Jump to content

NASA

Publishers
  • Posts

    5,649
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. Technicians with NASA and Lockheed Martin fitted three spacecraft adapter jettison fairing panels onto the service module of the agency’s Orion’s spacecraft. The operation completed on Wednesday, March 19, 2025, inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The European-built service module is the powerhouse that will propel the spacecraft to the Moon. Its four solar array wings which were installed to its exterior in early March. The latest addition of fairing panels on Orion’s service module will protect the solar array wings, shielding them from the heat, wind, and acoustics of launch and ascent, and also help redistribute the load between Orion and the massive thrust of the SLS (Space Launch System) rocket during liftoff and ascent. Once the spacecraft is above the atmosphere, the three fairing panels will separate from the service module, allowing the wings to unfurl. In addition to power, the service module will provide propulsion and life support including thermal control, air, and water for the Artemis II test flight, NASA’s first mission with crew under the Artemis campaign that will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. Image credit: NASA/Glenn Benson View the full article
  2. Northrop Grumman’s Cygnus spacecraft is pictured in the grips of the Canadarm2 robotic arm shortly after its capture Credit: NASA After delivering more than 8,200 pounds of supplies, scientific investigations, commercial products, hardware, and other cargo to the orbiting laboratory for NASA and its international partners, Northrop Grumman’s uncrewed Cygnus spacecraft is scheduled to depart the International Space Station on Friday, March 28. Watch NASA’s live coverage of undocking and departure at 6:30 a.m. EDT on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. This mission was the company’s 21st commercial resupply mission to the space station for NASA. Flight controllers on the ground will send commands for the space station’s Canadarm2 robotic arm to detach Cygnus from the Unity module’s Earth-facing port, then maneuver the spacecraft into position for release at 6:55 a.m. NASA astronaut Nichole Ayers will monitor Cygnus’ systems upon its departure from the space station. Cygnus – filled with trash packed by the station crew – will be commanded to deorbit on Sunday, March 30, setting up a re-entry where the spacecraft will safely burn up in Earth’s atmosphere. The Northrop Grumman spacecraft arrived at the space station Aug. 6, 2024, following launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Get breaking news, images, and features from the space station on the station blog, Instagram, Facebook, and X. Learn more about Cygnus’ mission and the International Space Station at: https://www.nasa.gov/station -end- Julian Coltre / Josh Finch Headquarters, Washington 202-358-1100 julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Mar 21, 2025 LocationNASA Headquarters Related TermsInternational Space Station (ISS)Humans in SpaceJohnson Space CenterNASA Headquarters View the full article
  3. 4 Min Read 3D Printing: Saving Weight and Space at Launch The first metal part 3D printed in space. Credits: ESA Science in Space March 2025 Additive manufacturing, also known as 3D printing, is regularly used on the ground to quickly produce a variety of devices. Adapting this process for space could let crew members create tools and parts for maintenance and repair of equipment on the spot, rather than trying to bring along every item that might be needed. The ability to manufacture things in space is especially important in planning for missions to the Moon and Mars because additional supplies cannot quickly be sent from Earth and cargo capacity is limited. Research on the International Space Station is helping to develop the capability to address multiple needs using 3D printing. NASA astronaut Jeanette Epps configures the Metal 3D Printer to produce experimental samples from stainless steel.NASA Metal 3D Printer, a current investigation from ESA (European Space Agency), tests 3D printing of small metal parts in microgravity. Results could improve understanding of the function, performance, and operations of 3D printing in space with metal, as well as the quality, strength, and characteristics of printed parts. This work also could benefit applications on Earth that use metal, such as the automotive, aeronautical, and maritime industries. Printing with plastic NASA Astronaut Butch Wilmore holds a ratchet wrench created with the 3D Printing in Zero-G printer.NASA 3D Printing in Zero-G sent the first 3D printer, developed by NASA’s Marshall Space Flight Center and Redwire (formerly Made in Space), to the space station in 2014. The printer used a process that feeds a continuous thread of plastic through a heated extruder and onto a tray layer by layer to create an object. The investigation produced more than a dozen parts, including a ratchet wrench, showing that researchers could send a design from the ground to the system on the station more than 200 miles above. Comparing the parts made in space with those made on the ground showed that microgravity had no significant effect on the process. Redwire then developed the Additive Manufacturing Facility (AMF), sent to the station in 2015. Researchers evaluated its mechanical performance and found improvements in tension strength and flexibility compared to the earlier demonstration, helping to further the technology for this type of manufacturing on Earth and in space. In 2015 and 2016, Portable On Board 3D Printer tested an automated printer developed by the Italian Space Agency to produce plastic objects in space. The investigation provided insight into how the material behaves in microgravity, which could support development of European additive manufacturing technology for use in space. Printing with other materials NASA astronaut Anne McClain installs the Refabricator in Feb. 2019.NASA Another approach is recycling plastic – for example, turning a used 3D-printed wrench into a spoon and creating items from the plastic bags and packing foam needed to send supplies to space. This technology could help reduce the amount of raw material at launch and cut down on the volume of waste that must be disposed of on long journeys. The Refabricator, a machine created by Tethers Unlimited Inc, tested this approach and successfully manufactured its first object. Some issues occurred in the bonding process, likely caused by microgravity, but assessment of the material could help determine whether there are limits to how many times plastic can be re-used. Ultimately, researchers plan to create a database of parts that can be manufactured using the space station’s capabilities. The Redwire Regolith Print facility before launch to the space station.Redwire Space Redwire Regolith Print (RRP) tested another kind of feedstock for 3D manufacturing in orbit, a simulated version of regolith, the dust present on the surface of the Moon and other planetary bodies. Results could lead to development of technology for using regolith to construct habitats and other structures rather than bringing raw materials from Earth. The space station also has hosted studies of a form of 3D printing called biological printing or bioprinting. This process uses living cells, proteins, and nutrients as raw materials to potentially produce human tissues for treating injury and disease, which could benefit future crews and patients on Earth. Other manufacturing techniques tested on the orbiting lab include producing optical fibers and growing crystals for synthesizing pharmaceuticals and fabricating semiconductors. View the full article
  4. Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read Hubble Captures a Neighbor’s Colorful Clouds This NASA/ESA Hubble Space Telescope image features part of the Small Magellanic Cloud. ESA/Hubble & NASA, C. Murray Download this image Say hello to one of the Milky Way’s neighbors! This NASA/ESA Hubble Space Telescope image features a scene from one of the closest galaxies to the Milky Way, the Small Magellanic Cloud (SMC). The SMC is a dwarf galaxy located about 200,000 light-years away. Most of the galaxy resides in the constellation Tucana, but a small section crosses over into the neighboring constellation Hydrus. Thanks to its proximity, the SMC is one of only a few galaxies that are visible from Earth without the help of a telescope or binoculars. For viewers in the southern hemisphere and some latitudes in the northern hemisphere, the SMC resembles a piece of the Milky Way that has broken off, though in reality it’s much farther away than any part of our own galaxy. With its 2.4-meter mirror and sensitive instruments, Hubble’s view of the SMC is far more detailed and vivid than what humans can see. Researchers used Hubble’s Wide Field Camera 3 to observe this scene through four different filters. Each filter permits different wavelengths of light, creating a multicolored view of dust clouds drifting across a field of stars. Hubble’s view, however, is much more zoomed-in than our eyes, allowing it to observe very distant objects. This image captures a small region of the SMC near the center of NGC 346, a star cluster that is home to dozens of massive young stars. Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli (claire.andreoli@nasa.gov) NASA’s Goddard Space Flight Center, Greenbelt, MD Share Details Last Updated Mar 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Magellanic Clouds The Universe Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble’s Night Sky Challenge Hearing Hubble Reshaping Our Cosmic View: Hubble Science Highlights View the full article
  5. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read Sols 4484-4485: Remote Sensing on a Monday NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 17, 2025 — sol 4483, or Martian day 4,483 of the Mars Science Laboratory mission — at 09:38:17 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University Earth planning date: Monday, March 17, 2025 Last week I was in Houston, Texas, at the Lunar and Planetary Science Conference. The mid-March weather in Houston is often more like mid-summer weather here in Toronto, so it has been a bit of a shock coming home to temperatures that are hovering around freezing rather than being in the upper 20s (degrees Celsius, or the low to mid 80s for those of you still using Fahrenheit). Still, Toronto is positively balmy compared to Gale Crater, where temperatures usually range between minus 80°C and minus 20°C (or minus 110°F to minus 5°F) during this part of the year. These cold temperatures and their associated higher demands on the rover’s available power for heating are continuing to motivate many of the decisions that we make during planning. We received the double good news this morning that the weekend’s drive completed successfully, including the mid-drive imaging of the other side of “Humber Park” that Michelle mentioned in Friday’s blog, and that our estimates of the weekend plan’s power consumption ended up being a little conservative. So we started planning exactly where we wanted to be, and with more power to play around with than we had expected. Yay! The weekend’s drive left us parked in front of some rocks with excellent layering and interesting ripples that we really wanted to get a closer look at with MAHLI. (See the cover image for a look at these rocks as seen by Navcam.) Sadly, we also ended up parked in such a way that presented a slip hazard if the arm was unstowed. As much as we would have loved to get close-up images of these rocks, we love keeping Curiosity’s arm safe even more, so we had to settle for a remote sensing-only plan instead. Both the geology and mineralogy (GEO) and the environmental science (ENV) teams took full advantage of the extra power gifted to us today to create a plan packed full of remote sensing observations. Because we’re driving on the first sol of this two-sol plan, any “targeted” observations, i.e. those where we know exactly where we want to point the rover’s cameras, must take place before the drive. The first sol is thus packed full of Mastcam and ChemCam observations, starting with a 14×3 Mastcam mosaic of the area in front of us that’s outside of today’s workspace. Individual targets then get some Mastcam love with mosaics of various ripple and layering features at “Verdugo Peak,” “Silver Moccasin Trail,” and “Jones Peak.” Mastcam and ChemCam also team up on a LIBS target, “Trancas Canyon,” and some more long-distance mosaics of Gould Mesa, a feature about 100 meters away from us (about 328 feet) that we’ll be driving to the south of as we continue to head toward the “boxwork” structures. After a drive, there often aren’t many activities scheduled other than the imaging of our new location that we’ll need for the next planning day. However, in this plan ENV decided to take advantage of the fact that Navcam observations can take place at the same time that the rover is talking to one of the spacecraft that orbit Mars. This is a useful trick when power is tight as it allows us to do more science without adding additional awake time (since the rover needs to be awake anyway to communicate with the orbiters). Today, it’s being used to get some extra cloud observations right before sunset, a time that we don’t often get to observe. These observations include a zenith movie that looks straight up over the rover and a “phase function sky survey,” which takes a series of nine movies that form a dome around the rover to examine the properties of the clouds’ ice crystals. The second sol of this plan is much more relaxed, as post-drive sols often are because we don’t know exactly where we’ll be after a drive. Today, we’ve just got our usual ChemCam AEGIS activity, followed by a pair of Navcam cloud and cloud shadow movies to measure the altitude of clouds over Gale. As always, we’ve also got our usual set of REMS, RAD, and DAN activities throughout this plan. Share Details Last Updated Mar 20, 2025 Related Terms Blogs Explore More 2 min read Sols 4481-4483: Humber Pie Article 2 days ago 3 min read Sols 4479-4480: What IS That Lumpy, Bumpy Rock? Article 6 days ago 3 min read Navigating a Slanted River Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  6. This year’s RASC-AL competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond.ASANASA Fourteen university teams have been selected as finalists for NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition. This year’s competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond. Finalists will present their proposed concepts to a panel of NASA and aerospace industry leaders. The 2025 Finalists are: Sustained Lunar Evolution – An Inspirational Moment: Massachusetts Institute of Technology, “M.I.S.T.R.E.S.S. – Moon Infrastructure for Sustainable Technologies, Resource Extraction, and Self-Sufficiency” Tulane University, “Scalable Constructs for Advanced Lunar Activities and Research (SCALAR)” Virginia Polytechnic Institute and State University, “Project Aeneas” Virginia Polytechnic Institute and State University, “Project Khonsu” Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign: Auburn University, “Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER)” University of Illinois, Urbana-Champaign, “MATER: Mars Architecture for Technology Evaluation and Research” Virginia Polytechnic Institute and State University, “Project Vehicles for Engineering Surface Terrain Architectures (VESTA)” Small Lunar Servicing and Maintenance Robot: Arizona State University, “DIANA – Diagnostic and Intelligent Autonomously Navigated Assistant” South Dakota State University, “Next-gen Operations and Versatile Assistant (NOVA)” South Dakota State University, “MANTIS: Maintenance and Navigation for Technical Infrastructure Support” Texas A&M University, “R.A.M.S.E.E.: Robotic Autonomous Maintenance System for Extraterrestrial Environments” University of Maryland, “Servicing Crane Outfitted Rover for Payloads, Inspection, Operations, N’stuff (SCORPION)” University of Puerto Rico, Mayagüez, “Multi-functional Operational Rover for Payload Handling and Navigation (MORPHN)” Virginia Polytechnic Institute & State University, “Adaptive Device for Assistance and Maintenance (ADAM)” The RASC-AL Competition is designed to engage university students and academic institutions in innovation within the field of aerospace engineering. By providing a platform for students to develop and present their ideas, NASA aims to cultivate foundational research for new concepts and technologies for the future of space exploration. This year’s RASC-AL projects include scalable lunar infrastructure and services, a lunar robot that can work autonomously or be controlled remotely, and a concept for a science or technology demonstration mission using human-scale launch, transportation, entry, and landing capabilities at Mars. All of these functions are critical to future NASA missions. “This year’s RASC-AL projects are not just academic exercises; they will contribute real solutions to some of the most pressing challenges we currently face. The competition continues to highlight the importance of innovation and interdisciplinary collaboration in aerospace,” said Daniel Mazanek, RASC-AL program sponsor and senior space systems engineer from NASA’s Langley Research Center in Hampton, VA. These finalist teams will move forward to the next phase of the competition, where they will prepare and submit a detailed technical paper outlining their designs, methodologies, and anticipated impacts. Each team will present their concepts at the 2025 RASC-AL Competition Forum in June 2025 showcasing their work to a judging panel of NASA and industry experts for review and discussion. “The ingenuity and out-of-the-box designs showcased by these students is inspiring,” added Dr. Christopher Jones, RASC-AL program sponsor and chief technologist for the Systems Analysis and Concepts Directorate at NASA’S Langley “We are excited to see how their ideas can contribute to NASA’s ongoing missions and future exploration goals. This is just the beginning of their journey, and we are proud to be part of it.” To learn more about NASA’s RASC-AL Competition, visit NASA’s RASC-AL Competition Website. RASC-AL is sponsored by the Strategy and Architecture Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA’s Langley Research Center. It is administered by the National Institute of Aerospace. Genevieve Ebarle / Victoria O’Leary National Institute of Aerospace View the full article
  7. Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 5 min read Celebrating 25 Years of Terra Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer Terra anniversary banner Image credit: NASA Nasa personnel gather to celebrate Terra’s 25th anniversary at the Goddard Visitor Center. Image credit: NASA On December 18, 2024, Terra—the first EOS Flagship mission celebrated the 25th anniversary of its launch from Vandenberg Space Force (then Air Force) Base. Some 70 individuals gathered at the Goddard Space Flight Center’s (GSFC) Visitor Center to celebrate this remarkable achievement for the venerable mission – with 75 more participating virtually. The gathering began with a reception culminating with some informal remarks in the main area of the Visitor’s Center outside the auditorium from Marc Dinardo [Lockheed Martin, emeritus] who was involved in the design of Terra. He explained that – at the time it was being built in the 1990s – Terra represented a “big step forward” for Lockheed Martin compared to projects the company had done prior to this. He discussed several engineering feats, e.g., fitting spacecraft components into the Atlas rocket used to launch Terra, moving from tape recorders to solid state recorders for data storage, the (at the time) novel thermal system developed to reject heat and protect instruments, and the direct broadcast capabilities. After the initial remarks, the in-person participants moved into the auditorium where they heard from representatives from Senior management [both from NASA Headquarters and GSFC] as well as from several key figures in Terra’s long history. Each speaker gave brief remarks and shared their perspectives on Terra’s development and achievements. Short summaries of each presentation follow below. Julie Robinson [NASA HQ—Deputy Director of the Earth Science Division] began by noting that this feels like a family celebration. She said her first personal experience with Terra was submitting a proposal as a young scientist to do research that would use data from Terra. At that time the idea of studying Earth as a system of systems was brand new. She had no idea at that time that more than a quarter-century later, she’d be involved in planning the “next generation” Earth System Observatory (ESO). Shawn Domagal-Goldman [Deputy Director of the Sciences and Exploration Directorate] spoke about how some of the biggest science questions we try to answer are interdisciplinary and cross-instrument, spanning missions and generations, and that the expertise and diverse skillsets of those who have worked on the Terra team over the past 25 years embodies this goal. Tom Neumann [GSFC—Deputy Director of Earth Science Division (GSFC)] reflected on his early involvement in the Terra–Aqua–Aura proposal reviews. He noted the sheer number of people involved in the mission and the logistical challenges that organizing that size group presented at the time. He also commented on the feeling of family surrounding the Team and how this surely contributed to its remarkable achievements over the past 25 years. Guennadi Kroupnik [Canadian Space Agency—Director General of Space Utilization] extended congratulations to NASA and Terra team for 25 years of operations. He commented that this “six year” mission has endured far beyond what was planned. Canada’s contribution was the Measurement of Pollution in the Troposphere (MOPITT) instrument with Jim Drummond [University of Toronto] as Principal Investigator. Kroupnik noted that MOPITT Is longest continuously running instrument in Canadian history. He is pleased that CSA has been able to partner with NASA on Terra and looks forward to future collaboration on the Atmospheric Observing System (AOS), which is one of the missions planned as part of ESO. Jack Kaye [NASA Headquarters—Associate Director for Research of the Earth Science Division] spoke of Terra’s remarkable scientific accomplishments, the creativity of the team, and the intentional emphasis placed on validating the data, and the creativity of the Team. He also noted that the direct broadcast capability was extremely useful and led to many applications. Kaye remarked that the late Yoram Kauffman referred to the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) as the “zoom lens of Terra.” Miguel Román [GSFC—Deputy Director for Atmospheres] described himself as a “child of Terra,” as he began his science career at around the same time that Terra launched and has been involved in various capacities ever since. Román recalled the launch taking place near vineyards, where the team celebrated the successful launch with local wine, to finally sharing a bottle of wine with the late Piers Sellers (who served as the first Terra project scientist) at one of the final gatherings Piers threw before he passed from cancer. Román also mentioned the Our Changing Planet book that four Earth Scientists – including former EOS Senior Project Scientist and Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team Leader Michael King and former Aqua Project Scientist Claire Parkinson—both GSFC emeritus – collaborated to write that was published in 2007. This book made use of numerous images and data from Terra’s five instruments – as well as other EOS data. Kurt Thome [GSFC—Terra Project Scientist] rounded out the presentations, emphasizing again what several have stated in their individual comments – the Terra Team truly is a family. He commented that he’s only been leading the mission for the past ten years and that his work builds on the shoulders of those who came before him. In particular, he acknowledged the slide Miguel Román showed briefly during his presentation that honored those who were part of the Terra family who have passed away – e.g., Piers Sellers, Yoram Kauffman. Steve Platnick EOS Senior Project Scientist Share Details Last Updated Mar 20, 2025 Related Terms Earth Science View the full article
  8. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This artist’s concept shows astronauts working on the Moon alongside different technology systems. The Data & Reasoning Fabric technology could help these systems operate in harmony, supporting the astronauts and ground control on Earth.Credit: NASA Imagine your car is in conversation with other traffic and road signals as you travel. Those conversations help your car anticipate actions you can’t see: the sudden slowing of a truck as it begins to turn ahead of you, or an obscured traffic signal turning red. Meanwhile, this system has plotted a course that will drive you toward a station to recharge or refuel, while a conversation with a weather service prepares your windshield wipers and brakes for the rain ahead. This trip requires a lot of communication among systems from companies, government agencies, and organizations. How might these different entities – each with their own proprietary technology – share data safely in real time to make your trip safe, efficient, and enjoyable? Technologists at NASA’s Ames Research Center in California’s Silicon Valley created a framework called Data & Reasoning Fabric (DRF), a set of software infrastructure, tools, protocols, governance, and policies that allow safe, secure data sharing and logical prediction-making across different operators and machines. Originally developed with a focus on providing autonomous aviation drones with decision-making capabilities, DRF is now being explored for other applications. This means that one day, DRF-informed technology could allow your car to receive traffic data safely and securely from nearby stoplights and share data with other vehicles on the road. In this scenario, DRF is the choreographer of a complex dance of moving objects, ensuring each moves seamlessly in relation to one another towards a shared goal. The system is designed to create an integrated environment, combining data from systems that would otherwise be unable to interact with each other. “DRF is built to be used behind the scenes,” said David Alfano, chief of the Intelligent Systems Division at Ames. “Companies are developing autonomous technology, but their systems aren’t designed to work with technology from competitors. The DRF technology bridges that gap, organizing these systems to work together in harmony.” Traffic enhancements are just one use case for this innovative system. The technology could enhance how we use autonomy to support human needs on Earth, in the air, and even on the Moon. Supporting Complex Logistics To illustrate the technology’s impact, the DRF team worked with the city of Phoenix on an aviation solution to improve transportation of critical medical supplies from urban areas out to rural communities with limited access to these resources. An autonomous system identified where supplies were needed and directed a drone to pick up and transport supplies quickly and safely. “All the pieces need to come together, which takes a lot of effort. The DRF technology provides a framework where suppliers, medical centers, and drone operators can work together efficiently,” said Moustafa Abdelbaky, senior computer scientist at Ames. “The goal isn’t to remove human involvement, but help humans achieve more.” The DRF technology is part of a larger effort at Ames to develop concepts that enable autonomous operations while integrating them into the public and commercial sector to create safer, efficient environments. “At NASA, we’re always learning something. There’s a silver lining when one project ends, you can identify a new lesson learned, a new application, or a new economic opportunity to continue and scale that work,” said Supreet Kaur, lead systems engineer at Ames. “And because we leverage all of the knowledge we’ve gained through these experiments, we are able to make future research more robust.” Choreographed Autonomy Industries like modern mining involve a variety of autonomous and advanced vehicles and machinery, but these systems face the challenge of communicating sufficiently to operate in the same area. The DRF technology’s “choreography” might help them work together, improving efficiency. Researchers met with a commercial mining company to learn what issues they struggle with when using autonomous equipment to identify where DRF might provide future solutions. “If an autonomous drill is developed by one company, but the haul trucks are developed by another, those two machines are dancing to two different sets of music. Right now, they need to be kept apart manually for safety,” said Johnathan Stock, chief scientist for innovation at the Ames Intelligent Systems Division. “The DRF technology can harmonize their autonomous work so these mining companies can use autonomy across the board to create a safer, more effective enterprise.” Further testing of DRF on equipment like those used in mines could be done at the NASA Ames Roverscape, a surface that includes obstacles such as slopes and rocks, where DRF’s choreography could be put to the test. Stock also envisions DRF improving operations on the Moon. Autonomous vehicles could transport materials, drill, and excavate, while launch vehicles come and go. These operations will likely include systems from different companies or industries and could be choreographed by DRF. As autonomous systems and technologies increase across markets, on Earth, in orbit, and on the Moon, DRF researchers are ready to step on the dance floor to make sure everything runs smoothly. “When everyone’s dancing to the same tune, things run seamlessly, and more is possible.” Share Details Last Updated Mar 20, 2025 Related TermsGeneral Explore More 3 min read Bringing the Heat: Abigail Howard Leads Thermal Systems for Artemis Rovers, Tools Article 2 days ago 5 min read Risk of Venous Thromboembolism During Spaceflight Article 6 days ago 4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage Article 1 week ago Keep Exploring Discover More Topics From NASA Ames Research Center Aeronautics Research Mission Directorate Intelligent Systems Division Space Technology Mission Directorate View the full article
  9. This NASA/ESA Hubble Space Telescope Picture of the Week features a sparkling spiral galaxy paired with a prominent star, both in the constellation Virgo. While the galaxy and the star appear to be close to one another, even overlapping, they’re actually a great distance apart.ESA/Hubble & NASA, S. J. Smartt, C. Kilpatrick This NASA/ESA Hubble Space Telescope image features a sparkling spiral galaxy paired with a prominent star, both in the constellation Virgo. While the galaxy and the star appear to be close to one another, even overlapping, they’re actually a great distance apart. The star, marked with four long diffraction spikes, is in our own galaxy. It’s just 7,109 light-years away from Earth. The galaxy, named NGC 4900, lies about 45 million light-years from Earth. This image combines data from two of Hubble’s instruments: the Advanced Camera for Surveys, installed in 2002 and still in operation today, and the older Wide Field and Planetary Camera 2, which was in use from 1993 to 2009. The data used here were taken more than 20 years apart for two different observing programs — a real testament to Hubble’s long scientific lifetime! Both programs aimed to understand the demise of massive stars. In one, researchers studied the sites of past supernovae, aiming to estimate the masses of the stars that exploded and investigate how supernovae interact with their surroundings. They selected NGC 4900 for the study because it hosted a supernova named SN 1999br. In the other program, researchers laid the groundwork for studying future supernovae by collecting images of more than 150 nearby galaxies. When researchers detect a supernova in one of these galaxies, they can refer to these images, examining the star at the location of the supernova. Identifying a supernova progenitor star in pre-explosion images gives valuable information about how, when, and why supernovae occur. Image credit: ESA/Hubble & NASA, S. J. Smartt, C. Kilpatrick View the full article
  10. Students explore the Manufacturing Facility at NASA’s Glenn Research Center in Cleveland during Career Technical Education Day on March 11.Credit: NASA/Jef Janis NASA’s Glenn Research Center in Cleveland welcomed more than 150 students and educators to showcase technical careers, inspire the next generation, and ignite a passion for learning during a Career Technical Education program March 11. “Here at Glenn Research Center, we love what we do, and we love to share what we do,” said Dawn Schaible, Glenn’s deputy director, during opening remarks at the event. “I hope you find today educational and inspiring, and let your passion and hard work drive you to places you can’t even imagine. We have space for every profession at NASA.” Dawn Schaible, NASA Glenn Research Center’s deputy director, welcomes more than 150 students to Career Technical Education Day on March 11. Students toured the Manufacturing Facility and the Flight Research Building while talking to NASA experts about technical careers within the agency.Credit: NASA/Jef Janis The event, hosted by NASA’s Next Gen STEM Project in collaboration with Glenn’s Office of STEM Engagement (OSTEM), gave students a behind-the-scenes look at the technical careers that make NASA’s missions possible. Glenn’s Manufacturing Facility opened its doors to demonstrate how technical careers like machining and fabrication enable NASA to take an idea and turn it into a reality. Students explored Glenn’s metal fabrication, instrumentation, wiring, machining, and 3D printing capabilities while gleaning advice from experts in the field. Students also toured Glenn’s Flight Research Building where they spoke with the center’s flight crew, learned how the agency is using the Pilatus PC-12 aircraft to support a variety of aeronautics research missions, and discussed what a career in aviation looks like. A student experiences virtual reality during Career Technical Education Day at NASA’s Glenn Research Center in Cleveland on March 11. The Graphics and Visualization Lab spoke with students about how 3D demonstrations help NASA find innovative solutions to real-world challenges.Credit: NASA/Jef Janis “In OSTEM, our role is connecting students, just like you, with real opportunities at NASA,” said Clarence Jones, OSTEM program specialist, while addressing the group. “We want you to be able to see yourselves in these roles and possibly be part of our workforce someday.” Next Gen STEM and OSTEM host many events like Career Technical Education Day. The next opportunity, “Spinoffs in Sports,” is scheduled for April 10. Participants will learn about NASA technologies that are being used the sporting world. Registration for this virtual career connection ends April 4. NASA also offers In-Flight STEM Downlinks for students and educators to interact with astronauts aboard the International Space Station during Q&A sessions. The Expedition 74 proposal window is open now through April 29. Explore More 3 min read Finalists Selected in NASA Aeronautics Agriculture-Themed Competition Article 6 days ago 1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight Article 1 week ago 2 min read NASA Releases its Spinoff 2025 Publication Article 1 week ago View the full article
  11. Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 11 min read The Earth Observer Editor’s Corner: January–March 2025 NASA’s Earth Observing fleet continues to age gracefully. While several new missions have joined the fleet in the past year, scientists and engineers work to extend the life of existing missions and maximize their science along the way. The crowning example is the first Earth Observing System (EOS) Flagship mission, Terra, which celebrated a quarter-century in orbit on December 18, 2024. Terra, continues to collect daily morning Earth observations using five different instruments: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth’s Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Measurement of Pollution in the Troposphere (MOPITT). Collectively, these observations have established a robust satellite record of global scientific processes to track changes in temperature, glaciers, clouds, vegetation, land-use, air quality, and natural hazards such as hurricanes, wildfires, and volcanic eruptions. Originally designed for a six-year prime mission, Terra continues to deliver data used by emergency managers, researchers, and modelers over a quarter-of-a-century later. On December 18th, 2024, NASA celebrated the 25th anniversary of Terra’s launch with a celebration at the Goddard Space Flight Center (GSFC) Visitor’s Center. NASA Senior management [from NASA Headquarters and GSFC] as well as other key figures from Terra’s long history gave brief remarks and perspectives on Terra’s development and achievements. To read a review of the celebration, see “Celebrating 25 Years of Terra.” Terra-related sessions (poster and oral) during the Fall American Geophysical Union (AGU) meeting were well-attended. The Terra team took advantage of the meeting to have a celebratory anniversary dinner that included attendees representing each of the five instruments. Another mission to recently reach a longevity milestone is NASA’s Orbiting Carbon Observatory-2 (OCO-2), which celebrated 10 years in space last summer. OCO-2, which launched on July 2, 2014, from the Vandenburg Air Force (now Space Force) Base in California, was originally designed as a pathfinder mission to measure carbon dioxide (CO2) with the precision and accuracy needed to quantify where, when, and how the Earth inhales and exhales this important greenhouse gas seasonally. OCO-2 was part of the international Afternoon Constellation, or “A-Train,” which also included Aqua, Aura, CloudSat, and CALIPSO, as well as international partner missions. Since its launch, OCO-2 data have revealed unprecedented insights into how the carbon cycle operates – from observing the impact and recovery of tropical land and ocean ecosystems during El Niño events to revealing the outsized impacts of extreme events, such as floods, droughts, and fires on ecosystem health and functioning. Researchers from around the world use OCO-2 data, opening new opportunities for understanding the response of the carbon cycle to human-driven perturbations, such as the impact of COVID lockdowns on atmospheric CO2 and improved quantification of emissions from large power plants and cities. OCO-2 also maps vegetation fluorescence, which shows promise as a reliable early warning indicator of flash drought. During photosynthesis, plants “leak” unused photons, producing a faint glow known as solar-induced fluorescence (SIF). The stronger the fluorescence, the more CO2 a plant is taking from the atmosphere to power its growth. Ancillary SIF measurements from OCO-2 will help scientists better predict flash droughts, and understand how these impact carbon emissions. Ten years into the mission, OCO-2 has become the gold standard for CO2 measurements from space. The spacecraft and instrument continue to perform nominally, producing data leading to new scientific discoveries. OCO–3, built from spare parts during the build of OCO-2 and launched to the International Space Station (ISS) in 2019, also celebrated a milestone, marking five years in orbit on May 4, 2024. While the follow-on has the same instrument sensitivity and makes essentially the same measurements as OCO-2, the vantage point on the ISS as opposed to OCO-2’s polar orbit and the use of a new pointing mirror assembly (PMA) results in significant day-to-day spatial and temporal sampling differences that allows CO2 tracking for diurnal variability. In addition, the flexible PMA system allows for a much more dynamic observation-mode schedule. Further out in space, about 1 million mi (~1.1 million km) from Earth, orbiting the “L1” Lagrange point between Earth and Sun, the Deep Space Climate Observatory (DSCOVR) celebrated the 10th anniversary of its launch on February 11, 2025. The two NASA Earth observing instruments on DSCOVR are the Earth Polychromatic Camera (EPIC) and National Institute of Standards and Technology (NIST) Advanced Radiometer [NISTAR]. The 10th DSCOVR EPIC NISTAR Science Team Meeting was held October 16–18, 2024 at Goddard Space Flight Center. Former U.S. Vice President Al Gore opened the meeting with remarks that focused on remote sensing and the future of Earth observations. Following Gore’s remarks, DSCOVR mission leadership and representatives from GSFC and the National Oceanic and Atmospheric Administration (NOAA) gave presentations on DSCOVR operations, EPIC calibration, and NISTAR Status and Science. The meeting provided an opportunity for participants to learn the status of DSCOVR’s Earth-observing instruments, the status of recently released Level-2 (geophysical) data products, and the resulting science. As more people use DSCOVR data worldwide, the science team hopes to hear from users and team members at its next meeting. The latest updates from the mission can be found on the EPIC website. For more details, see the Summary of the 10th DSCOVR EPIC and NISTAR Science Team Meeting. Flying in the space between satellites and ground-based observations, NASA’s Airborne Science Program operates a fleet of aircraft, unpiloted aerial vehicles, and even kites to study Earth and space science. Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a mainstay of ASP’s fleet ­­– see Photo 1. The aircraft, located at NASA’s Armstrong Flight Research Center (AFRC) in California, flew countless missions as a science laboratory, producing science data for the national and global scientific communities. NASA decided to retire the venerable DC-8 aircraft, which made its last science flight in April 2024. The DC-8 is being replaced with a similarly refurbished Boeing 777 aircraft, which will be even more capable than the DC-8 and is located at the NASA Langley Research Center (LaRC). The NASA History Office and NASA Earth Science Division cohosted a workshop, titled “Contributions of the DC-8 to Earth System Science at NASA,” on October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC – for more details on the DC-8 event, see the article The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science. Photo 1. NASA’s DC-8 flying laboratory flew Earth science missions from 1987 to 2024. Expert maintenance allowed the aircraft to conduct research on six continents and study ice fields on the seventh, Antarctica. Image Credit: Lori Losey/NASA There are also updates from three recent NASA field campaigns – where ground observations are timed and coordinated with aircraft flights (often at more than one altitude) and with satellite overpasses to gain a comprehensive (i.e., multilayered, multiscale) picture of the atmosphere over a certain area. The Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment (WHyMSIE) campaign was held from October 17- November 18, 2024. Serving as a future NASA planetary boundary-layer (PBL) mission prototype, WHyMSIE aimed to capture a wide variety of thermodynamic, moisture, and PBL regimes across a variety of surface types. WHyMSIE was an initial step towards an integrated and affordable PBL observing system of systems, with multiple observing nodes – i.e., space, suborbital, and ground – from passive and active sensors to enable a comprehensive and coherent picture of essential PBL variables and hydrometeors that is not possible with any single sensor, observational approach, or scale. As a partnership between NASA and NOAA, this field campaign flew a first-of-its-kind hyperspectral microwave airborne measurements (CoSMIR-H) that was complemented by other passive (thermal emission, solar reflectance) and active (lidar, radar) sensors flying onboard the NASA ER-2 (AFRC) and G-III (LaRC), with coordination over a variety of ground-based sensor facilities. The GSFC Lidar Observation and Validation Experiment (GLOVE) was conducted in February 2025 at Edwards Air Force Base, California – see photo 2. GLOVE flew the Cloud Physics Lidar (CPL), Roscoe lidar, enhanced MODIS Airborne Simulator (eMAS) imaging scanner, and Cloud Radar System (CRS) on the ER-2 to validate NASA ICESat-2 atmospheric data products and validate ESA’s recently launched EarthCARE lidar, radar, and spectrometer products. NASA’s Earth Science Division FireSense project focuses on delivering NASA’s unique Earth science and technological capabilities to operational agencies, striving to address challenges in US wildland fire management. Together with agency, academic, and private partners, FireSense completed an airborne campaign in a wildfire smoke-impacted airshed in Missoula, MT on August 27–29, 2024. During the three-day campaign, a NASA Uninhabited Aerial System (UAS) team conducted eight data-collection flights, partnering these launches with weather balloon launches. FireSense uses airborne campaigns to evaluate capabilities and technologies to support decision making in wildland fire management and air quality forecasting. Targeted data collection produces better forecasts and more successful technology transfer to wildland fire operations. In the future, the FireSense Program will coordinate two airborne campaigns for spring 2025 at Geneva State Forest, Alabama and Kennedy Space Center located within Merritt Island National Wildlife Refuge, Florida. Both 2025 campaigns will incorporate data collection before, during, and after prescribed fire operations. Beyond NASA, the campaign works in close partnership with the U.S. Forest Service, National Weather Service, U.S. Fish and Wildlife Service, Department of Defense, as well as partners in academia and the private sector. For more information on FireSense’s most recent campaign in Montana see the Editor’s Corner supplemental summary of “The FireSense Project.” Photo 2. NASA personnel stand in front of theNASA ER-2 at Edwards Air Force Base, California, during the GSFC Lidar Observation and Validation Experiment (GLOVE) in February 2025. Image credit: John Yorks/NASA Congratulations to Jack Kaye, Associate Director for research with the Earth Science Division within NASA’s Science Mission Directorate, who has received the William T. Pecora Award for his vision and creative leadership in multidisciplinary Earth science research, as well as spurring advancements in the investigator community, supporting development of sensors, and shaping NASA satellite and aircraft missions and research programs at the highest levels. To read more about this accomplishment, see “Kaye Honored with Pecora Award.” On the outreach front, AGU returned to Washington, DC, for its annual meeting from December 9–14, 2024. NASA continued to uphold its long-standing tradition as an AGU partner and exhibitor, leveraging the meeting as an opportunity to share the agency’s cutting-edge research, data, and technology with the largest collection of Earth and planetary science professionals in the world. Many of the estimated 25,000 students, scientists, and industry personnel who attended the conference visited the NASA Science exhibit, interacting with NASA subject matter experts and listening to Hyperwall presentations throughout the week. As the final event in a busy calendar of annual scientific conferences, AGU is often an opportunity for NASA scientists to publish findings from the previous year and set goals for the year ahead. The agency’s robust portfolio of missions and programs will continue to set new records, such as NASA’s Parker Solar Probe pass of the Sun, and conduct fundamental research in Earth and space science. To read more about AGU 2024, see the article: AGU 2024: NASA Science on Display in the Nation’s Capital. Ending on a somber note, we recently posted three notable obituaries. Each of these individuals made significant contributions to EOS history, which are highlighted in the In Memoriam articles linked below. Jeff Dozier, an environmental scientist, snow hydrologist, researcher, academic, and former EOS Project Scientist, died on November 17, 2024. Jeff embraced remote sensing with satellites to measure snow properties and energy balance. As a Project Scientist with the Earth Observing System Data and Information System (EOSDIS), he contributed to the design and management of very large information systems that would impact spatial modeling and environmental informatics. Berrien Moore, Dean of the College of Atmospheric and Geographic Sciences at the University of Oklahoma (OU), died on December 17, 2024. Berrien served in several roles with NASA, including as a committee member and later chair of the organization’s Space and Earth Science Advisory Committee, Chair of the Earth Observing System Payload Advisory Committee, member and Chair of NASA’s Earth Science and Applications Committee, and member of the NASA Advisory Council. Berrien received NASA’s highest civilian honor, the Distinguished Public Service Medal, for outstanding service and the NOAA Administrator’s Recognition Award. Pierre Morel, the first director of the World Climate Research Programme (WCRP) and founding member of WCRP’s Global Energy and Water Exchanges (GEWEX) Core project, died on December 10, 2024. Pierre’s work played an integral role in the development of tools used to study the atmosphere, many of which are still active today. Pierre was the recipient of the 2008 Alfred Wegener Medal & Honorary Membership for his outstanding contributions to geophysical fluid dynamics, his leadership in the development of climate research, and the applications of space observation to meteorology and the Earth system science. Steve Platnick EOS Senior Project Scientist Share Details Last Updated Mar 20, 2025 Related Terms Earth Science View the full article
  12. Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 2 min read The FireSense Project Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer Wind is a major factor in fire. It controls how fires evolve and pose threats to the safety of communities. While weather balloons have traditionally produced vertical soundings to define changes in atmospheric dynamics, their use is restricted during aircraft operations to combat active wildfires. New technologies are needed to fill this critical measurement gap. The Uninhabited Aerial System (UAS) fits the bill, providing localized forecasting to help predict fire behavior. The NASA Earth Science Division FireSense project, together with agency, academic, and private partners, completed an airborne campaign in a wildfire smoke-impacted airshed in Missoula, MT on August 27–29, 2024. During the three-day campaign, a NASA UAS team conducted eight data-collection flights– see Figure. They partnered these launches with weather balloon launches. Using this real-time data, MITRE Corporation tested high-resolution “Score-based Data Assimilation” meteorological models and the National Oceanic and Atmospheric Administration (NOAA) High-Resolution Rapid Refresh (HRRR) operational atmospheric model against wind speed and temperature from local MesoNet weather stations. Environmental Systems Research Institute (ESRI) created comprehensive visualizations of flight paths, temperature, and wind. The Montana campaign evaluated the impact of real-time data on model fire weather forecasts commonly used for operational decision making. The UAS sounding data was validated against weather ballon data. In addition, the campaign evaluated data validity from in-situ UAS soundings in a smoke impacted environment as well as assessed payload portability and user experience with the systems. The campaign served as a trial for interagency coordination between NOAA incident meteorologists and U.S. Forest Service (USFS) trained UAS pilots conducting data collection flights. Figure. A composite image showing the NASA Alta X quadcopter taking off during one of eight flights conducted during the 2024 FireSense Uninhabited Aerial System technology demonstration in Missoula, MT. Image Credit: Milan Loiacono/NASA Steve Platnick EOS Senior Project Scientist Christine Mataya FireSense Program Coordinator Jacquelyn K. Shuman FireSense Project Scientist Michael Falkowski FireSense Program Lead Share Details Last Updated Mar 20, 2025 Related Terms Earth Science View the full article
  13. Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 3 min read Kaye Honored with Pecora Award Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer Image. Recipient of the Pecora Individual Award: Jack A. Kaye, PhD. Image credit: Sources/Usage: Public Domain. View Media Details Jack Kaye, Associate Director for research with the Earth Science Division within NASA’s Science Mission Directorate, has received the Pecora award for his vision and creative leadership in multidisciplinary Earth science research, as well as spurring advancements in the investigator community, supporting development of sensors, and shaping NASA satellite and aircraft missions and research programs at the highest levels. The William T. Pecora Award, presented annually by the U.S. Geological Survey (USGS) and NASA, honors individuals and groups who have made outstanding contributions to the field of remote sensing – advancing Earth observation and benefiting society. As Associate Director for research since 1999, Kaye is responsible for the research and data analysis programs for Earth System Science. He has contributed to national and international groups for decades, by serving as the NASA principal on the Subcommittee on Global Change Research in the U.S. Global Change Research Program and chairing the World Meteorological Organization Expert Team on Satellite Systems. Kaye has also served as a member of the Steering Committee for the Global Climate Observing System and on the National Research Council’s Roundtable on Science and Technology for Sustainability and the Chemical Sciences Roundtable. He also serves as NASA’s representative to the Subcommittee on Ocean Science and Technology. Kaye has devoted considerable energy toward developing early career researchers, stimulating the inclusion of a more diverse student population in science, technology, engineering, and mathematics. Kaye has received numerous NASA awards, including the Distinguished Service Medal in 2022 and the Meritorious Executive in the Senior Executive Service in 2004, 2010, and 2021. He was named a Fellow by the American Meteorological Society (AMS) in 2010 and by the American Association for the Advancement of Science (AAAS) in 2014. Kaye was also elected to serve as an office of the Atmospheric and Hydrospheric Science section of the AAAS (2015–2018). Kaye received a Bachelor of Science degree from Adelphi University in 1976 and a Ph.D. from the California Institute of Technology in 1982. He held a post-doctoral research associateship at the U.S. Naval Research Laboratory. Kaye has published more than 50 refereed papers and contributed to numerous reports, books, and encyclopedias. Kaye is joined in this honor by Chuanmin Hu, Professor of optical oceanography at the University of South Florida where he leads the Optical Oceanography Lab. Hu received the Pecora Group award for his lab’s groundbreaking advancements in remote sensing and real-world applications, including the Sargassum Watch System. The William T. Pecora Award honors the memory of William T. Pecora, former Director of USGS and Under Secretary of the Interior. His early vision and support helped establish what we know today as the Landsat satellite program. Steve Platnick EOS Senior Project Scientist Share Details Last Updated Mar 20, 2025 Related Terms Earth Science View the full article
  14. Earth (ESD) Earth Explore Explore Earth Science Climate Change Air Quality Science in Action Multimedia Image Collections Videos Data For Researchers About Us 6 Min Read NASA Uses Advanced Radar to Track Groundwater in California The Friant-Kern Canal supports water management in California’s San Joaquin Valley. A new airborne campaign is using NASA radar technology to understand how snowmelt replenishes groundwater in the area. Credits: Bureau of Reclamation Where California’s towering Sierra Nevada surrender to the sprawling San Joaquin Valley, a high-stakes detective story is unfolding. The culprit isn’t a person but a process: the mysterious journey of snowmelt as it travels underground to replenish depleted groundwater reserves. The investigator is a NASA jet equipped with radar technology so sensitive it can detect ground movements thinner than a nickel. The work could unlock solutions to one of the American West’s most pressing water challenges — preventing groundwater supplies from running dry.    “NASA’s technology has the potential to give us unprecedented precision in measuring where snowmelt is recharging groundwater,” said Erin Urquhart, program manager for NASA’s Earth Action Water Resources program at NASA Headquarters in Washington. “This information is vital for farmers, water managers, and policymakers trying to make the best possible decisions to protect water supplies for agriculture and communities.”  Tracking Water Beneath the Surface  In late February, a NASA aircraft equipped with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) conducted the first of six flights planned for this year, passing over a roughly 25-mile stretch of the Tulare Basin in the San Joaquin Valley, where foothills meet farmland. It’s a zone experts think holds a key to maintaining water supplies for one of America’s most productive agricultural regions.   Much of the San Joaquin Valley’s groundwater comes from the melting of Sierra Nevada snow. “For generations, we’ve been managing water in California without truly knowing where that meltwater seeps underground and replenishes groundwater,” said Stanford University geophysicist and professor Rosemary Knight, who is leading the research.    This image from the MODIS instrument on NASA’s Terra satellite, captured on March 8, 2025, shows the Tulare Basin area in Southern California, where foothills meet farmlands. The region is a crucial area for groundwater recharge efforts aimed at making the most of the state’s water resources. Credits: NASA Earth Observatory image by Michala Garrison, using MODIS data from NASA EOSDIS LANCE and GIBS/Worldview. The process is largely invisible — moisture filtering through rock and sediment, and vanishing beneath orchards and fields. But as the liquid moves downhill, it follows a pattern. Water flows into rivers and streams, some of it eventually seeping underground at the valley’s edge or as the waterways spread into the valley. As the water moves through the ground, it can create slight pressure that in turn pushes the surface upward. The movement is imperceptible to the human eye, but NASA’s advanced radar technology can detect it.  “Synthetic aperture radar doesn’t directly see water,” explained Yunling Lou, who leads the UAVSAR program at NASA’s Jet Propulsion Laboratory in Southern California. “We’re measuring changes in surface elevation — smaller than a centimeter — that tell us where the water is.”   These surface bulges create what Knight calls an “InSAR recharge signature.” By tracking how these surface bulges migrate from the mountains into the valley, the team hopes to pinpoint where groundwater replenishment occurs and, ultimately, quantify the amount of water naturally recharging the system.  Previous research using satellite-based InSAR (Interferometric Synthetic Aperture Radar) has shown that land in the San Joaquin Valley uplifts and subsides with the seasons, as the groundwater is replenished by Sierra snowmelt. But the satellite radar couldn’t uniquely identify the recharge paths. Knight’s team combined the satellite data with images of underground sediments, acquired using an airborne electromagnetic system, and was able to map the major hidden subsurface water pathways responsible for aquifer recharge.   NASA’s airborne UAVSAR system will provide even more detailed data, potentially allowing researchers to have a clearer view of where and how fast water is soaking back into the ground and recharging the depleted aquifers.  In 2025, NASA’s UAVSAR system on a Gulfstream-III jet (shown over a desert landscape) is conducting six planned advanced radar surveys to map how and where groundwater is recharging parts of California’s southern San Joaquin Valley. Credits: NASA Supporting Farmers and Communities   California’s Central Valley produces over a third of America’s vegetables and two-thirds of its fruits and nuts. The southern portion of this agricultural powerhouse is the San Joaquin Valley, where most farming operations rely heavily on groundwater, especially during drought years.   Water managers have occasionally been forced to impose restrictions on groundwater pumping as aquifer levels drop. Some farmers now drill increasingly deeper wells, driving up costs and depleting reserves.    “Knowing where recharge is happening is vital for smart water management,” said Aaron Fukuda, general manager of the Tulare Irrigation District, a water management agency in Tulare County that oversees irrigation and groundwater recharge projects.   “In dry years, when we get limited opportunities, we can direct flood releases to areas that recharge efficiently, avoiding places where water would just evaporate or take too long to soak in,” Fukuda said. “In wetter years, like 2023, it’s even more crucial — we need to move water into the ground as quickly as possible to prevent flooding and maximize the amount absorbed.”  NASA’s Expanding Role in Water Monitoring  NASA’s ongoing work to monitor and manage Earth’s water combines a range of cutting-edge technologies that complement one another, each contributing unique insights into the challenges of groundwater management.  The upcoming NISAR (NASA-ISRO Synthetic Aperture Radar) mission, a joint project between NASA and the Indian Space Research Organisation (ISRO) set to launch in coming months, will provide global-scale radar data to track land and ice surface changes — including signatures of groundwater movement — every 12 days.    The NISAR satellite (shown in this artist’s concept) has a large radar antenna designed to monitor Earth’s land and ice changes with unprecedented detail. Credits: NASA/JPL-Caltech In parallel, the GRACE satellites — operated by the German Aerospace Center, German Research Centre for Geosciences, and NASA — have transformed global groundwater monitoring by detecting tiny variations in Earth’s gravity, offering a broad view of monthly water storage changes across large regions.   The Gravity Recovery and Climate Experiment and Follow-On (GRACE and GRACE-FO) missions have helped expose major declines in aquifers, including in California’s Central Valley. But their coarser resolution calls for complementary tools that can, for example, pinpoint recharge hotspots with greater precision.  Together, these technologies form a powerful suite of tools that bridge the gap between regional-scale monitoring and localized water management. NASA’s Western Water Applications Office (WWAO) also plays a key role in ensuring that this wealth of data is accessible to water managers and others, offering platforms like the Visualization of In-situ and Remotely-Sensed Groundwater Observation (VIRGO) dashboard to facilitate informed decision-making.  “Airborne campaigns like this one in the San Joaquin test how our technology can deliver tangible benefits to American communities,” said Stephanie Granger, WWAO’s director at NASA’s Jet Propulsion Laboratory. “We partner with local water managers to evaluate tools that have the potential to strengthen water supplies across the Western United States.”    By Emily DeMarco  NASA Headquarters  About the Author Emily DeMarco Share Details Last Updated Mar 20, 2025 Related Terms Earth Droughts Floods Water on Earth Explore More 6 min read NASA Data Supports Everglades Restoration Florida’s coastal wetlands face new threats as sea levels and temperatures climb. NASA’s BlueFlux Campaign… Article 6 days ago 8 min read NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture In the Florida Everglades, NASA’s BlueFlux Campaign investigates the relationship between tropical wetlands and greenhouse… Article 7 days ago 5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10 Article 1 week ago Keep Exploring Discover More Topics From NASA Earth Your home. Our Mission. And the one planet that NASA studies more than any other. Climate Change NASA is a global leader in studying Earth’s changing climate. Explore Earth Science Earth Science in Action NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet. View the full article
  15. NASA’s Acting Associate Administrator for NASA’s Exploration Systems Development Mission Directorate Lori Glaze, right, and NASA Langley Acting Center Director Trina Dyal spoke at a dedication ceremony for NASA Langley’s Artemis Moon Tree at the center March 12.NASA/Ryan Hill A tree that sprouted from a seed that journeyed around the Moon and back is growing at NASA’s Langley Research Center in Hampton, Virginia. NASA’s Acting Associate Administrator for NASA’s Exploration Systems Development Mission Directorate Lori Glaze and NASA Langley Acting Center Director Trina Dyal spoke at a dedication ceremony for the Artemis Moon Tree, a loblolly pine, at the center March 12. “I wanted to quote an old Greek proverb that more or less says something like, ‘Society grows when its elders plant trees whose shade they know they shall never sit in,’ ” said Glaze. “I love that. We always talk about how we stand on the shoulders of giants. Those giants planted seeds, and we are still benefiting from the tremendous roots of those trees,” The young tree, only about two feet tall right now, is growing in an area between NASA Langley’s Integrated Engineering Services Building and its Measurement Systems Laboratory. The pine is surrounded by a wire plant protector. A yellow label identifies the species and the location of the U.S. Department of Agriculture Forest Services nursery where the seedling was grown — Charles E. Bessey Nursery in Halsey, Nebraska. A small plaque marks its status as a Moon Tree. “This, we plant here for all future generations to be inspired and to continue on the amazing legacy of what we’re doing,” said Glaze. “Our return to the lunar surface and our journey to Mars through the Artemis campaign is really going to lay the foundation for that future of exploration that right now we’re only dreaming about. With your help, through Langley and the rest of our NASA colleagues and partners, we’re going to achieve those visions.” NASA Langley’s Artemis Moon Tree is a loblolly pine.NASA/Ryan Hill The loblolly seed was one of many that flew on the Artemis I mission Nov. 16 to Dec. 11, 2022 — journeying 270,000 miles from Earth aboard the Orion spacecraft. NASA’s Office of STEM Engagement partnered with the Forest Services to fly the seeds aboard Artemis I as part of a national STEM Engagement and conservation education initiative. In addition to loblolly pines, tree species on the flight included sycamores, sweetgums, Douglas firs, and giant sequoias. The Forest Services germinated the seeds. Locally, NASA Langley’s loblolly pine is one of three Artemis Moon Trees. The Virginia Living Museum in Newport News and the Virginia Zoo in Norfolk were also selected as Moon Tree stewards, and also received loblolly pines. The Artemis Moon Trees take inspiration from their Apollo precursors. In 1971, NASA astronaut Stuart Roosa, the command module pilot for the Apollo 14 mission and a former U.S. Department of Agriculture Forest Services smoke jumper, carried tree seeds into lunar orbit. The Apollo 14 Moon Trees were disseminated to national monuments and dignitaries around the world, with a large number distributed as part of the nation’s bicentennial event. One of those Moon Trees, a sycamore, was planted at Albert W. Patrick III Elementary School in the Fox Hill area of Hampton in 1976. Sixth grader Marjorie White wrote a poem called “A Tree Lives” that won a contest to earn the honor. View the full article
  16. 7 Min Read Fallout from the Unauthorized Gemini III Space Sandwich Astronaut John W. Young, the pilot for Gemini III, checks over his helmet prior to flight. Credits: NASA “I hid a sandwich in my spacesuit,” Astronaut John W. Young confessed in the April 2, 1965, issue of Life Magazine. The conversation about and the consumption of the sandwich, which lasted only about 30 seconds during the Gemini III flight, became a serious matter that drew the ire of Congress and NASA’s administrator after the crew returned home. Congress was particularly upset and brought the matter to leadership’s attention at hearings about NASA’s 1966 budget. Representative George E. Shipley was especially disgusted, knowing how much money and time NASA had spent to prepare the Gemini III spacecraft for launch. The fact that a crewmember brought something into the crew cabin, which Shipley likened to a “surgeon’s operating room,” put the techniques used to prevent a spaceflight mission from failing at risk; crumbs could have made their way behind instrument panels interfering with the operation of flight equipment and the loss of the mission and its crew. Shipley called Young’s antics “foolish” and asked NASA leaders to share their thoughts. A Beef with Corned Beef George Mueller, associate administrator for Manned Space Flight, stated unequivocally that the agency did not “approve [of] unauthorized objects such as sandwiches going on board the spacecraft.” And he promised Shipley that NASA has “taken steps, obviously, to prevent recurrence of corned beef sandwiches in future flights. There was no detriment to the experimental program that was carried on, nor was there any detriment to the actual carrying out of the mission because of the ingestion of the sandwich.” Manned Spacecraft Center Director Robert R. Gilruth was more forgiving of Young’s decision. These sort of antics, he told the committee, helped the crews to “break up the strain” of spaceflight, and he hesitated “to be too strict in the future by laying down a lot of rules for men who have this responsibility and who, in all the flights so far, have done such good jobs.” Webb disagreed and said, “this is the United States of America’s space program and, as a matter of policy, we are not going to permit individuals to superimpose their judgment as to what is going to be taken on these flights. I think it is fine for Dr. Gilruth to take a very strong position with respect to the individuality of these men, but from those of us who have to look at the totality of the matter, this was not an adequate performance by an astronaut.” The loss of a Gemini mission, especially one so early in the program, would have been particularly challenging for an agency attempting to land humans on the Moon where each mission built on the previous flight. The United States was in a race with the Soviet Union, and for Congress at least, the purpose of Gemini and the cost of the space program was far too serious for these sorts of fun and games. For NASA Administrator James Webb, it was a sign that Gilruth was too lax when it came to managing his astronauts. Gemini III was just one example of the lack of control he noticed, and he pressed Gilruth for a report on the sandwich incident to determine if Young should be disciplined or at the very least reprimanded. The In-Flight Meal Young hatched the idea during training, when his commander, Virgil I. “Gus” Grissom grew “bored” with the food they practiced with for the mission. Grissom regularly complained about the dehydrated “delicacies” food scientists concocted. Bringing a sandwich onboard, an item that was freshly made and did not have to be rehydrated, “seemed like a fun idea at the time” to Young. Astronauts Gus Grissom (foreground), command pilot; and John Young, pilot, are shown inside their Gemini III spacecraft as they prepared for their launch from Cape Kennedy, Florida, on March 23, 1965.NASA One of the goals of their flight was to evaluate NASA’s flight food packaging and whether the containers leaked when foods were reconstituted, as well as the procedures for disposing of the meal and its packaging after eating. Foods included rehydratable items such as chicken bites, applesauce, or drinks, and compressed foods such as brownie bites. The Gemini food system was not haute cuisine, however, and crews complained about its taste. Young described the chicken bites as “barely edible” in his post-flight debriefing. Don L. Lind, a scientist-astronaut selected in 1967, described the early Gemini food as “strange.” Their class took some to jungle survival training in Panama, and while no one wanted to eat it on the first two days, by the third day they were so hungry that they were willing to give it a try. Another problem was that all rehydrated meals for Gemini were mixed with cold water, which made them less appetizing than a hot meal. Food packets planned for the Gemini III flight, including dehydrated beef pot roast, bacon and egg bites, toasted bread cubes, orange juice and a wet wipe. The astronaut’s method for rehydrating a pouch of dehydrated food with water is shown in the top left.NASA A freshly made corned beef sandwich made at a local restaurant sounded like a better option, so Young had fellow astronaut and backup command pilot Walter M. “Wally” Schirra pick one up. Schirra purchased the sandwich for Young, and as he headed out to the launchpad, Young put it in the pocket of his pressure suit. Nearly two hours into the flight, as Young started his food and waste evaluation, he pulled out the sandwich from his suit and offered it to his commander. As captured on the air-to-ground recordings, Grissom asked what it was and where it came from. “I brought it with me,” Young responded, “Let’s see how it tastes.” He didn’t expect the sandwich to be so pungent, “Smells, doesn’t it?” Grissom took a bite but found the rye crumbled so he placed the sandwich in his suit pocket to prevent the crumbs from floating about the cabin. Where did that come from? Gus Grissom Gemini III Commander Two days later, nearly a thousand members of the media from the United States and around the world gathered to hear from the crew and NASA management at the postflight press conference at the Carriage House Motel in Cocoa Beach, Florida. Space reporter Bill Hines asked Young about the sandwich, erroneously referring to it as a “baloney sandwich,” and what happened when Gus was offered a taste. “And,” he asked, “what became of the sandwich?” Young seemed surprised, “How did you find out about that?” and then laughed adding Grissom “ate the sandwich.” John Young and Gus Grissom speak with the press about the Gemini III mission during a news conference at the Carriage House Motel in Florida. Behind the table, left to right, are Dr. Kurt H. Debus, director of Kennedy Space Center, Christopher C. Kraft, Jr., MSC assistant director for Flight Operations, astronauts John Young and Gus Grissom, Dr. Robert R. Gilruth, MSC director, Dr. Robert C. Seamans, NASA associate administrator, and Julian Scheer, assistant administrator for NASA’s Office of Public Affairs.NASA Carry-on Restrictions for Spaceflights Ironically the Gemini Program offered astronauts more control over their flights than during Project Mercury, including the ability to maneuver their spacecraft and to be more independent from Mission Control; but the uproar over this event led NASA to draft rules about what astronauts could and could not take onboard a spacecraft. Starting with Gemini IV, flight crews had to present a list of items they planned to take on their missions. Prohibited items naturally included sandwiches as well as bulky or heavy items or metal that could negatively impact the operation of spacecraft equipment. (NASA still allowed astronauts to take personal items such as wedding bands or coins for families and friends in their personal preference kit.) Young never received a formal reprimand for the incident but was made aware of Congress’s frustration. Others in the corps were advised to avoid similar stunts and to focus on the mission. The decision to bring a sandwich onboard did not have a negative impact on Young’s career. He was the first astronaut to fly to space six times —two Gemini missions; two Apollo missions, including the dress rehearsal for the first lunar landing; and two space shuttle missions including STS-1, known as the bravest test flight in history. He also served as chief of the Astronaut Office for 13 years. Share Details Last Updated Mar 17, 2025 Related TermsNASA HistoryGemini IIIHumans in SpaceJohn W. YoungVirgil I. Grissom Explore More 7 min read Gemini Pioneered the Technology Driving Today’s Exploration Article 2 years ago 4 min read Contraband Corned Beef and the Early Days of Space Biology: the Gemini III Mission The Gemini III mission carried two remarkable firsts: an astronaut’s smuggled sandwich and NASA’s first… Article 3 years ago 4 min read John Young Remembered as Gemini, Apollo, Space Shuttle Astronaut Article 7 years ago Keep Exploring Discover More Topics From NASA Project Gemini Planets The solar system has eight planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. There are five officially recognized… Humans In Space Aeronautics View the full article
  17. The NASA Earth Science Technology Office (ESTO) seeks solutions to complex Earth Science problems using transformative or unconventional computing technologies such as quantum computing, quantum machine learning, neuromorphic computing, or in-memory computing. Breakthrough computing methods show promise in overcoming processing power, efficiency, and performance limitations of conventional computing methods. Once fully harnessed, these methods could transform many areas of American life. Rapid flood analysis is one such area. Flood hazards affect personal safety and land use initiatives, directly affecting individual livelihoods, community property, and infrastructure development and resilience. By beginning to apply these new methods in an Earth observation context, NASA is driving American leadership in pushing computing technology frontiers. Award: $300,000 in total prizes Open Date: March 19, 2025 Close Date: July 25, 2025 For more information, visit: https://www.nasa-beyond-challenge.org/ View the full article
  18. 6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Located off the coast of Ecuador, Paramount seamount is among the kinds of ocean floor features that certain ocean-observing satellites like SWOT can detect by how their gravitational pull affects the sea surface.NOAA Okeanos Explorer Program More accurate maps based on data from the SWOT mission can improve underwater navigation and result in greater knowledge of how heat and life move around the world’s ocean. There are better maps of the Moon’s surface than of the bottom of Earth’s ocean. Researchers have been working for decades to change that. As part of the ongoing effort, a NASA-supported team recently published one of the most detailed maps yet of the ocean floor, using data from the SWOT (Surface Water and Ocean Topography) satellite, a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales). Ships outfitted with sonar instruments can make direct, incredibly detailed measurements of the ocean floor. But to date, only about 25% of it has been surveyed in this way. To produce a global picture of the seafloor, researchers have relied on satellite data. This animation shows seafloor features derived from SWOT data on regions off Mexico, South America, and the Antarctic Peninsula. Purple denotes regions that are lower relative to higher areas like seamounts, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps. NASA’s Scientific Visualization Studio Why Seafloor Maps Matter More accurate maps of the ocean floor are crucial for a range of seafaring activities, including navigation and laying underwater communications cables. “Seafloor mapping is key in both established and emerging economic opportunities, including rare-mineral seabed mining, optimizing shipping routes, hazard detection, and seabed warfare operations,” said Nadya Vinogradova Shiffer, head of physical oceanography programs at NASA Headquarters in Washington. Accurate seafloor maps are also important for an improved understanding of deep-sea currents and tides, which affect life in the abyss, as well as geologic processes like plate tectonics. Underwater mountains called seamounts and other ocean floor features like their smaller cousins, abyssal hills, influence the movement of heat and nutrients in the deep sea and can attract life. The effects of these physical features can even be felt at the surface by the influence they exert on ecosystems that human communities depend on. This map of seafloor features like abyssal hills in the Indian Ocean is based on sea surface height data from the SWOT satellite. Purple denotes regions that are lower relative to higher areas like abyssal hills, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory This global map of seafloor features is based on ocean height data from the SWOT satellite. Purple denotes regions that are lower compared to higher features such as seamounts and abyssal hills, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory This map of ocean floor features like seamounts southwest of Acapulco, Mexico, is based on sea surface height data from SWOT. Purple denotes regions that are lower relative to higher areas like seamounts, indicated with green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory Mapping the seafloor isn’t the SWOT mission’s primary purpose. Launched in December 2022, the satellite measures the height of water on nearly all of Earth’s surface, including the ocean, lakes, reservoirs, and rivers. Researchers can use these differences in height to create a kind of topographic map of the surface of fresh- and seawater. This data can then be used for tasks such as assessing changes in sea ice or tracking how floods progress down a river. “The SWOT satellite was a huge jump in our ability to map the seafloor,” said David Sandwell, a geophysicist at Scripps Institution of Oceanography in La Jolla, California. He’s used satellite data to chart the bottom of the ocean since the 1990s and was one of the researchers responsible for the SWOT-based seafloor map, which was published in the journal Science in December 2024. How It Works The study authors relied the fact that because geologic features like seamounts and abyssal hills have more mass than their surroundings, they exert a slightly stronger gravitational pull that creates small, measurable bumps in the sea surface above them. These subtle gravity signatures help researchers predict the kind of seafloor feature that produced them. Through repeated observations — SWOT covers about 90% of the globe every 21 days — the satellite is sensitive enough to pick up these minute differences, with centimeter-level accuracy, in sea surface height caused by the features below. Sandwell and his colleagues used a year’s worth of SWOT data to focus on seamounts, abyssal hills, and underwater continental margins, where continental crust meets oceanic crust. Previous ocean-observing satellites have detected massive versions of these bottom features, such as seamounts over roughly 3,300 feet (1 kilometer) tall. The SWOT satellite can pick up seamounts less than half that height, potentially increasing the number of known seamounts from 44,000 to 100,000. These underwater mountains stick up into the water, influencing deep sea currents. This can concentrate nutrients along their slopes, attracting organisms and creating oases on what would otherwise be barren patches of seafloor. Looking Into the Abyss The improved view from SWOT also gives researchers more insight into the geologic history of the planet. “Abyssal hills are the most abundant landform on Earth, covering about 70% of the ocean floor,” said Yao Yu, an oceanographer at Scripps Institution of Oceanography and lead author on the paper. “These hills are only a few kilometers wide, which makes them hard to observe from space. We were surprised that SWOT could see them so well.” Abyssal hills form in parallel bands, like the ridges on a washboard, where tectonic plates spread apart. The orientation and extent of the bands can reveal how tectonic plates have moved over time. Abyssal hills also interact with tides and deep ocean currents in ways that researchers don’t fully understand yet. The researchers have extracted nearly all the information on seafloor features they expected to find in the SWOT measurements. Now they’re focusing on refining their picture of the ocean floor by calculating the depth of the features they see. The work complements an effort by the international scientific community to map the entire seafloor using ship-based sonar by 2030. “We won’t get the full ship-based mapping done by then,” said Sandwell. “But SWOT will help us fill it in, getting us close to achieving the 2030 objective.” More About SWOT The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA. To learn more about SWOT, visit: https://swot.jpl.nasa.gov News Media Contacts Jane J. Lee / Andrew Wang Jet Propulsion Laboratory, Pasadena, Calif. 818-354-0307 / 626-379-6874 jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 2025-040 Share Details Last Updated Mar 19, 2025 Related TermsSWOT (Surface Water and Ocean Topography)EarthJet Propulsion LaboratoryOceans Explore More 6 min read ESA Previews Euclid Mission’s Deep View of ‘Dark Universe’ Article 9 hours ago 5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe.… Article 1 day ago 3 min read Students Dive Into Robotics at Competition Supported by NASA JPL Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  19. The high-rise bridge that serves as the primary access point for employees and visitors to NASA’s Kennedy Space Center in Florida now is fully operational. In the late hours of March 18, 2025, the Florida Department of Transportation (FDOT) opened the westbound portion of the NASA Causeway Bridge, which spans the Indian River Lagoon and connects NASA Kennedy and Cape Canaveral Space Force Station to the mainland. This new bridge span (right side of photo) sits alongside its twin on the eastbound side, which has accommodated traffic in both directions since FDOT opened it on June 9, 2023. The new structure replaces the old two-lane drawbridge which operated at that location for nearly 60 years. “The old drawbridge served us well, witnessing decades of spaceflights since the Apollo era and supporting Kennedy’s transition to a multi-user spaceport,” said Kennedy’s Acting Director Kelvin Manning. “The new bridge will see NASA send American astronauts back to the Moon and on to Mars, and it will support the continued rapid growth of America’s commercial space industry here at Earth’s premier spaceport.” At 4,025 feet long, the new NASA Causeway Bridge is about 35% longer than its predecessor, featuring a 65-foot waterway clearance and a channel wide enough to handle larger vessels carrying cargo necessary for Kennedy to continue launching humanity’s future. The bridge sits on over 1,000 concrete pilings which total more than 22 miles in length. Nearly 270 concrete I-beams, each weighing hundreds of thousands of pounds, support the bridge, along with over 40,000 cubic yards of concrete and over 8.7 million pounds of steel. All 110 spans of the old drawbridge were demolished during the construction, with much of the material recycled for future projects. A $90 million federal infrastructure grant secured in July 2019 by Space Florida via the U.S. Department of Transportation funded nearly 50% of the drawbridge replacement as well the widening of nearby Space Commerce Way. NASA and the state of Florida provided the remaining funding for the upgrades. Photo credit: NASA/Glenn Benson View the full article
  20. NASA/Keegan Barber NASA astronaut Butch Wilmore, left, Roscosmos cosmonaut Aleksandr Gorbunov, second from left, and NASA astronauts Nick Hague, second from right, and Suni Williams, right, are all smiles as they wait to exit a SpaceX Dragon spacecraft on March 18, 2025. The four returned from a long-duration science expedition aboard the International Space Station, splashing down off the coast of Florida. Throughout its mission, Crew-9 contributed to a host of science and maintenance activities and technology demonstrations. Williams conducted two spacewalks, joined by Wilmore for one and Hague for another. Williams now holds the record for total spacewalking time by a female astronaut, with 62 hours and 6 minutes outside of station. The American crew members conducted more than 150 unique scientific experiments and technology demonstrations between them, with over 900 hours of research. This research included investigations on plant growth and quality, as well as the potential of stem cell technology to address blood diseases, autoimmune disorders, and cancers. Image credit: NASA/Keegan Barber View the full article
  21. Views: Splashing Down On Earth
  22. 9 min read Interview with Michiharu Hyogo, Citizen Scientist and First Author of a New Scientific Paper Peer-reviewed scientific journal articles are the bedrock of science. Each one represents the culmination of a substantial project, impartially checked for accuracy and relevance – a proud accomplishment for any science team. The person who takes responsibility for writing the paper must inevitably and repeatedly write, edit, and rewrite its content as they receive comments and constructive criticism from colleagues, peers, and editors. And the process involves much more than merely re-writing the words. Implementing feedback and polishing the paper regularly involves reanalyzing data and conducting additional analyses as needed, over and over again. The person who successfully climbs this mountain of effort can then often earn the honor of being named the first author of a peer-reviewed scientific publication. To our delight, more and more of NASA’s citizen scientists have taken on this demanding challenge, and accomplished this incredible feat. Michiharu Hyogo is one of these pioneers. His paper, “Unveiling the Infrared Excess of SIPS J2045-6332: Evidence for a Young Stellar Object with Potential Low-Mass Companion” (Hyogo et al. 2025) was recently accepted for publication in the journal Monthly Notices of the Royal Astronomical Society. He conceived of the idea for this paper, performed most of the research using of data from NASA’s retired Wide-field Infrared Survey Explorer (WISE) mission, and submitted it to the journal. We asked him some questions about his life and he shared with us some of the secrets to his success. Q: Where do you live, Michi? A: I have been living in Tokyo, Japan since the end of 2012. Before that, I lived outside Japan for a total of 21 years, in countries such as Canada, the USA, and Australia. Q: Which NASA Citizen Science projects have you worked on? A: I am currently working on three different NASA-sponsored projects: Disk Detective, Backyard Worlds: Planet 9, and Planet Patrol. Q: What do you do when you’re not working on these projects? A: Until March of last year, I worked as a part-time lecturer at a local university in Tokyo. At the moment, I am unemployed and looking for similar positions. My dream is to work at a community college in the USA, but so far, my job search has been unsuccessful. In the near future, I hope to teach while also working on projects like this one. This is my dream. Q: How did you learn about NASA Citizen Science? A: It’s a very long story. A few years after completing my master’s degree, around 2011, a friend from the University of Hawaii (where I did my bachelor’s degree) introduced me to one of the Zooniverse projects. Since it was so long ago, I can’t remember exactly which project it was—perhaps Galaxy Zoo or another one whose name escapes me. I definitely worked on Planet Hunters, classifying all 150,000 light curves from (NASA’s) Kepler observatory. Around the time I completed my classifications for Planet Hunters, I came across Disk Detective as it was launching. A friend on Facebook shared information about it, stating that it was “NASA’s first sponsored citizen science project aimed at publishing scientific papers”. At that time, I was unemployed and had plenty of free time, so I joined without giving much thought to the consequences. I never expected that this project would eventually lead me to write my own paper — it was far beyond anything I had imagined. Q: What would you say you have gained from working on these NASA projects?A: Working on these NASA-sponsored projects has been an incredibly valuable experience for me in multiple ways. Scientifically, I have gained hands-on experience in analyzing astronomical data, identifying potential celestial objects, and contributing to real research efforts. Through projects like Disk Detective,Backyard Worlds: Planet 9, and Planet Patrol, I have learned how to systematically classify data, recognize patterns, and apply astrophysical concepts in a practical setting. Beyond the technical skills, I have also gained a deeper understanding of how citizen science can contribute to professional research. Collaborating with experts and other volunteers has improved my ability to communicate scientific ideas and work within a research community. Perhaps most importantly, these projects have given me a sense of purpose and the opportunity to contribute to cutting-edge discoveries. They have also led to unexpected opportunities, such as co-authoring scientific papers — something I never imagined when I first joined. Overall, these experiences have strengthened my passion for astronomy and my desire to continue contributing to the field. Q: How did you make the discovery that you wrote about in your paper? A: Well, the initial goal of this project was to discover circumstellar disks around brown dwarfs. The Disk Detective team assembled more than 1,600 promising candidates that might possess such disks. These objects were identified and submitted by volunteers from the same project, following the physical criteria outlined within it. Among these candidates, I found an object with the largest infrared excess and the fourth-latest spectral type. This was the moment I first encountered the object and found it particularly interesting, prompting me to investigate it further. Although we ultimately did not discover a disk around this object, we uncovered intriguing physical characteristics, such as its youth and the presence of a low-mass companion with a spectral type of L3 to L4. Q: How did you feel when your paper was accepted for publication? A: Thank you for asking this question—I truly appreciate it. I feel like the biggest milestone of my life has finally been achieved! This is the first time I genuinely feel that I have made a positive impact on society. It feels like a miracle. Imagine if we had a time machine and I could go back five years to tell my past self this whole story. You know what my past self would say? “You’re crazy.” Yes, I kept dreaming about this, and deep down, I was always striving toward this goal because it has been my purpose in life since childhood. I’m also proud that I accomplished something like this without being employed by a university or research institute. (Ironically, I wasn’t able to achieve something like this while I was in grad school.) I’m not sure if there are similar examples in the history of science, but I’m quite certain this is a rare event. Q: What would you say to other citizen scientists about the process of writing a paper? A: Oh, there are several important things I need to share with them. First, never conduct research entirely on your own. Reach out to experts in your field as much as possible. For example, in my case, I collaborated with brown dwarf experts from the Backyard Worlds: Planet 9 team. When I completed the first draft of my paper, I sent it to all my collaborators to get their feedback on its quality and to check if they had any comments on the content. It took some time, but I received a lot of helpful suggestions that ultimately improved the clarity and conciseness of my paper. If this is your first time receiving extensive feedback, it might feel overwhelming. However, you should see it as a valuable opportunity—one that will lead you to stronger research results. I am truly grateful for the feedback I received. This process will almost certainly help you receive positive feedback from referees when you submit your own paper. That’s exactly what happened to me. Second, do not assume that others will automatically understand your research for you. This seems to be a common challenge among many citizen scientists. First, you must have a clear understanding of your own research project. Then, it is crucial to communicate your progress clearly and concisely, without unnecessary details. If you have questions—especially when you are stuck — be specific. For example, I frequently attend Zoom meetings for various projects, including Backyard Worlds: Planet 9 and Disk Detective. In every meeting, I give a brief recap of what I’ve been working on — every single time — to refresh the audience’s memory. This helps them stay engaged and remember my research. (Screen sharing is especially useful for this.) After the recap, I present my questions. This approach makes it much easier for others to understand where I am in my research and, ultimately, helps them provide potential solutions to the challenges I’m facing. Lastly, use Artificial Intelligence (AI) as much as possible. For tasks like editing, proofreading, and debugging, AI tools can be incredibly helpful. I don’t mean to sound harsh, but I find it surprising that some people still do these things manually. In many cases, this can be a waste of time. I strongly believe we should rely on machines for tasks that we either don’t need to do ourselves or simply cannot do. This approach saves time and significantly improves productivity. Q: Thank you for sharing all these useful tips! Is there anything else you would like to add? A: I would like to sincerely thank all my collaborators for their patience and support throughout this journey. I know we have never met in person, and for some of you, this may not be a familiar way to communicate (it wasn’t for me at first either). If that’s the case, I completely understand. I truly appreciate your trust in me and in this entirely online mode of communication. Without your help, none of what I have achieved would have been possible. I am now thinking about pushing myself to take on another set of research projects. My pursuit of astronomical research will not stop, and I hope you will continue to follow my journey. I will also do my best to support others along the way. Share Details Last Updated Mar 18, 2025 Related Terms Citizen Science Astrophysics Explore More 5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet Article 1 day ago 5 min read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide Article 2 days ago 2 min read Hubble Sees a Spiral and a Star Article 5 days ago View the full article
  23. 6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This image shows about 1.5% of Euclid’s Deep Field South, one of three regions of the sky that the telescope will observe for more than 40 weeks over the course of its prime mission, spotting faint and distant galaxies. One galaxy cluster near the center is located almost 6 billion light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA; image processing by J.-C. Cuillandre, E. Bertin, G. An-selmi With contributions from NASA, the mission is looking back into the universe’s history to understand how the universe’s expansion has changed. The Euclid mission — led by ESA (European Space Agency) with contributions from NASA — aims to find out why our universe is expanding at an accelerating rate. Astronomers use the term “dark energy” to refer to the unknown cause of this phenomenon, and Euclid will take images of billions of galaxies to learn more about it. A portion of the mission’s data was released to the public by ESA released on Wednesday, March 19. This new data has been analyzed by mission scientists and provides a glimpse of Euclid’s progress. Deemed a “quick” data release, this batch focuses on select areas of the sky to demonstrate what can be expected in the larger data releases to come and to allow scientists to sharpen their data analysis tools in preparation. The data release contains observations of Euclid’s three “deep fields,” or areas of the sky where the space telescope will eventually make its farthest observations of the universe. Featuring one week’s worth of viewing, the Euclid images contain 26 million galaxies, the most distant being over 10.5 billion light-years away. Launched in July 2023, the space telescope is expected to observe more than 1.5 billion galaxies during its six-year prime mission. The entirety of the Euclid mission’s Deep Field South region is shown here. It is about 28.1 square degrees on the sky. Euclid will observe this and two other deep field regions for a total of about 40 weeks during its 6-year primary mission. ESA/Euclid/Euclid Consortium/NASA; image processing by J.-C. Cuillandre, E. Bertin, G. An-selmi By the end of that prime mission, Euclid will have observed the deep fields for a total of about 40 weeks in order to gradually collect more light, revealing fainter and more distant galaxies. This approach is akin to keeping a camera shutter open to photograph a subject in low light. The first deep field observations, taken by NASA’s Hubble Space Telescope in 1995, famously revealed the existence of many more galaxies in the universe than expected. Euclid’s ultimate goal is not to discover new galaxies but to use observations of them to investigate how dark energy’s influence has changed over the course of the universe’s history. In particular, scientists want to know how much the rate of expansion has increased or slowed down over time. Whatever the answer, that information would provide new clues about the fundamental nature of this phenomenon. NASA’s Nancy Grace Roman Space Telescope, set to launch by 2027, will also observe large sections of the sky in order to study dark energy, complementing Euclid’s observations. The location of the Euclid deep fields are shown marked in yellow on this all-sky view from ESA’s Gaia and Planck missions. The bright horizontal band is the plane of our Milky Way galaxy. Euclid’s Deep Field South is at bottom left.ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA/Planck Collaboration Looking Back in Time To study dark energy’s effect throughout cosmic history, astronomers will use Euclid to create detailed, 3D maps of all the stuff in the universe. With those maps, they want to measure how quickly dark energy is causing galaxies and big clumps of matter to move away from one another. They also want to measure that rate of expansion at different points in the past. This is possible because light from distant objects takes time to travel across space. When astronomers look at distant galaxies, they see what those objects looked like in the past. For example, an object 100 light-years away looks the way it did 100 years ago. It’s like receiving a letter that took 100 years to be delivered and thus contains information from when it was written. By creating a map of objects at a range of distances, scientists can see how the universe has changed over time, including how dark energy’s influence may have varied. But stars, galaxies, and all the “normal” matter that emits and reflects light is only about one-fifth of all the matter in the universe. The rest is called “dark matter” — a material that neither emits nor reflects light. To measure dark energy’s influence on the universe, astronomers need to include dark matter in their maps. Bending and Warping Although dark matter is invisible, its influence can be measured through something called gravitational lensing. The mass of both normal and dark matter creates curves in space, and light traveling toward Earth bends or warps as it encounters those curves. In fact, the light from a distant galaxy can bend so much that it forms an arc, a full circle (called an Einstein ring), or even multiple images of the same galaxy, almost as though the light has passed through a glass lens. In most cases, gravitational lensing warps the apparent shape of a galaxy so subtly that researchers need special tools and computer software to see it. Spotting those subtle changes across billions of galaxies enables scientists to do two things: create a detailed map of the presence of dark matter and observe how dark energy influenced it over cosmic history. It is only with a very large sample of galaxies that researchers can be confident they are seeing the effects of dark matter. The newly released Euclid data covers 63 square degrees of the sky, an area equivalent to an array of 300 full Moons. To date, Euclid has observed about 2,000 square degrees, which is approximately 14% of its total survey area of 14,000 square degrees. By the end of its mission, Euclid will have observed a third of the entire sky. The dataset released this month is described in several preprint papers available today. The mission’s first cosmology data will be released in October 2026. Data accumulated over additional, multiple passes of the deep field locations will also be included in the 2026 release. More About Euclid Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme. Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, supports U.S.-based science investigations, and science data is archived at the NASA / IPAC Infrared Science Archive (IRSA). JPL is a division of Caltech. For more information about Euclid go to: science.nasa.gov/mission/euclid/ News Media Contact ESA Media Relations media@esa.int Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e.cofield@jpl.nasa.gov 2025-039 Share Details Last Updated Mar 19, 2025 Related TermsEuclidGalaxies, Stars, & Black HolesJet Propulsion LaboratoryStars Explore More 5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe.… Article 24 hours ago 3 min read Students Dive Into Robotics at Competition Supported by NASA JPL Article 2 days ago 3 min read NASA Analysis Shows Unexpected Amount of Sea Level Rise in 2024 Article 6 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  24. This compressed, resolution-limited gif shows the view of lunar sunset from one of the six Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 cameras on Firefly’s Blue Ghost lander, which operated on the Moon’s surface for a little more than 14 days and stopped, as anticipated, a few hours into lunar night. The bright, swirly light moving across the surface on the top right of the image is sunlight reflecting off the lander. Images taken by SCALPSS 1.1 during Blue Ghost’s descent and landing, as well as images from the surface during the long lunar day, will help researchers better understand the effects of a lander’s engine plumes on the lunar soil, or regolith. The instrument collected almost 9000 images and returned 10 GB of data. This data is important as trips to the Moon increase and the number of payloads touching down in proximity to one another grows. The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program. SCALPSS was developed at NASA’s Langley Research Center in Hampton, Virginia, with support from Marshall Space Flight Center in Huntsville, Alabama.NASA/Olivia TyrrellView the full article
  25. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read Sols 4481-4483: Humber Pie NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on March 14, 2025 — sol 4480, or Martian day 4,480 of the Mars Science Laboratory mission — at 08:53:19 UTC. NASA/JPL-Caltech Written by Michelle Minitti, Planetary Geologist at Framework Earth planning date: Friday, March 14, 2025 The rover successfully arrived at the “Humber Park” outcrop which, on this fine “Pi Day” on Earth, we could convince ourselves looked like a pie with a sandy interior and a rough and rocky crust. We can only hope our instruments are as excited to tuck into this outcrop as the Curiosity team is to eat our pizzas and favorite pies (for me, pumpkin) this afternoon and evening. MAHLI gets a big serving of rock structures from the Humber Park “crust” with three separate imaging targets. One observation, at the target “Yerba Buena Ridge,” covers structures expressed across the front of the outcrop in the above image. A second target, “Sepulveda Pass,” has intriguing texture that warranted multiple flavors of stereo imaging. The final target, which MAHLI shared with APXS, was “South Fork.” It was the clearest place to put APXS down on the rough bedrock blocks. ChemCam also feasted on rock chemistry from an array of targets with different textures. “Ridge Route” covered a low-lying bedrock slab with the fine layering we have seen consistently through the sulfate unit, while “Toyon Canyon” covered a lumpier portion of the Humber Park outcrop above Yerba Buena Ridge. The “Mount Lawlor” target was a mix of Ridge Route and Toyon Canyon — layered, but on a high-standing portion of the outcrop that also had some unusual chains of pits. ChemCam added two long distance mosaics on “Gould Mesa” to the menu, which captured a variety of structures on this impressive butte about 100 meters ahead of the rover. Mastcam focused on covering the whole of Humber Park with a stereo mosaic but also added small mosaics across a trough in the sand and a bedrock block with potential cross bedding at “Rancho Los Feliz.” Because just imaging this side of Humber Park was not enough, Mastcam and Navcam worked closely with the rover drivers to plan a mid-drive mosaic of the other side of the outcrop so we fully capture Humber Park’s “crust.” Our environmental observations were not just pie in the sky but will help us monitor the chemistry of and the amount of dust in the atmosphere, and record clouds and dust devils crossing above and around us. Share Details Last Updated Mar 18, 2025 Related Terms Blogs Explore More 3 min read Sols 4479-4480: What IS That Lumpy, Bumpy Rock? Article 4 days ago 3 min read Navigating a Slanted River Article 5 days ago 2 min read Sols 4477-4478: Bumping Back to Business Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
×
×
  • Create New...