As in recent years, the NASA ASTRO CAMP® Community Partners (ACCP) program surpassed previous milestone marks in fiscal year 2024 by partnering with 373 community sites, including 50 outside the United States, to inspire youth, families, and educators. Participants included students from various population segments, focusing on students from underrepresented groups, accessibility for differently-abled students, and reaching under-resourced urban and rural settings. “This year has been extremely impactful for the students at ACCP collaborating partner sites,” said Kelly Martin-Rivers, principal investigator for NASA’s ACCP. “A particular highlight was being a part of NASA’s focus on the solar eclipses of 2024, supporting over 42,000 students at 52 NASA ACCP events. Supporting more and more exciting research and activities by the Science Activation grantees and Globe citizen scientists also continues to bring hands-on experiences directly to students across the country and around the world.” NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® NASA’s ASTRO CAMP® continued its success in fiscal year 2024 as students across the nation and world learn about NASA and STEM (science, technology, engineering, and mathematics. The NASA ASTRO CAMP® Community Partners program partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine.NASA ASTRO CAMP® In the most recent year, the NASA ACCP partnered with 323 sites in 29 states and the District of Columbia. It also reached beyond the borders to partner with 50 sites in six countries, including Mexico, India, Turkey, Canada, Spain, and Ukraine. Overall, almost 150,000 students took part in the program, a 30% increase from fiscal year 2023. In addition, almost 107,000 students took part in special STEM activities, an increase of 43.6% from the previous year’s total of more than 74,000. ACCP trained 1,454 facilitators during Educator Professional Development sessions as well, representing an increase of 25.3% from the prior year. Taken together, the total NASA ACCP impact exceeded a quarter of a million (257,765) people. As part of the NASA Science Mission Directorate Science Activation program, ACCP continues to make strides in bridging disparities and breaking barriers in STEM. Demographically, the initiative reached a range of ethnic and multiethnic groups. One-third of participants were African American, with another 13% identified as Hispanic. Participants were almost equally divided between male (52%) and female (48%). In terms of age, 38% of participants were elementary school students. Another 30% were middle school aged, with the remaining 38% high school students. In a final breakdown, more than 42,000 of the participants were impacted during 52 NASA ACCP solar eclipse events in the spring of 2024. ACCP activities offer real-world opportunities for students to enhance scientific understanding and contribute to NASA science missions, while also inspiring lifelong learning. The ACCP theme was “NASA Science … Fire to Water to Ice and Beyond!” The program featured materials and activities related to NASA science missions, astrophysics, heliophysics, Earth science, and planetary science. The unique methodology teaches students to work collaboratively to complete missions and provides trained community educators to implement the themed NASA modules, developed by the ACCP team, seated at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. ASTRO CAMP began at NASA Stennis as a single one-week camp in the 1990s. Since then, it has developed into several adaptable models for schools, museums, universities, libraries, and youth service organizations, enabling a worldwide expansion. For more information about becoming a NASA ASTRO CAMP Collaborative Community Partner, contact: Kelly Martin-Rivers at kelly.e.martin-rivers@nasa.gov or 228-688-1500; or Maria Lott at maria.l.lott@nasa.gov or 228-688-1776. For more on the ASTRO CAMP Collaborative Community Partner Program, visit: https://www.nasa.gov/stennis/stem-engagement-at-stennis/nasa-accp/. Share Details Last Updated Dec 06, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 4 min read Lagniappe for December 2024 Article 2 days ago 5 min read NASA Stennis – An Ideal Place for Commercial Companies Article 3 weeks ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions Article 3 weeks ago View the full article
-
Hubble Space Telescope Home Hubble Spots a Spiral in the… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 2 min read Hubble Spots a Spiral in the Celestial River This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 1637. ESA/Hubble & NASA, D. Thilker The subject of this NASA/ESA Hubble Space Telescope image is NGC 1637, a spiral galaxy located 38 million light-years from Earth in the constellation Eridanus, the River. This image comes from an observing program dedicated to studying star formation in nearby galaxies. Stars form in cold, dusty gas clouds that collapse under their own gravity. As young stars grow, they heat their nurseries through starlight, winds, and powerful outflows. Together, these factors play a role in controlling the rate at which future generations of stars form. NGC 1637 holds evidence of star formation scattered throughout its disk, if you know where to look. The galaxy’s spiral arms have pockets of pink clouds, many with bright blue stars. The pinkish color comes from hydrogen atoms excited by ultraviolet light from young, massive stars forming within the clouds. This contrasts with the warm yellow glow of the galaxy’s center, which is home to a densely packed collection of older, redder stars. The stars that set their cloudy birthplaces aglow are comparatively short-lived, and many of these stars will explode as supernovae just a few million years after they’re born. In 1999, NGC 1637 played host to a supernova named SN 1999EM, lauded as the brightest supernova seen that year. When a massive star expires as a supernova, the explosion outshines its entire home galaxy for a short time. While a supernova marks the end of a star’s life, it can also jump start the formation of new stars by compressing nearby clouds of gas, beginning the stellar lifecycle anew. Explore More Hubble’s Galaxies Exploring the Birth of Stars Homing in on Cosmic Explosions Hubble’s Nebulae Hubble Focus E-Book: Galaxies through Space and Time Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli (claire.andreoli@nasa.gov) NASA’s Goddard Space Flight Center, Greenbelt, MD Share Details Last Updated Dec 05, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars Supernovae View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A close-up of NASA’s shock-sensing probe highlights its pressure ports, designed to measure air pressure changes during supersonic flight. The probe will be mounted on NASA’s F-15B Aeronautics Research Test Bed for calibration flights, validating its ability to measure shock waves generated by the X 59 as part of NASA’s Quesst mission to provide data on quiet supersonic flight.NASA/Lauren Hughes NASA’s F-15B Aeronautics Research Test Bed performs a calibration flight of the shock-sensing probe over Edwards, California, on Aug. 6, 2024. The probe will measure shock waves from NASA’s X-59, providing data that may change limits for overland supersonic flight from being speed-based to sound-based. This work is part of NASA’s Quesst mission, with the X-59 as its flagship aircraft.NASA/Steve Freeman NASA’s F-15B Aeronautics Research Test Bed performs a calibration flight of the shock-sensing probe over Edwards, California, on Aug. 6, 2024. The probe will measure shock waves from NASA’s X-59, providing data that may change limits for overland supersonic flight from being speed-based to sound-based. This work is part of NASA’s Quesst mission, with the X-59 as its flagship aircraft.NASA/Steve Freeman NASA’s F-15B Aeronautics Research Test Bed performs a calibration flight of the shock-sensing probe over Edwards, California, on Aug. 6, 2024. The probe will measure shock waves from NASA’s X-59, providing data that may change limits for overland supersonic flight from being speed-based to sound-based. This work is part of NASA’s Quesst mission, with the X-59 as its flagship aircraft.NASA/Steve Freeman NASA’s F-15B Aeronautics Research Test Bed performs a calibration flight of the shock-sensing probe over Edwards, California, on Aug. 6, 2024. The probe will measure shock waves from NASA’s X-59, providing data that may change limits for overland supersonic flight from being speed-based to sound-based. This work is part of NASA’s Quesst mission, with the X-59 as its flagship aircraft.NASA/Steve Freeman NASA will soon test advancements made on a key tool for measuring the unique “sonic thumps” that its quiet supersonic X-59 research aircraft will make while flying. A shock-sensing probe is a cone-shaped air data probe developed with specific features to capture the unique shock waves the X-59 will produce. Researchers at NASA’s Armstrong Flight Research Center in Edwards, California developed two versions of the probe to collect precise pressure data during supersonic flight. One probe is optimized for near-field measurements, capturing shock waves that occur very close to where the X-59 will generate them. The second shock-sensing probe will measure the mid-field, collecting data at altitudes between 5,000 to 20,000 feet below the aircraft. When an aircraft flies supersonic, it generates shockwaves that travel through the surrounding air, producing loud sonic booms. The X-59 is designed to divert those shock waves, reducing the loud sonic booms to quieter sonic thumps. During test flights, an F-15B aircraft with a shock-sensing probe attached to its nose will fly with the X-59. The roughly 6-foot probe will continuously collect thousands of pressure samples per second, capturing air pressure changes as it flies through shock waves. Data from the sensors will be vital for validating computer models that predict the strength of the shock waves produced by the X-59, the centerpiece of NASA’s Quesst mission. “A shock-sensing probe acts as the truth source, comparing the predicted data with the real-world measurements,” said Mike Frederick, NASA principal investigator for the probe. For the near-field probe, the F-15B will fly close behind the X-59 at its cruising altitude of approximately 55,000 feet, utilizing a “follow-the-leader” setup allowing researchers to analyze shock waves in real time. The mid-field probe, intended for separate missions, will collect more useful data as the shock waves travel closer to the ground. The probes’ ability to capture small pressure changes is especially important for the X-59, as its shock waves are expected to be much weaker than those of most supersonic aircraft. By comparing the probes’ data to predictions from advanced computer models, researchers can better evaluate their accuracy. “The probes have five pressure ports, one at the tip and four around the cone,” said Frederick. “These ports measure static pressure changes as the aircraft flies through shock waves, helping us understand the shock characteristics of a particular aircraft.” The ports combine their measurements to calculate the local pressure, speed, and direction of airflow. Researchers will soon evaluate upgrades to the near-field shock-sensing probe through test flights, where the probe, mounted on one F-15B, will collect data by chasing a second F-15 during supersonic flight. The upgrades include having the probe’s pressure transducers – devices that measure the air pressure on the cone – just 5 inches from its ports. Previous designs placed those transducers nearly 12 feet away, delaying recording time and distorting measurements. Temperature sensitivity on previous designs also presented a challenge, causing fluctuations in accuracy with changing conditions. To solve this, the team designed a heating system to maintain the pressure transducers at a consistent temperature during flight. “The probe will meet the resolution and accuracy requirements from the Quesst mission,” Frederick said. “This project shows how NASA can take existing technology and adapt it to solve new challenges.” Share Details Last Updated Dec 05, 2024 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related TermsAdvanced Air Vehicles ProgramAeronauticsAmes Research CenterArmstrong Flight Research CenterCommercial Supersonic TechnologyGlenn Research CenterIntegrated Aviation Systems ProgramLangley Research CenterQuesst (X-59) Explore More 3 min read NASA Flips Efficient Wing Concept for Testing Article 24 hours ago 4 min read NASA’s C-20A Studies Extreme Weather Events Article 1 day ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students Article 3 days ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Aeronautics Supersonic Flight Armstrong Capabilities & Facilities View the full article
-
Electra’s EL2 Goldfinch experimental prototype aircraft reference, photographed outside of NASA s Langley Research Center in Hampton, Virginia.Credit: Electra NASA Administrator Bill Nelson will fly in aircraft manufacturer Electra’s EL2 Goldfinch experimental prototype aircraft on Sunday, Dec. 8. Members of the media are invited to speak with Nelson and Electra leaders just prior to the flight at 11:45 a.m. EST at Manassas Regional Airport in Manassas, Virginia. Electra designed the experimental aircraft with the goals of reducing emissions and noise and connecting new locations for regional air travel, including underserved communities. Media will be able to view and film the flight, which is set to feature ultra-short takeoffs and landings with as few as 150 feet of ground roll. The flight also is set to include a battery-only landing. Media interested in participating must RSVP to Rob Margetta at robert.j.margetta@nasa.gov. NASA’s aeronautics research works to develop new generations of sustainable aviation technologies that will create new options for both U.S. passengers and cargo. Agency-supported research aims to provide industry providers like Electra, and others, data that can help inform the designs of innovative, greener aircraft with reduced operating costs. NASA investments have included projects that explore electrified aircraft technologies, and work that helped refine the electric short-takeoff and landing concept. The agency’s work with private sector aviation providers helps NASA in its effort to bring sustainable solutions to the American public. In November, NASA selected Electra as one of five recipients of its Advanced Aircraft Concepts for Environmental Sustainability 2050 awards, through which they will develop design studies and explore key technologies to push the boundaries of possibility for next-generation sustainable commercial aircraft. These new studies will help the agency identify and select promising aircraft concepts and technologies for further investigations. https://www.nasa.gov/aeronautics -end- Meira Bernstein / Rob Margetta Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / robert.j.margetta@nasa.gov Share Details Last Updated Dec 05, 2024 LocationNASA Headquarters Related TermsAeronauticsAeronautics ResearchAeronautics Research Mission DirectorateGreen Aviation Tech View the full article
-
A new American human-rated spacecraft made its first foray into space on Dec. 5, 2014. Under contract to NASA, Lockheed Martin builds Orion as the vehicle to take American astronauts back to the Moon and eventually beyond. Orion’s overall shape harkens back to the Apollo Command and Service Modules, but using today’s technology is a larger and far more capable vehicle for NASA’s Artemis Program. Orion’s first mission, called Engineering Flight Test-1 (EFT-1), used a Delta-IV Heavy booster, at the time the most powerful operational rocket. The 4.5-hour mission demonstrated Orion’s space-worthiness, tested the spacecraft’s heat shield during reentry into the Earth’s atmosphere, and proved the capsule’s recovery systems. Although the EFT-1 mission didn’t include a crew, the Orion capsule flew higher and faster than any human-rated spacecraft in more than 40 years. The United Launch Alliance Delta IV Heavy rocket with NASA’s Orion spacecraft mounted atop, lifts off from Cape Canaveral Air Force Station’s Space Launch Complex 37B in Florida.NASA/Bill Ingalls At 7:05 a.m. EST on Dec. 5, 2014, the three-core first stage of the Delta-IV Heavy rocket ignited, lifting the Orion spacecraft off from Launch Complex 37B at Cape Canaveral Air Force, now Space Force, Station (CCAFS) in Florida to begin the EFT-1 mission. Three minutes and fifty-eight seconds after liftoff, the two side boosters separated as the center core continued firing for another 93 seconds. The second stage ignited thirteen seconds after separation to begin the first of three planned burns. During the first burn, the Service Module’s protective fairing separated, followed by the Launch Abort System. Lasting about 11 and a half minutes, this first burn of the second stage placed the spacecraft into a preliminary 115-by-552-mile parking orbit. While completing one revolution around the Earth, controllers in Mission Control at NASA’s Johnson Space Center in Houston, led by Flight Director Michael L. Sarafin, verified the functioning of the spacecraft’s systems. The second stage ignited a second time, firing for 4 minutes and 42 seconds to raise Orion’s apogee or high point above the Earth to 3,600 miles. During the coast to apogee, Orion remained attached to the second stage and completed its first crossing through the inner Van Allen radiation belt. Mission Control at NASA’s Johnson Space Center in Houston, Texas during the EFT-1 mission.NASA/Mark Sowa Three hours and five minutes after launch, Orion reached its apogee and began its descent back toward Earth, separating from the second stage about 18 minutes later. The second stage conducted a one-minute disposal burn to ensure it didn’t interfere with the spacecraft’s trajectory. During the passage back through the Van Allen belt, Orion fired its thrusters for 10 seconds to adjust its course for reentry. At an altitude of 400,000 feet, the spacecraft encountered the first tendrils of the Earth’s atmosphere at a point called Entry Interface, traveling at 20,000 miles per hour (mph). A buildup of ionized gases caused by the reentry heating resulted in a communications blackout with Orion for about two and a half minutes. The spacecraft experienced maximum heating of about 4,000 degrees Fahrenheit, proving the worthiness of the heat shield. After release of Orion’s forward bay cover, two drogue parachutes deployed to slow and stabilize the spacecraft. Next followed deployment of the three main parachutes that slowed the spacecraft to 20 mph. Splashdown occurred 4 hours and 24 minutes after launch about 600 miles southwest of San Diego, California. A video of the Orion EFT-1 mission can be viewed here. Crew module splashing down during EFT-1 in the Pacific ocean.NASA Standing by to recover the Orion capsule, U.S. Navy Divers assigned to Explosive Ordnance Disposal Mobile Unit 11 and Fleet Combat Camera Pacific and crew members from amphibious transport dock U.S.S. Anchorage (LPD-23) stepped into action, first placing a flotation collar around the spacecraft. After securing a tow line to the capsule, the sailors towed it aboard the amphibious well deck of Anchorage, which set sail for Naval Base San Diego arriving there on Dec 8. Engineers from NASA and Lockheed Martin conducted a preliminary inspection of the spacecraft during the cruise to San Diego and found that it survived its trip into space in excellent condition. U.S. Navy divers approach the Orion capsule during recovery operations. U.S. Navy The Orion EFT-1 mission met all its objectives and received many accolades. “Today was a great day for America,” said Flight Director Sarafin from his console at Mission Control. “It is hard to have a better day than today,” said Mark S. Geyer, Orion program manager. “We’re already working on the next capsule,” said W. Michael “Mike” Hawes, Lockheed Martin’s Orion program manager, adding, “We’ll learn a tremendous amount from what we did today.” NASA Associate Administrator for Human Exploration and Operations William H. Gerstenmaier praised all personnel involved with the EFT-1 mission, “What a tremendous team effort.” NASA Administrator Charles F. Bolden summarized his thoughts about the mission, “Today’s flight test of Orion is a huge step for NASA and a really critical part of our work to pioneer deep space.” Former NASA Administrator Charles F. Bolden inspects Orion EFT-1 capsule at NASA’s Kennedy Space Center in Florida.NASA After its arrival at Naval Base San Diego, workers placed the Orion capsule aboard a truck that delivered it to NASA’s Kennedy Space Center (KSC) in Florida on Dec. 18. After engineers conducted a thorough inspection of the spacecraft at KSC, workers trucked it to the Lockheed Martin facility in Littleton, Colorado, where it arrived on Sept. 1, 2015. Engineers completed final inspections and decontamination of the vehicle. The KSC Visitor Complex has the capsule on display. The Orion capsule during the Artemis I mission, with the Moon and Earth in the background. NASA The next time an Orion spacecraft flew in space during the Artemis I mission, the Space Launch System (SLS) carried it into orbit after launch from KSC’s Launch Complex 39B. The thunderous night launch took place on Nov. 16, 2022. The first in a series of increasingly complex missions, Artemis I provided a foundation for human deep space exploration and demonstrated our commitment and capability to extend human existence to the Moon and beyond. The uncrewed Orion spacecraft spent 25.5 days in space, including 6 days in a retrograde orbit around the Moon, concluding with a splashdown in the Pacific Ocean on Dec. 11, exactly 50 years after the Apollo 17 Moon landing. The Artemis II crew poses in front of the Orion capsule at NASA’s Kennedy Space Center in Florida.NASA/Kim Shiflett On April 3, 2023, NASA named the four-person crew for the Artemis II mission, the first flight to take humans beyond low Earth orbit since Apollo 17 in December 1972. The crew includes NASA astronauts G. Reid Wiseman as commander, Victor J. Glover as pilot, and Christina H. Koch as a mission specialist as well as Canadian Space Agency astronaut Jeremy R. Hansen as the other mission specialist. The four will take an Orion spacecraft on a 10-day journey around the Moon to human rate the spacecraft and SLS. Interested in learning more about the Artemis Program? Go to https://www.nasa.gov/humans-in-space/artemis/ View the full article
-
iss071e650763 (Sept. 14, 2024) — The long exposure photograph taken by NASA astronaut Matthew Dominick shows star trails, streaks of city lights, and two Roscosmos crew ships, the Soyuz MS-26 docked to the Rassvet module (foreground) and the Soyuz MS-25 (background) docked to the Prichal docking module, as the International Space Station orbited 265 miles above central China.NASA Space Station trajectory data is now available to the public! This data, called an ephemeris, is generated by the ISS Trajectory Operations and Planning Officer (TOPO) flight controllers in the Mission Control Center at NASA’s Johnson Space Center. TOPO keeps track of where the ISS is, where it is going to be, and most importantly makes sure it isn’t at risk of colliding with other objects in space. At ISS’s altitude, a very thin atmosphere is still present. This thin atmosphere creates drag and over time can cause TOPO’s predicted ISS trajectory to accumulate error. Because of this, TOPO updates the predicted trajectory approximately three times a week, so the ISS Flight Control Team has the best trajectory estimate possible. An accurate trajectory is essential for maintaining communications links, planning visiting vehicle rendezvous, and ensuring ISS’s path is clear of any potential collisions. The links above and below are to the most current posted ephemeris. The ephemeris is in the CCSDS Orbital Ephemeris Message (OEM) standard and is available in .txt and .xml file formats. Each file contains header lines with the ISS mass in kg, drag area in m2, and drag coefficient used in generating the ephemeris. The header also contains lines with details for the first and last ascending nodes within the ephemeris span. Following this is a listing of upcoming ISS translation maneuvers, called “reboosts,” and visiting vehicle launches, arrivals, and departures. After the header, ISS state vectors in the Mean of J2000 (J2K) reference frame are listed at four-minute intervals spanning a total length of 15 days. During reboosts (translation maneuvers), the state vectors are reported in two-second intervals. Each state vector lists the time in UTC; position X, Y, and Z in km; and velocity X, Y, and Z in km/s. Orbit Ephemeris Message (OEM) https://nasa-public-data.s3.amazonaws.com/iss-coords/current/ISS_OEM/ISS.OEM_J2K_EPH.txt https://nasa-public-data.s3.amazonaws.com/iss-coords/current/ISS_OEM/ISS.OEM_J2K_EPH.xml Users of this data should monitor this page for information regarding any future changes to the file format. Past data postings can be found archived on data.nasa.gov by searching “ISS COORDS.” NOTE: NASA is providing this information for use by the general public. The OEM data format is supported natively by many commercial spaceflight software applications. Please consult your application’s support documentation for specific details on how to deploy this data. View the full article
-
What does all this sighting information mean? SpotTheStation! Time: Wed Apr 25 7:45 PM, Visible: 4 min, Max Height: 66 degrees, Appears: WSW, Disappears NE.” Spot The station Download the App The International Space Station is seen in this 30 second exposure as it flies over Elkton, VA early in the morning, Saturday, August 1, 2015. NASA/Bill Ingalls Time is when the sighting opportunity will begin in your local time zone. All sightings will occur within a few hours before or after sunrise or sunset. This is the optimum viewing period as the sun reflects off the space station and contrasts against the darker sky. Visible is the maximum time period the space station is visible before crossing back below the horizon. Max Height is measured in degrees (also known as elevation). It represents the height of the space station from the horizon in the night sky. The horizon is at zero degrees, and directly overhead is ninety degrees. If you hold your fist at arm’s length and place your fist resting on the horizon, the top will be about 10 degrees. Appears is the location in the sky where the station will be visible first. This value, like maximum height, also is measured in degrees from the horizon. The letters represent compass directions — N is north, WNW is west by northwest, and so on. Disappears represents where in the night sky the International Space Station will leave your field of view. The International Space Station orbits with an inclination of 51.6 degrees. This means that, as it orbits, the farthest north and south of the Equator it will ever go is 51.6 degrees latitude. If you live north or south of 51.6 degrees, the ISS will never go directly over your head- this includes places like Alaska. Spot The Station may not properly inform you of all visible space station passes in these locations. Spot The Station’s sighting opportunities pages will give you a list of all possible space station sightings for your location.NASA Important: The International Space Station orbits with an inclination of 51.6 degrees. This means that, as it orbits, the farthest north and south of the Equator it will ever go is 51.6 degrees latitude. If you live north or south of 51.6 degrees, the ISS will never go directly over your head- this includes places like Alaska. Spot The Station may not properly inform you of all visible space station passes in these locations. Spot The Station’s sighting opportunities pages will give you a list of all possible space station sightings for your location. The space station looks like an airplane or a very bright star moving across the sky, except it doesn’t have flashing lights or change direction. It will also be moving considerably faster than a typical airplane (airplanes generally fly at about 600 miles (965 km) per hour; the space station flies at 17,500 miles (28,000 km) per hour). View the full article
-
An astronaut aboard the International Space Station adjusted the camera for night imaging and captured the green veils and curtains of an aurora that spanned thousands of kilometers over Quebec, Canada.NASA Why is the space station up there? The space station is Earth’s only microgravity laboratory. This football field-sized platform hosts a plethora of science and technology experiments that are continuously being conducted by crew members, or are automated. Research aboard the orbiting laboratory holds benefits for life back on Earth, as well as for future space exploration. The space station serves as a testbed for technologies and allows us to study the impacts of long-term spaceflight to humans, supporting NASA’s mission to push human presence farther into space. Learn more about the research happening on the space station, and opportunities to conduct your science there. The sighting opportunity schedule indicates that the space station passed over my house last night; I’m signed up for alerts but didn’t get one, why not? You will only receive an alert if the space station will reach a max height of at least 40° on flyover. Flyovers reaching at least 40° provide the best chance for a sighting opportunity because they are visible above most landscapes and buildings. Check the “Max Height” column of your sighting opportunity schedule for the flyovers that are 40° or more. The flyover schedule indicates the space station is both appearing and disappearing from the same direction, how is that possible? E.g. – Time: Mon Jul 15 11:57 PM, Visible: 2 min, Max Height: 51°, Appears: 51° above ENE, Disappears: 11° above ENE The Spot the Station software rounds off directions to the nearest cardinal and intracardinal directions. This can result in it seeming as though the ISS will be appearing and disappearing in the same direction even though it is traveling across the sky. This typically happens on flyovers with a short window of visibility because the ISS is quickly moving into (or out of) the Earth’s dark shadow where, from our location on the ground, we can’t observe its full pass across the sky. How often can I expect to see the space station? The space station is visible because it reflects the light of the Sun – the same reason we can see the Moon. However, unlike the Moon, the space station isn’t bright enough to see during the day. It can only be seen when it is dawn or dusk at your location. As such, it can range from one sighting opportunity a month to several a week, since it has to be both dark where you are, and the space station has to happen to be going overhead. Why aren’t there any sighting opportunities for my location? It needs to be dark where you are and the space station needs to be overhead in order for you to see it. Since the space station’s orbit takes it all around the globe, it can be passing over you at times when it will not be visible- either in the middle of the day or the middle of the night. The space station must be 40 degrees or more above the horizon for it to be visible. Spot The Station will only send out notifications when you will have an opportunity to see the space station, not every time it will be overhead. Do I need a telescope to see the space station? No, you can see the space station with your bare eyes, no equipment required. Can you explain how to identify the space station in the sky? Did I see the space station last night? The space station looks like an airplane or a very bright star moving across the sky, except it doesn’t have flashing lights or change direction. It will also be moving considerably faster than a typical airplane (airplanes generally fly at about 600 miles (965 km) per hour; the space station flies at 17,500 miles (28,000 km) per hour). Can you explain how to read the alert messages? What does all this sighting information mean? Time is when the sighting opportunity will begin in your local time zone. All sightings will occur within a few hours before or after sunrise or sunset. This is the optimum viewing period as the sun reflects off the space station and contrasts against the darker sky. Visible is the maximum time period the space station is visible before crossing back below the horizon. Max Height is measured in degrees (also known as elevation). It represents the height of the space station from the horizon in the night sky. The horizon is at zero degrees, and directly overhead is ninety degrees. If you hold your fist at arm’s length and place your fist resting on the horizon, the top will be about 10 degrees. Appears is the location in the sky where the station will be visible first. This value, like maximum height, also is measured in degrees from the horizon. The letters represent compass directions — N is north, WNW is west by northwest, and so on. Disappears represents where in the night sky the International Space Station will leave your field of view. The International Space Station orbits with an inclination of 51.6 degrees. This means that, as it orbits, the farthest north and south of the Equator it will ever go is 51.6 degrees latitude. If you live north or south of 51.6 degrees, the ISS will never go directly over your head- this includes places like Alaska. Spot The Station may not properly inform you of all visible space station passes in these locations. Spot The Station’s sighting opportunities pages will give you a list of all possible space station sightings for your location.NASA How fast is the space station travelling? The ISS circles the Earth every 90 minutes. It travels at about 17,500 miles (28,000 km) per hour, which gives the crew 16 sunrises and sunsets every day. In the more than 15 years that people have been living onboard, the Station has circumnavigated the Earth tens of thousands of times. You can see more facts about the ISS on the Space Station: Facts and Figures webpage . Does the station appear and then disappear because of the light of the Moon? The space station is visible because it is reflecting light from the Sun. This is the same reason that the Moon appears to shine. Even when the Moon hasn’t risen, you’ll still be able to see the space station. I haven’t received any emails or text messages. If you signed up, entered your registration code and received an on-screen confirmation message then you’re signed up! Chances are the International Space Station just hasn’t passed over your location at dawn or dusk yet. Read the FAQ “Why aren’t there any sighting opportunities for my location” for more information. If you signed up with your email address, check your spam folder to see if alert messages are going there. Add SpotTheStation@hq.nasa.gov to your list of allowed senders to prevent alerts from going to spam or junk email. I haven’t received the code for sign up / renewal / unsubscribe? If you signed up by email make sure the email containing the code didn’t end up in your spam folder. This email will appear to come from noreply@nasa.gov. Add the SpotTheStation@hq.nasa.gov email address to your list of allowed senders. If it has been more than one hour and you haven’t received the requested code please try the process again and if you’re still have problems, email us at SpotTheStation@hq.nasa.gov for assistance. What if my city isn’t listed? If your specific city or town isn’t listed, register using the next closest one. The space station is visible for an approximate 50 mile (80 km) radius around each of the listed locations. When are alerts sent out? Alerts are generally sent about 24 hours before the International Space Station pass. This means you’ll receive the message the night before for a morning pass and the morning of for an evening pass. If you are not receiving the alerts on time, see related FAQs for an explanation. Why am I receiving the alerts hours or even days after sightings? Spot The Station alerts are sent out 24 hours before an upcoming space station pass. Unfortunately, some email providers queue messages in an unpredictable way. Adding SpotTheStation@hq.nasa.gov to list of allowed senders or contacts list might help. You can also obtain a two-week schedule of space station passes from the website. Please see the next FAQ for details. How can I receive a two-week schedule of upcoming sightings? Visit the Sighting Opportunities page and enter your location to find out when the space station will be passing over you during the next two weeks. You can bookmark this page or print the schedule for easy access. Can I register more than one location to the same email address or phone number? Unfortunately, no. Only one location can be registered per email address or mobile phone number. However, if you have multiple email addresses and/or both an email address and a mobile phone, you can register each of them to receive alerts for different locations. I am getting errors when I try to register, renew or cancel my alerts. “The email address / mobile number you entered is not valid” – Make sure you have entered a properly formatted email or SMS address. Mobile phone numbers do not require any formatting, you can simply enter as a string of digits; special characters like parenthesis and dashes are not required. “The email address / mobile number you provided cannot be found” – You are attempting to renew or cancel alerts for an email address or mobile number that does not appear to be registered. “It looks like you have already attempted this process but not yet completed it. Please check your email or text messages for an 8-digit code and instructions to complete the process or wait 24-hours and try again.” – You will receive this error message if you try to initiate the same request more than three times without entering your 8-digit code to complete the process. Please complete your request now or wait 24-hours and try again. “The code you entered is not valid. Please try again.” – If you have received this message, verify the correct 8-digit code is entered and that the code is less than 24-hours old. Codes expire after 24-hours at which point a new code will be required. “You must cancel your current alert before creating a new one or create a new alert using a different email address or mobile number.” – You can only sign up for one alert per email address or mobile number. If you want to change the alert you are receiving you have to cancel the existing alert and sign up for a new one. If you wish to have alerts sent to you for more than one location you can sign up using different email addresses or mobile numbers. “You have already completed your sign up / renewal / cancellation” – You will receive this error message if you attempt to enter your 8-digit code more than once. No further action is required. “You have exceeded the number of incomplete requests allowed from your IP address. Please wait 24-hours and try again.” – To prevent spam, Spot The Station limits the number of incomplete requests allowed from each IP address. Please complete your request now or wait 24-hours and try your request again If you are receiving other error messages or continue to have trouble, please let us know. What time zone is used for alert notifications? All of the Spot The Station information is listed in the local time zone for the selected location. Spot The Station automatically adjusts for Daylight Saving Time. What email address should I add to my “Allow/Safe Senders List” so I can make sure my alerts don’t end up in the spam folder? The correct address is SpotTheStation@hq.nasa.gov How do I change my email address or phone number? In order to update your email address or phone number, you need to register using a different email address or mobile phone number. If you choose, you can cancel your original alert. I moved, how can I change my location? In order to change your location you need to cancel your existing alert and register again using the new location information. What is my SMS Address? Your SMS Address is an email address used to send text messages to mobile phones. The format is your 10-digit mobile number followed by the email address of your mobile carrier. For example, an AT&T SMS address would be 12345678910@text.att.net. Check with your individual carrier for their format. Will I get charged for the mobile phone text alerts? Check with your mobile carrier and the service plan you have to find out if you are charged for text messages. NASA’s Spot The Station is not responsible for any charges associated with the alerts. How will I know when it’s necessary for me to renew my alert registration? Your registration is good for one year. Spot The Station will email you when it is time to renew your registration so you can continue to receive alerts. This is a one-step process; all you need to do is follow the link in the renewal message. How do I unsubscribe from alerts? You can stop receiving email or mobile phone alerts by canceling them here. You will be sent an email or text message, simply follow the link provided in that message to complete your request. View the full article
-
1 Min Read 2024 NESC Technical Update Annual Report of NESC Technical Activities On behalf of the NASA Engineering and Safety Center (NESC), I am pleased to provide you with the 2024 NESC Technical Update. This annual report summarizes the technical work, engineering advancements, and knowledge capture efforts we made in FY24. With support provided by members of our NASA community from across the centers, we focused our efforts on performing value-added independent testing, analysis, and assessments of NASA’s high-risk projects to ensure safety and mission success. This report contains summaries of technical assessments requested by our stakeholders and the technical bulletins and innovative techniques that resulted from that assessment work. Several of the NASA Technical Fellows provide summaries of accomplishments in their respective disciplines, and expertise drawn from across the Agency is featured on the Center Pages. We appreciate the opportunity to share our progress and highlight the accomplishments of our technically and culturally diverse, multidisciplinary, multigenerational teams. All NESC knowledge products are available at nasa.gov/nesc. As always, we value your feedback and engagement. Thank you for your continuing support of the NESC. Timmy R. Wilson Director, NASA Engineering and Safety Center View the full article
-
Read this release in English here. Mediante la campaña Artemis, la NASA llevará a los siguientes astronautas estadounidenses y al primer astronauta internacional a la región del Polo Sur de la Luna. El jueves, la NASA anunció las últimas actualizaciones de sus planes de exploración lunar. Un grupo de expertos examinó los resultados de la investigación de la NASA sobre el escudo térmico de la nave Orion, tras haber sufrido una inesperada pérdida de material carbonizado en su reentrada en la atmósfera durante el vuelo de prueba sin tripulación Artemis I. Para el vuelo de prueba tripulado Artemis II, los ingenieros seguirán preparando a Orion con el escudo térmico ya montado en la cápsula. La agencia también anunció que ahora apunta a abril de 2026 para el lanzamiento de Artemis II y a mediados de 2027 para Artemis III. Los plazos actualizados de las misiones también contemplan el tiempo necesario para abordar los sistemas de control medioambiental y de soporte vital de Orion. “La campaña Artemis es la iniciativa internacional más audaz, técnicamente desafiante y colaborativa que la humanidad se haya propuesto jamás”, dijo el administrador de la NASA, Bill Nelson. “Hemos logrado avances significativos en la campaña Artemis durante los últimos cuatro años, y estoy orgulloso del trabajo que nuestros equipos técnicos han hecho para prepararnos para este próximo paso adelante en la exploración, ya que buscamos aprender más sobre los sistemas de soporte vital de Orion para sustentar las operaciones de la tripulación durante Artemis II. Tenemos que hacer bien este próximo vuelo de prueba. Así es como la campaña Artemis triunfará”. La decisión de la agencia se produce después de que una investigación exhaustiva de un problema con el escudo térmico de Artemis I demostrara que el escudo térmico de Artemis II es capaz de mantener a salvo a la tripulación durante la misión planeada con modificaciones en la trayectoria de Orion cuando entre en la atmósfera terrestre y reduzca su velocidad de unos 40.000 kilómetros por hora (casi 25.000 millas por hora) a unos 520 km/h (unas 325 mph) antes de que sus paracaídas se desplieguen para un amerizaje seguro en el océano Pacífico. “Durante todo nuestro proceso para investigar el fenómeno del escudo térmico y determinar un camino a seguir, nos hemos mantenido fieles a los valores fundamentales de la NASA; pusimos primero la seguridad y el análisis basado en datos”, dijo Catherine Koerner, administradora asociada de la Dirección de Misión de Desarrollo de Sistemas de Exploración en la sede de la NASA en Washington. “Las actualizaciones de nuestros planes de misión son un paso positivo para asegurar que podemos cumplir con seguridad nuestros objetivos en la Luna y desarrollar las tecnologías y capacidades necesarias para las misiones tripuladas a Marte.” La NASA seguirá acoplando los componentes de su cohete Sistema de Lanzamiento Espacial o SLS (un proceso que comenzó en noviembre) y lo preparará para su integración con Orion para Artemis II. Durante el otoño boreal, la NASA, junto con un equipo de revisión independiente, estableció la causa técnica de un problema observado tras el vuelo de prueba sin tripulación Artemis I, en el que el material carbonizado del escudo térmico se desgastó de forma distinta a la esperada. Un análisis exhaustivo, que incluyó más de 100 pruebas en distintas instalaciones por todo el país, determinó que el escudo térmico de Artemis I no permitía evacuar suficientemente los gases generados en el interior de un material denominado Avcoat, lo que provocó que parte del material se agrietara y se desprendiera. El Avcoat está diseñado para desgastarse a medida que se calienta y es un material clave en el sistema de protección térmica que resguarda a Orion y a su tripulación de los casi 5.000 grados Fahrenheit de temperatura (2.760 grados Celsius) que se generan cuando Orion atraviesa la atmósfera terrestre al regresar de la Luna. Aunque durante Artemis I no había tripulación a bordo de Orion, los datos muestran que la temperatura en el interior de Orion hubiera sido agradable y segura de haber habido tripulación a bordo. Los equipos de ingeniería ya están ensamblando e integrando la nave Orion para Artemis III basándose en las lecciones aprendidas de Artemis I e implementando mejoras en la forma de fabricar los escudos térmicos para los retornos de las misiones tripuladas de alunizaje con el fin de lograr uniformidad y permeabilidad constante. La reentrada atmosférica doble (“skip entry”) es necesaria para el retorno desde las velocidades previstas para las misiones de alunizaje. “Victor, Christina, Jeremy y yo hemos estado siguiendo todos los aspectos de esta decisión y estamos agradecidos por la disposición de la NASA a sopesar todas las opciones y tomar decisiones en el mejor interés de los vuelos espaciales tripulados. Estamos entusiasmados por volar con la misión Artemis II y seguir allanando el camino para la exploración humana continua de la Luna y Marte”, declaró Reid Wiseman, astronauta de la NASA y comandante de Artemis II. “Hace poco estuvimos en el Centro Espacial Kennedy de la agencia en Florida y pudimos ver los propulsores de nuestro cohete SLS, la etapa central y la nave Orion. Es inspirador ver la escala de este esfuerzo, conocer a las personas que trabajan en esta máquina, y no podemos esperar a hacerla volar a la Luna”. Wiseman, junto con los astronautas de la NASA Victor Glover y Christina Koch y el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen, volarán a bordo del vuelo de prueba Artemis II, de 10 días de duración, alrededor de la Luna y de regreso. El vuelo proporcionará datos valiosos sobre los sistemas de Orion necesarios para sustentar a la tripulación en su viaje al espacio profundo y traerlos sanos y salvos de vuelta a casa, incluyendo la renovación del aire en la cabina, las funciones de vuelo manual y cómo interactúan los humanos con el resto del hardware y software de la nave espacial. Con Artemis, la NASA explorará más de la Luna que nunca, aprenderá a vivir y trabajar más lejos de nuestro hogar y se preparará para la futura exploración humana del planeta rojo. El SLS de la NASA, los sistemas terrestres de exploración y la nave Orion, junto con el sistema de aterrizaje para seres humanos, los trajes espaciales de nueva generación, la estación espacial lunar Gateway y los futuros vehículos exploradores son los cimientos de la NASA para la exploración del espacio profundo. Para más información sobre Artemis (en inglés), visita: https://www.nasa.gov/artemis -fin- Meira Bernstein / Rachel Kraft / María José Viñas Sede, Washington 202-358-1600 meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov / maria-jose.vinasgarcia@nasa.gov View the full article
-
Earth (ESD) Earth Explore Climate Change Science in Action Multimedia Data For Researchers About Us 6 min read NASA Flights Map Critical Minerals from Skies Above Western US Various minerals are revealed in vibrant detail in this sample mineral map of Cuprite, Nevada, following processing of imaging spectrometer data. USGS On a crystal-clear afternoon above a desert ghost town, a NASA aircraft scoured the ground for minerals. The plane, a high-altitude ER-2 research aircraft, had taken off early that morning from NASA’s Armstrong Flight Research Center in Edwards, California. Below pilot Dean Neeley, the landscape looked barren and brown. But to the optical sensors installed on the plane’s belly and wing, it gleamed in hundreds of colors. Neeley’s flight that day was part of GEMx, the Geological Earth Mapping Experiment led by NASA and the U.S. Geological Survey to map critical minerals across more than 190,000 square miles (500,000 square kilometers) of North American soil. Using airborne instruments, scientists are collecting these measurements over parts of California, Nevada, Arizona, and Oregon. That’s an area about the size of Spain. An ER-2 science aircraft banks away during a flight over the southern Sierra Nevada. The high-altitude plane supports a wide variety of research missions, including the GEMx campaign, which is mapping critical minerals in the Western U.S. using advanced airborne imaging developed by NASA. Credit: NASA/Carla Thomas Lithium, aluminum, rare earth elements such as neodymium and cerium — these are a few of the 50 mineral commodities deemed essential to U.S. national security, to the tech industry, and to clean energy. They support a wide range of technologies from smartphones to steelmaking, from wind turbines to electric vehicle batteries. In 2023, the U.S. imported its entire supply of 12 of these minerals and imported at least 50% of its supply of another 29. The GEMx team believes that undiscovered deposits of at least some of these minerals exist domestically, and modern mineral maps will support exploration by the private sector. “We’ve been exploring the earth beneath our feet for hundreds of years, and we’re discovering that we’ve only just begun,” said Kevin Reath, NASA’s associate project manager for GEMx. The View From 65,000 Feet To jumpstart mineral exploration, USGS is leading a nationwide survey from the inside out, using tools like lidar and magnetic-radiometric sensors to probe ancient terrain in new detail. The collaboration with NASA brings another tool to bear: imaging spectrometers. These advanced optical instruments need to stay cold as they fly high. From cryogenic vacuum chambers on planes or spacecraft, they detect hundreds of wavelengths of light — from the visible to shortwave infrared — reflected off planetary surfaces. The technology is now being used to help identify surface minerals across dry, treeless expanses of the Western U.S. Every molecule reflects a unique pattern of light, like a fingerprint. Processed through a spectroscopic lens, a desert expanse can appear like an oil painting popping with different colorful minerals, including pale-green mica, blue kaolinite, and plummy gypsum. “We’re not digging for gold. We’re revealing what’s hidden in plain sight,” said Robert Green, a researcher at NASA’s Jet Propulsion Laboratory in Southern California, who helped pioneer spectroscopic imaging at NASA JPL in the late 1970s. Like many of the scientists involved with GEMx, he has spent years surveying other worlds, including the Moon and Mars. A handful of such instruments exist on Earth, and Green is in charge of two of them. One, called EMIT (Earth Surface Mineral Dust Source Investigation) flies aboard the International Space Station. Surveying Earth’s surface from about 250 miles (410 kilometers) above, EMIT has captured thousands of images at a resolution of 50 by 50 miles (80 by 80 kilometers) in a wide belt around Earth’s mid-section. The other instrument rides beneath the fuselage of the ER-2 aircraft. Called AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), it’s helping guide geologists to critical minerals directly and indirectly, by spotting the types of rocks that often contain them. It’s joined by another instrument developed by NASA, the MODIS/ASTER Airborne Simulator (MASTER), which senses thermal infrared radiance. Both instruments provide finely detailed measurements of minerals that complement what EMIT sees on a broader scale. A crew of life support staff prepare pilot Dean Neeley for an ER-2 flight. A specialized suit – similar to an astronaut’s – allows the pilot to work, breathe, and eat at altitudes almost twice as high as a cruising passenger jet. NASA/Carla Thomas Old Mines, New Finds In and around the multimillion-year-old magmas of the Great Basin of the Western U.S., lithium takes several forms. The silvery metal is found in salty brines, in clay, and locked in more than 100 different types of crystals. It can also be detected in the tailings of abandoned prospects like Hector Mine, near Barstow, California. Abandoned years before a magnitude 7.1 earthquake rocked the region in 1999, the mine is located on a lode of hectorite, a greasy, lithium-bearing clay. Geologists from USGS are taking a second look at legacy mines like Hector as demand for lithium rises, driven primarily by lithium-ion batteries. A typical battery pack in an electric vehicle uses about 17 pounds (eight kilograms) of the energy-dense metal. Australia and Chile lead worldwide production of lithium, which exceeded 180,000 tons in 2023. The third largest producer is China, which also hosts about 50% of global lithium refining capacity. Total U.S. production was around 1,000 tons, sourced entirely from a deposit in northern Nevada. Known reserves in the state are estimated to contain more than a million metric tons of lithium, according to data collected by the Nevada Bureau of Mines and Geology. Mine wastes are also potential sources of lithium, said Bernard Hubbard, a remote sensing geologist at USGS, and many other byproduct commodities that are considered critical today but were discarded by previous generations. “There are old copper and silver mines in the West that were abandoned long before anyone knew what lithium or rare earth element deposits were,” Hubbard said. “What has been a pollution source for communities could now be a resource.” Following a winter pause, high-altitude GEMx flights over the American West will resume in the spring of 2025, after which USGS will process the raw data and release the first mineral maps. Already, the project has collected enough data to start producing a complete hyperspectral map of California — the first of its kind. The value of these observations extends beyond identifying minerals. Scientists expect they’ll provide new insight into invasive plant species, waste from mines that can contaminate surrounding environments, and natural hazards such as earthquakes, landslides, and wildfires. “We are just beginning to scratch the surface in applying these measurements to help the nation’s economy, security, and health,” said Raymond Kokaly, USGS research geophysicist and lead of the GEMx survey. More About GEMx The GEMx research project will last four years and is funded by the USGS Earth Mapping Resources Initiative (EarthMRI), through investments from the Bipartisan Infrastructure Law. The initiative will capitalize on both the technology developed by NASA for spectroscopic imaging as well as the expertise in analyzing the datasets and extracting critical mineral information from them. Data collected by GEMx is available here. By Sally Younger NASA’s Earth Science News Team Share Details Last Updated Dec 05, 2024 Contact Sally Younger Related Terms Earth Explore More 4 min read Expanded AI Model with Global Data Enhances Earth Science Applications Article 1 day ago 4 min read NASA AI, Open Science Advance Disaster Research and Recovery Article 1 week ago 5 min read NASA Data Reveals Role of Green Spaces in Cooling Cities Article 1 week ago Keep Exploring Discover Related Topics Earth Surface and Interior Focus Area Earth Your home. Our Mission. And the one planet that NASA studies more than any other. Climate Change NASA is a global leader in studying Earth’s changing climate. Earth Science in Action NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet. View the full article
-
On flight day 13, Orion reached its maximum distance from Earth during the Artemis I mission when it was 268,563 miles away from our home planet. Orion has now traveled farther than any other spacecraft built for humans.NASA The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign and will pave the way to land astronauts on the Moon on Artemis III and future missions. The crew of four aboard the agency’s Orion spacecraft will travel around the Moon and back to confirm the spacecraft’s systems operate as designed with crew aboard in the actual environment of deep space. Through Artemis, NASA will send astronauts – including the first woman, first person of color, and its first international partner astronaut – to explore the Moon for scientific discovery, economic benefits, and to build the foundation for crewed missions to Mars. On Dec. 5, NASA updated its timelines for the missions and shared the results of an investigation into the Orion heat shield after it experienced an unexpected loss of charred material during re-entry of the Artemis I uncrewed test flight in late 2022. Here are some frequently asked questions about Artemis II, NASA’s recent updates, and the agency’s path to the Moon and Mars. What is Orion? NASA’s Orion spacecraft is where our crew live while traveling to and from deep space. Orion is built to take humans farther than they’ve ever gone before. On Artemis missions, Orion will carry crews of four astronauts from Earth to space, provide emergency abort capability, sustain them as they venture to the Moon, and safely return them to Earth from deep space speeds and temperatures. What is a heat shield and why is it important? When Orion travels back from deep space, its journey through Earth’s atmosphere generates intense temperatures of up to 5,000 degrees Fahrenheit on parts of the spacecraft. The 16-foot diameter protective heat shield on the bottom of the capsule is designed to dissipate that heat and keep the crew inside safe. Orion’s heat shield is primarily composed of Avcoat, a material designed to wear away as it heats up. What abnormal behavior did you see on the Artemis I heat shield? NASA flew the uncrewed Artemis I mission in late 2022 to test Orion, the agency’s SLS rocket, and the ground systems needed to launch them, testing these elements together for the first time to ensure engineers understand everything about the systems before flights with astronauts. The successful test flight sent Orion past the Moon and provided valuable data to ensure our deep space spacecraft and other systems are ready for crewed missions. When Orion returned to Earth, engineers saw variations across Orion’s heat shield they did not expect. Some of the charred material had broken off. If a crew had been aboard the flight, they would have remained safe, but understanding the phenomenon has been the subject of an extensive investigation since the test flight. What did NASA’s find as the cause of the issue? Engineers determined that as Orion was returning from its uncrewed mission around the Moon, gases generated inside the heat shield’s ablative outer material called Avcoat were not able to vent and dissipate as expected. This allowed pressure to build up and horizontal cracking to occur near the surface of the charred layer, causing some charred material to break off in several locations. For Artemis II, engineers will limit how long Orion spends in the temperature range in which the Artemis I heat shield phenomenon occurred by modifying how far Orion can fly between when it enters Earth atmosphere and lands. Engineers already are assembling and integrating the Orion spacecraft for Artemis III based on lessons learned from Artemis I and implementing enhancements to how heat shields for crewed returns from lunar landing missions are manufactured to achieve uniformity and consistent permeability. A more detailed description is here. Why did NASA decide to use the current heat shield? Extensive data from the investigation has given engineers confidence the heat shield for Artemis II can be used to safely fly the mission’s crew around the Moon and back. NASA will modify the trajectory by shortening how far Orion can fly between when it enters Earth’s atmosphere and splashes down in the Pacific Ocean. This will limit how long Orion spends in the temperature range in which the Artemis I heat shield phenomenon occurred. The heat shield for the test flight is already attached to Orion. When will Artemis II take place? The Artemis II test flight will be NASA’s first mission with crew aboard the SLS (Space Launch System) rocket and Orion spacecraft and will pave the way to land astronauts on the Moon on Artemis III. Artemis II builds on the success of the uncrewed Artemis I mission and will demonstrate a broad range of capabilities needed on lunar missions. The 10-day flight will help to confirm all of the spacecraft’s systems operate as designed with crew aboard in the actual environment of deep space. The mission is targeted for April 2026. The updated timeline for the Artemis II flight is informed by technical issues engineers are troubleshooting including with an Orion battery issue and its environmental control system. The heat shield was installed in June 2023 and the root cause investigation took place in parallel to other assembly and testing activities to preserve as much schedule as possible. What are the astronauts doing during the mission delay? NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen will continue training for the mission. More intensive training will begin about six months before launch. About the Artemis Campaign What is Artemis? NASA is establishing a long-term presence at the Moon for scientific exploration and discovery with our commercial and international partners, learning how to live and work far from home, and preparing for future human exploration of Mars – we call this endeavor Artemis. Under Artemis, NASA will land the first woman, first person of color, and first international partner astronaut on the Moon, using innovative technologies to explore more of the lunar surface than ever before. Why is NASA going back to the Moon? NASA is going back to the Moon for scientific discovery, economic benefits, and inspiration for a new generation of explorers: the Artemis Generation. Artemis is a new approach to America’s space exploration efforts — it is the most technically challenging, collaborative, international endeavor humanity has ever set out to do. What we learn from expanding scientific knowledge and developing new technologies will be applied to improve life on Earth. Samples from the lunar South Pole could tell us more about the formation of our planet and origins of our solar system. We are meeting this challenge by investing in American ingenuity and leadership to advance our understanding of the universe for the benefit of all. What makes Artemis different from Apollo? The Apollo Program successfully landed 12 men near the equator of the Moon in the 1960s and 1970s. Under Artemis, NASA is going to the lunar South Pole region, where no humans have ever set foot, in new ways with commercial and international partners. The agency is leading the largest international coalition in space to push humanity farther than ever before for the benefit of all, developing capabilities for astronauts to live and work on the Moon before our next giant leap – human exploration of Mars. What happens after Artemis II? Artemis III will build on the crewed Artemis II flight test, adding new capabilities with the human landing system and advanced spacesuits to send the first humans to explore the lunar South Pole region. Over the course of about 30 days a crew of four will launch atop the Space Launch System rocket in Orion and travel to a special lunar orbit where they will dock with SpaceX’s Starship human landing system. Two Artemis crew members will transfer from Orion to Starship and descend to the lunar surface. There, they will collect samples, perform science experiments, and observe the Moon’s environment before returning in Starship to Orion waiting in lunar orbit. The mission is planned for mid-2027. NASA is also working with SpaceX to further develop the company’s Starship lander requirements for Artemis IV. These requirements include landing more mass on the Moon and docking with the agency’s Gateway lunar space station for crew transfer. NASA will use Blue Origin’s human landing system for Artemis V. View the full article
-
Through the Artemis campaign, NASA will land the next American astronauts and first international astronaut on the South Pole region of the Moon. On Thursday, NASA announced the latest updates to its lunar exploration plans. Experts discussed results of NASA’s investigation into its Orion spacecraft heat shield after it experienced an unexpected loss of charred material during re-entry of the Artemis I uncrewed test flight. For the Artemis II crewed test flight, engineers will continue to prepare Orion with the heat shield already attached to the capsule. The agency also announced it is now targeting April 2026 for Artemis II and mid-2027 for Artemis III. The updated mission timelines also reflect time to address the Orion environmental control and life support systems. “The Artemis campaign is the most daring, technically challenging, collaborative, international endeavor humanity has ever set out to do,” said NASA Administrator Bill Nelson. “We have made significant progress on the Artemis campaign over the past four years, and I’m proud of the work our teams have done to prepare us for this next step forward in exploration as we look to learn more about Orion’s life support systems to sustain crew operations during Artemis II. We need to get this next test flight right. That’s how the Artemis campaign succeeds.” The agency’s decision comes after an extensive investigation of an Artemis I heat shield issue showed the Artemis II heat shield can keep the crew safe during the planned mission with changes to Orion’s trajectory as it enters Earth’s atmosphere and slows from nearly 25,000 mph to about 325 mph before its parachutes unfurl for safe splashdown in the Pacific Ocean. “Throughout our process to investigate the heat shield phenomenon and determine a forward path, we’ve stayed true to NASA’s core values; safety and data-driven analysis remained at the forefront,” said Catherine Koerner, associate administrator, Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “The updates to our mission plans are a positive step toward ensuring we can safely accomplish our objectives at the Moon and develop the technologies and capabilities needed for crewed Mars missions.” NASA will continue stacking its SLS (Space Launch System) rocket elements, which began in November, and prepare it for integration with Orion for Artemis II. Throughout the fall months, NASA, along with an independent review team, established the technical cause of an issue seen after the uncrewed Artemis I test flight in which charred material on the heat shield wore away differently than expected. Extensive analysis, including from more than 100 tests at unique facilities across the country, determined the heat shield on Artemis I did not allow for enough of the gases generated inside a material called Avcoat to escape, which caused some of the material to crack and break off. Avcoat is designed to wear away as it heats up and is a key material in the thermal protection system that guards Orion and its crew from the nearly 5,000 degrees Fahrenheit of temperatures that are generated when Orion returns from the Moon through Earth’s atmosphere. Although a crew was not inside Orion during Artemis I, data shows the temperature inside Orion remained comfortable and safe had crew been aboard. Engineers already are assembling and integrating the Orion spacecraft for Artemis III based on lessons learned from Artemis I and implementing enhancements to how heat shields for crewed returns from lunar landing missions are manufactured to achieve uniformity and consistent permeability. The skip entry is needed for return from speeds expected for lunar landing missions. “Victor, Christina, Jeremy, and I have been following every aspect of this decision and we are thankful for the openness of NASA to weigh all options and make decisions in the best interest of human spaceflight. We are excited to fly Artemis II and continue paving the way for sustained human exploration of the Moon and Mars,” said Reid Wiseman, NASA astronaut and Artemis II commander. “We were at the agency’s Kennedy Space Center in Florida recently and put eyes on our SLS rocket boosters, the core stage, and the Orion spacecraft. It is inspiring to see the scale of this effort, to meet the people working on this machine, and we can’t wait to fly it to the Moon.” Wiseman, along with NASA astronauts Victor Glover and Christina Koch and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will fly aboard the 10-day Artemis II test flight around the Moon and back. The flight will provide valuable data about Orion systems needed to support crew on their journey to deep space and bring them safely home, including air revitalization in the cabin, manual flying capabilities, and how humans interact with other hardware and software in the spacecraft. With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work farther away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration. For more information about Artemis, visit: https://www.nasa.gov/artemis -end- Meira Bernstein / Rachel Kraft Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov Share Details Last Updated Dec 05, 2024 LocationNASA Headquarters Related TermsMissionsArtemisArtemis 2Exploration Systems Development Mission DirectorateNASA Directorates View the full article
-
The Artemis II Orion spacecraft is lifted from the Final Assembly and Testing (FAST) Cell and placed in the west altitude chamber inside the Operations and Checkout Building at NASA’S Kennedy Space Center in Florida on June 28, 2024. Inside the altitude chamber, the spacecraft underwent a series of tests simulating deep space vacuum conditions.Photo Credit: NASA / Rad Sinyak After extensive analysis and testing, NASA has identified the technical cause of unexpected char loss across the Artemis I Orion spacecraft’s heat shield. Engineers determined as Orion was returning from its uncrewed mission around the Moon, gases generated inside the heat shield’s ablative outer material called Avcoat were not able to vent and dissipate as expected. This allowed pressure to build up and cracking to occur, causing some charred material to break off in several locations. “Our early Artemis flights are a test campaign, and the Artemis I test flight gave us an opportunity to check out our systems in the deep space environment before adding crew on future missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program Office, NASA Headquarters in Washington. “The heat shield investigation helped ensure we fully understand the cause and nature of the issue, as well as the risk we are asking our crews to take when they venture to the Moon.” Findings Teams took a methodical approach to understanding and identifying the root cause of the char loss issue, including detailed sampling of the Artemis I heat shield, review of imagery and data from sensors on the spacecraft, and comprehensive ground testing and analysis. During Artemis I, engineers used the skip guidance entry technique to return Orion to Earth. This technique provides more flexibility by extending the range Orion can fly after the point of reentry to a landing spot in the Pacific Ocean. Using this maneuver, Orion dipped into the upper part of Earth’s atmosphere and used atmospheric drag to slow down. Orion then used the aerodynamic lift of the capsule to skip back out of the atmosphere, then reenter for final descent under parachutes to splashdown. Using Avcoat material response data from Artemis I, the investigation team was able to replicate the Artemis I entry trajectory environment — a key part of understanding the cause of the issue — inside the arc jet facilities at NASA’s Ames Research Center in California. They observed that during the period between dips into the atmosphere, heating rates decreased, and thermal energy accumulated inside the heat shield’s Avcoat material. This led to the accumulation of gases that are part of the expected ablation process. Because the Avcoat did not have “permeability,” internal pressure built up, and led to cracking and uneven shedding of the outer layer. After NASA’s Orion spacecraft was recovered at the conclusion of the Artemis I test flight and transported to NASA’s Kennedy Space Center in Florida, its heat shield was removed from the crew module inside the Operations and Checkout Building and rotated for inspection. Credit: NASA Teams performed extensive ground testing to replicate the skip phenomenon before Artemis I. However, they tested at much higher heating rates than the spacecraft experienced in flight. The high heating rates tested on the ground allowed the permeable char to form and ablate as expected, releasing the gas pressure. The less severe heating seen during the actual Artemis I reentry slowed down the process of char formation, while still creating gases in the char layer. Gas pressure built up to the point of cracking the Avcoat and releasing parts of the charred layer. Recent enhancements to the arc jet facility have enabled a more accurate reproduction of the Artemis I measured flight environments, so that this cracking behavior could be demonstrated in ground testing. While Artemis I was uncrewed, flight data showed that had crew been aboard, they would have been safe. The temperature data from the crew module systems inside the cabin were also well within limits and holding steady in the mid-70s Fahrenheit. Thermal performance of the heat shield exceeded expectations. Engineers understand both the material phenomenon and the environment the materials interact with during entry. By changing the material or the environment, they can predict how the spacecraft will respond. NASA teams unanimously agreed the agency can develop acceptable flight rationale that will keep crew safe using the current Artemis II heat shield with operational changes to entry. NASA’s Investigation Process Soon after NASA engineers discovered the condition on the Artemis I heat shield, the agency began an extensive investigation process, which included a multi-disciplinary team of experts in thermal protection systems, aerothermodynamics, thermal testing and analysis, stress analysis, material test and analysis, and many other related technical areas. NASA’s Engineering and Safety Center was also engaged to provide technical expertise including nondestructive evaluation, thermal and structural analysis, fault tree analysis, and other testing support. “We took our heat shield investigation process extremely seriously with crew safety as the driving force behind the investigation,” said Howard Hu, manager, Orion Program, NASA’s Johnson Space Center in Houston. “The process was extensive. We gave the team the time needed to investigate every possible cause, and they worked tirelessly to ensure we understood the phenomenon and the necessary steps to mitigate this issue for future missions.” The Artemis I heat shield was heavily instrumented for flight with pressure sensors, strain gauges, and thermocouples at varying ablative material depths. Data from these instruments augmented analysis of physical samples, allowing the team to validate computer models, create environmental reconstructions, provide internal temperature profiles, and give insight into the timing of the char loss. Approximately 200 Avcoat samples were removed from the Artemis I heat shield at NASA’s Marshall Space Flight Center in Alabama for analysis and inspection. The team performed non-destructive evaluation to “see” inside the heat shield. One of the most important findings from examining these samples was that local areas of permeable Avcoat, which had been identified prior to the flight, did not experience cracking or char loss. Since these areas were permeable at the start of the entry, the gases produced by ablation were able to adequately vent, eliminating the pressure build up, cracking, and char loss. A test block of Avcoat undergoes heat pulse testing inside an arc jet test chamber at NASA’s Ames Research Center in California. The test article, configured with both permeable (upper) and non-permeable (lower) Avcoat sections for comparison, helped to confirm understanding of the root cause of the loss of charred Avcoat material that engineers saw on the Orion spacecraft after the Artemis I test flight beyond the Moon.Credit: NASA Engineers performed eight separate post-flight thermal test campaigns to support the root cause analysis, completing 121 individual tests. These tests took place in facilities with unique capabilities across the country, including the Aerodynamic Heating Facility at the Arc-Jet Complex at Ames to test convective heating profiles with various test gases; the Laser Hardened Materials Evaluation Laboratory at Wright‐Patterson Air Force Base in Ohio to test radiative heating profiles and provide real-time radiography; as well as the Interaction Heating Facility at Ames to test combined convective and radiative heating profiles in the air at full-block scale. Aerothermal experts also completed two hypersonic wind tunnel test campaigns at NASA’s Langley Research Center in Virginia and CUBRC aerodynamic test facilities in Buffalo, New York, to test a variety of char loss configurations and enhance and validate analytical models. Permeability testing was also performed at Kratos in Alabama, the University of Kentucky, and Ames to help further characterize the Avcoat’s elemental volume and porosity. The Advanced Light Source test facility, a U.S. Department of Energy scientific user facility at Lawrence Berkeley National Laboratory, was also used by engineers to examine the heating behavior of the Avcoat at a microstructure level. In the spring of 2024, NASA stood up an independent review team to conduct an extensive review of the agency’s investigation process, findings, and results. The independent review was led by Paul Hill, a former NASA leader who served as the lead space shuttle flight director for Return to Flight after the Columbia accident, led NASA’s Mission Operations Directorate, and is a current member of the agency’s Aerospace Safety Advisory Panel. The review occurred over a three-month period to assess the heat shield’s post-flight condition, entry environment data, ablator thermal response, and NASA’s investigation progress. The review team agreed with NASA’s findings on the technical cause of the physical behavior of the heat shield. Heat Shield Advancements Knowing that permeability of Avcoat is a key parameter to avoid or minimize char loss, NASA has the right information to assure crew safety and improve performance of future Artemis heat shields. Throughout its history, NASA has learned from each of its flights and incorporated improvements into hardware and operations. The data gathered throughout the Artemis I test flight has provided engineers with invaluable information to inform future designs and refinements. Lunar return flight performance data and a robust ground test qualification program improved after the Artemis I flight experience are supporting production enhancements for Orion’s heat shield. Future heat shields for Orion’s return from Artemis lunar landing missions are being produced to achieve uniformity and consistent permeability. The qualification program is currently being completed along with the production of more permeable Avcoat blocks at NASA’s Michoud Assembly Facility in New Orleans. For more information about NASA’s Artemis campaign, visit: https://www.nasa.gov/artemis View the full article
-
Hubble Space Telescope Home NASA’s Hubble Takes the… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 4 Min Read NASA’s Hubble Takes the Closest-Ever Look at a Quasar A NASA Hubble Space Telescope image of the core of quasar 3C 273. Credits: NASA, ESA, Bin Ren (Université Côte d’Azur/CNRS); Acknowledgment: John Bahcall (IAS); Image Processing: Joseph DePasquale (STScI) Astronomers have used the unique capabilities of NASA’s Hubble Space Telescope to peer closer than ever into the throat of an energetic monster black hole powering a quasar. A quasar is a galactic center that glows brightly as the black hole consumes material in its immediate surroundings. The new Hubble views of the environment around the quasar show a lot of “weird things,” according to Bin Ren of the Côte d’Azur Observatory and Université Côte d’Azur in Nice, France. “We’ve got a few blobs of different sizes, and a mysterious L-shaped filamentary structure. This is all within 16,000 light-years of the black hole.” Some of the objects could be small satellite galaxies falling into the black hole, and so they could offer the materials that will accrete onto the central supermassive black hole, powering the bright lighthouse. “Thanks to Hubble’s observing power, we’re opening a new gateway into understanding quasars,” said Ren. “My colleagues are excited because they’ve never seen this much detail before.” Quasars look starlike as point sources of light in the sky (hence the name quasi-stellar object). The quasar in the new study, 3C 273, was identified in 1963 by astronomer Maarten Schmidt as the first quasar. At a distance of 2.5 billion light-years it was too far away for a star. It must have been more energetic than ever imagined, with a luminosity over 10 times brighter than the brightest giant elliptical galaxies. This opened the door to an unexpected new puzzle in cosmology: What is powering this massive energy production? The likely culprit was material accreting onto a black hole. A Hubble Space Telescope image of the core of quasar 3C 273. A coronagraph on Hubble blocks out the glare coming from the supermassive black hole at the heart of the quasar. This allows astronomers to see unprecedented details near the black hole such as weird filaments, lobes, and a mysterious L-shaped structure, probably caused by small galaxies being devoured by the black hole. Located 2.5 billion light-years away, 3C 273 is the first quasar (quasi-stellar object) ever discovered, in 1963. NASA, ESA, Bin Ren (Université Côte d’Azur/CNRS); Acknowledgment: John Bahcall (IAS); Image Processing: Joseph DePasquale (STScI) In 1994 Hubble’s new sharp view revealed that the environment surrounding quasars is far more complex than first suspected. The images suggested galactic collisions and mergers between quasars and companion galaxies, where debris cascades down onto supermassive black holes. This reignites the giant black holes that drive quasars. For Hubble, staring into the quasar 3C 273 is like looking directly into a blinding car headlight and trying to see an ant crawling on the rim around it. The quasar pours out thousands of times the entire energy of stars in a galaxy. One of closest quasars to Earth, 3C 273 is 2.5 billion light-years away. (If it was very nearby, a few tens of light-years from Earth, it would appear as bright as the Sun in the sky!) Hubble’s Space Telescope Imaging Spectrograph (STIS) can serve as a coronagraph to block light from central sources, not unlike how the Moon blocks the Sun’s glare during a total solar eclipse. Astronomers have used STIS to unveil dusty disks around stars to understand the formation of planetary systems, and now they can use STIS to better understand quasars’ host galaxies. The Hubble coronograph allowed astronomers to look eight times closer to the black hole than ever before. Scientists got rare insight into the quasar’s 300,000-light-year-long extragalactic jet of material blazing across space at nearly the speed of light. By comparing the STIS coronagraphic data with archival STIS images with a 22-year separation, the team led by Ren concluded that the jet is moving faster when it is farther away from the monster black hole. “With the fine spatial structures and jet motion, Hubble bridged a gap between the small-scale radio interferometry and large-scale optical imaging observations, and thus we can take an observational step towards a more complete understanding of quasar host morphology. Our previous view was very limited, but Hubble is allowing us to understand the complicated quasar morphology and galactic interactions in detail. In the future, looking further at 3C 273 in infrared light with the James Webb Space Telescope might give us more clues,” said Ren. At least 1 million quasars are scattered across the sky. They are useful background “spotlights” for a variety of astronomical observations. Quasars were most abundant about 3 billion years after the big bang, when galaxy collisions were more common. The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA. Explore More Science Behind the Discoveries: Quasars Science Behind the Discoveries: Black Holes Monster Black Holes are Everywhere Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts: Claire Andreoli (claire.andreoli@nasa.gov) NASA’s Goddard Space Flight Center, Greenbelt, MD Ray Villard Space Telescope Science Institute, Baltimore, MD Science Contact: Bin Ren Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, France Share Details Last Updated Dec 05, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Quasars Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble’s Night Sky Challenge Hubble Gravitational Lenses Hubble Lithographs View the full article