Jump to content

NASA

Publishers
  • Posts

    4,764
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. Are you ready for this year’s NASA TechRise Student challenge? From researching Earth’s environment to designing experiments for space exploration, schools are invited to join NASA in its mission to inspire the world through discovery. If you are in sixth to 12th grade at a U.S. public, private, or charter school – including those in U.S. territories – your challenge is to team up with your schoolmates and develop a science or technology experiment idea for this year’s NASA TechRise flight vehicle – the high-altitude balloon! The High-Altitude Balloon will offer approximately four to eight hours of flight time at approximately 70,000 to 95,000 feet and exposure to Earth’s atmosphere, high-altitude radiation, and perspective views of our planet. Award: $60,000 in total prizes Open Date: August 1, 2024 Close Date: November 1, 2024 For more information, visit: https://www.futureengineers.org/nasatechrise View the full article
  2. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Students take a tour of NASA Glenn’s Telescience Support Center, where researchers operate International Space Station experiments. Credit: NASA/Jef Janis School is back in session, and the joy of learning is back on students’ minds. Teachers and parents seeking ways to extend students’ academic excitement outside of the classroom should know NASA’s Glenn Research Center in Cleveland offers various opportunities to engage with NASA. NASA educators encourage Ohio students and teachers to take part in the incredible space and aeronautics research happening right in their backyards. “We have lofty goals to send the first woman and first person of color to the Moon, on to Mars, and beyond. To get there, we’ll need all the creativity and talent available to us,” said Darlene Walker, Glenn’s Office of STEM Engagement director. “We offer programs, events, and experiences at Glenn to inspire and attract students to NASA careers.” Throughout the year, NASA Glenn offers in-person and virtual events for students and schools. 6 Ways Students Can Engage With NASA Glenn One-day events are open to students and teachers who are U.S. citizens as well as Ohio schools or other youth-serving organizations. Registration generally opens one to two months prior to the event. “Event dates may be subject to change. Check the Glenn STEM Engagement webpage for the most up-to-date information.” Events are designed to inspire students and spark their interest in STEM fields. These events feature NASA experts, engaging STEM activities, and tours of Glenn facilities. 1. High School Shadowing Days | High school students Offered in fall and spring, this one-day event allows high school students to explore career opportunities in STEM, as well as business. Fall Event Date – Nov. 14, 2024 Registration Opens – Sept. 16, 2024 Spring Event Date – May 15, 2025 Registration Opens – March 14, 2025 2. Girls in STEM | 5-8th grade students To inspire an interest in STEM fields among middle school students, Girls in STEM features female Glenn employees, STEM activities, and tours of center facilities. Event Date – April 10, 2025 Registration Opens – Feb. 10, 2025 3. Aviation Day | Middle and high school students This one-day event celebrates advancements in aviation and encourages middle and high school students’ interest in aeronautics. Event Date – Aug. 28, 2025 Registration Opens – June 27, 2025 4. TECH Day | Middle school students TECH is short for Tours of NASA, Engineering challenge, Career exploration, and Hands-on activity. This event includes tours of center facilities, a student engineering design challenge, and career exploration opportunities. Event Date – May 1, 2025 Registration Opens – Feb. 28, 2025 5. Manufacturing Day | High school students Manufacturing Day aims to educate high school students about careers in the manufacturing field while encouraging an interest in STEM. Students will see how teams of engineers, researchers, and technicians work together to design and prototype aeronautics and space hardware. Event Date – Sept. 18, 2025 Registration Opens – July 18, 2025 6. NASA STEM Kids Virtual Events | K-4th grade students These virtual events are designed to engage kindergarten through fourth grade students by sharing the excitement of NASA’s missions of exploration and discovery through virtual tours, conversations with NASA experts, and hands-on activities. Event Dates – Dec. 5, 2024; March 8, 2025; June 7, 2025; and Sept. 13, 2025 Registration Opens – 60 days prior to each event “Through these opportunities, we want students to see astronauts, scientists, engineers, and role models who look like them and grew up like them work toward NASA’s missions and goals,” Walker said. “We hope they see themselves achieving these things too. We have all kinds of careers at NASA. Any career you can find outside of NASA, you can find here as well.” Additional programs and projects Glenn offers additional programs and projects for schools, teachers, and students looking for other ways to engage with NASA: High School Capstones Glenn Engineering Design Challenges MUREP Precollege Summer Institute MUREP Aerospace Academy For more information about these opportunities, reach out the NASA contact listed on the correlating web page. Learn more about NASA’s Office of STEM Engagement. Jacqueline Minerd NASA’s Glenn Research Center View the full article
  3. Learn Home Leveraging Teacher Leaders to… Heliophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science 2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics Many teachers are exceptionally skilled at bridging students’ interests with real-world science. Now for the third year, the American Association of Physics Teachers (AAPT) has brought together such a group of highly-motivated secondary and higher education teachers as part of their NASA Heliophysics Education Activation Team (HEAT) Space Physics Ambassador program. In June of 2024, eight educators from across the country gathered in Chicago to reflect on how they could make use of the AAPT NASA HEAT team’s instructional materials for teaching basic physics concepts in a space science context. Following the three-day summit, each ambassador would plan to carry out professional development workshops for approximately 20 other educators. Heliophysics can provide ample opportunity for teaching many concepts that are foundational to the Next Generation Science Standards and can support teachers who want to teach physics in context, but don’t always feel they have the resources to do so. One of the team’s most popular instructional materials includes a lesson about using data from NASA’s Solar and Heliospheric Observatory (SOHO) to create motion graphs of coronal mass ejections. Another activity relates data from NASA’s Solar Dynamics Observatory (SDO) from solar flare observations to explore how energy is stored and released in magnetic fields. These authentic learning resources offer the opportunity for teachers to bring space data into the classroom. Educators who are interested in learning more about these and other lessons are welcome to join the team’s free 1.5-hour mini-workshops, one Saturday per month from September to December 2024. Register: https://forms.gle/jD3fZskjqzFcuXGXA NASA HEAT is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn Two ambassadors explore sunspot data during the summit. Rebecca Vieyra Share Details Last Updated Sep 04, 2024 Editor NASA Science Editorial Team Related Terms Heliophysics Opportunities For Educators to Get Involved Science Activation Explore More 2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects Article 1 day ago 2 min read Co-creating authentic STEM learning experiences with Latino communities Article 5 days ago 5 min read NASA, ESA Missions Help Scientists Uncover How Solar Wind Gets Energy Article 5 days ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  4. 5 Min Read NASA’s Webb Reveals Distorted Galaxy Forming Cosmic Question Mark The galaxy cluster MACS-J0417.5-1154. Full image below. Credits: NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary’s University). It’s 7 billion years ago, and the universe’s heyday of star formation is beginning to slow. What might our Milky Way galaxy have looked like at that time? Astronomers using NASA’s James Webb Space Telescope have found clues in the form of a cosmic question mark, the result of a rare alignment across light-years of space. “We know of only three or four occurrences of similar gravitational lens configurations in the observable universe, which makes this find exciting, as it demonstrates the power of Webb and suggests maybe now we will find more of these,” said astronomer Guillaume Desprez of Saint Mary’s University in Halifax, Nova Scotia, a member of the team presenting the Webb results. Image A: Lensed Question Mark (NIRCam) The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here. Two distant, interacting galaxies — a face-on spiral and a dusty red galaxy seen from the side — appear multiple times, tracing a familiar shape across the sky. Active star formation, and the face-on galaxy’s remarkably intact spiral shape, indicate that these galaxies’ interaction is just beginning. NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary’s University). While this region has been observed previously with NASA’s Hubble Space Telescope, the dusty red galaxy that forms the intriguing question-mark shape only came into view with Webb. This is a result of the wavelengths of light that Hubble detects getting trapped in cosmic dust, while longer wavelengths of infrared light are able to pass through and be detected by Webb’s instruments. Astronomers used both telescopes to observe the galaxy cluster MACS-J0417.5-1154, which acts like a magnifying glass because the cluster is so massive it warps the fabric of space-time. This allows astronomers to see enhanced detail in much more distant galaxies behind the cluster. However, the same gravitational effects that magnify the galaxies also cause distortion, resulting in galaxies that appear smeared across the sky in arcs and even appear multiple times. These optical illusions in space are called gravitational lensing. The red galaxy revealed by Webb, along with a spiral galaxy it is interacting with that was previously detected by Hubble, are being magnified and distorted in an unusual way, which requires a particular, rare alignment between the distant galaxies, the lens, and the observer — something astronomers call a hyperbolic umbilic gravitational lens. This accounts for the five images of the galaxy pair seen in Webb’s image, four of which trace the top of the question mark. The dot of the question mark is an unrelated galaxy that happens to be in the right place and space-time, from our perspective. Image B: Hubble and Webb Side by Side Image Before/After In addition to producing a case study of the Webb NIRISS (Near-Infrared Imager and Slitless Spectrograph) instrument’s ability to detect star formation locations within a galaxy billions of light-years away, the research team also couldn’t resist highlighting the question mark shape. “This is just cool looking. Amazing images like this are why I got into astronomy when I was young,” said astronomer Marcin Sawicki of Saint Mary’s University, one of the lead researchers on the team. “Knowing when, where, and how star formation occurs within galaxies is crucial to understanding how galaxies have evolved over the history of the universe,” said astronomer Vicente Estrada-Carpenter of Saint Mary’s University, who used both Hubble’s ultraviolet and Webb’s infrared data to show where new stars are forming in the galaxies. The results show that star formation is widespread in both. The spectral data also confirmed that the newfound dusty galaxy is located at the same distance as the face-on spiral galaxy, and they are likely beginning to interact. “Both galaxies in the Question Mark Pair show active star formation in several compact regions, likely a result of gas from the two galaxies colliding,” said Estrada-Carpenter. “However, neither galaxy’s shape appears too disrupted, so we are probably seeing the beginning of their interaction with each other.” “These galaxies, seen billions of years ago when star formation was at its peak, are similar to the mass that the Milky Way galaxy would have been at that time. Webb is allowing us to study what the teenage years of our own galaxy would have been like,” said Sawicki. The Webb images and spectra in this research came from the Canadian NIRISS Unbiased Cluster Survey (CANUCS). The research paper is published in the Monthly Notices of the Royal Astronomical Society. Image C: Wide Field – Lensed Question Mark (NIRCam) The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency). Downloads Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu. View/Download all image products at all resolutions for this article from the Space Telescope Science Institute. View/Download the research results from the Monthly Notices of the Royal Astronomical Society. Media Contacts Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. Christine Pulliam – cpulliam@stsci.edu , Leah Ramsey – lramsey@stsci.edu Space Telescope Science Institute, Baltimore, Md. Related Information VIDEO: Gravity – Nature’s Magnifying Glass VIDEO: What happens when galaxies collide? ARTICLE: More about Galaxy Evolution VIDEO: Learn more about Galactic Collisions More Webb News More Webb Images Webb Science Themes Webb Mission Page Related For Kids What is a galaxy? What is the Webb Telescope? SpacePlace for Kids En Español Para Niños : Qué es una galaxia? Ciencia de la NASA NASA en español Space Place para niños Keep Exploring Related Topics James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Galaxies Galaxies Stories Universe Share Details Last Updated Sep 04, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms Astrophysics Galaxies Galaxies, Stars, & Black Holes Galaxy clusters Goddard Space Flight Center Gravitational Lensing James Webb Space Telescope (JWST) Science & Research The Universe View the full article
  5. AMS-02 mounted on the outside of the space station.NASA Visible matter in the form of stars and planets adds up to about five percent of the total known mass of the Universe. The rest is either dark matter, antimatter, or dark energy. The exact nature of these substances is unknown, but the International Space Station’s Alpha-Magnetic Spectrometer or AMS-02 is helping to solve the mystery. AMS-02 collects data on charged particles from cosmic ray events, which helps scientists understand the origin of those rays and could ultimately reveal whether dark matter and antimatter exist. To date, the instrument has collected data on about 573 events per second on average – just over 18 billion per year. This high volume of data enables highly precise statistical analyses, and multiple groups of researchers independently process the raw data to ensure accurate results. Learn more about astrophysics research on the space station. This view shows the core of AMS-02, a massive magnet that bends particles from space to reveal whether their charge is positive or negative.NASA AMS-02 is the hexagonal shape visible on one of the space station’s trusses, just to the right of the center.NASA Keep Exploring Discover More Topics Latest News from Space Station Research Station Science 101: Earth and Space Science Dark Energy and Matter Stories Universe View the full article
  6. 7 Min Read Lagniappe for September 2024 Explore the September 2024 issue, highlighting NASA Stennis Silver Snoopy awards, center visits, and more! Explore Lagniappe for September 2024 featuring: NASA Honors NASA Stennis Employees for Flight Safety Summer Interns Display NASA Stennis Work NASA’s Rocket Propulsion Test Program Office Visits NASA Stennis Gator Speaks NASA’s Stennis Space Center keeps writing new history, and the front office announcement in August delights this ‘ol Gator! The news delights me because the south Mississippi NASA center will continue to be in good hands with Christine Powell serving as the new deputy director. And talk about perfect timing – announcement of the selection came just a few weeks before the celebration of Women’s Equality Day on Aug. 26. Gator SpeaksNASA/Stennis In her new role, Powell now is responsible, along with NASA Stennis Director John Bailey, for coordinating all the rocket propulsion test capabilities onsite, along with managing the overall NASA center. As the nation’s largest – and premier – propulsion test site, NASA Stennis supports test operations for both government and commercial aerospace companies. Powell’s depth of knowledge positions her perfectly for this new challenge. Her record shows that she knows the ins-and-outs of NASA Stennis and is very-well versed on propulsion testing. Her career is also a testament to NASA developing its skilled workforce. Powell started as an intern at NASA Stennis in 1991. Following the internship, she worked as an instrumentation engineer and systems integration engineer before moving into leadership positions in 2004. All in all, Powell illustrates perfectly the important role women play at NASA Stennis – in positions and roles all across the center. Women are a vital part of the NASA Stennis team, contributing to every area of the center’s work and mission. NASA Stennis’ aim in the future is to operate as a multi-user propulsion testing enterprise that accelerates the development of aerospace systems and services by government and industry. This Gator has witnessed many successful endeavors at NASA Stennis, and I am confident that Powell’s new role will have her adding value to this endeavor. Just as the focus was on women’s equality last month, September provides a time to celebrate the hard work of all with Labor Day on the first Monday of the month. As we move forward, the newest deputy director’s journey at NASA Stennis proves that work is not merely a means to an end, but also a journey to realize one’s full potential. Read More About Powell NASA Stennis Top News NASA Honors NASA Stennis Employees for Flight Safety NASA Stennis congratulates the 2024 Silver Snoopy Award recipients from NASA Stennis and the NASA Shared Services Center. ‪ NASA Stennis Director John Bailey welcomes employees and guests to the Silver Snoopy Award ceremony on Aug. 21 at NASA’s Stennis Space Center. NASA’s Space Flight Awareness Program recognizes outstanding job performances and contributions by civil servants and contract employees. It focuses on excellence in quality and safety in support of human spaceflight.NASA/Danny Nowlin NASA astronaut Reid Wiseman speaks to employees and guests before presenting the Silver Snoopy awards on Aug. 21 at NASA’s Stennis Space Center. The Silver Snoopy is the astronauts’ personal award and is presented to less than 1 percent of the total NASA workforce annually. Wiseman will be one of four astronauts flying around the Moon on Artemis II, the first crewed mission on NASA’s path toward long-term scientific lunar exploration. The 10-day flight will test NASA’s foundational human deep space exploration capabilities, the agency’s powerful SLS (Space Launch System) rocket, and the Orion spacecraft for the first time with astronauts. The RS-25 engines helping to power SLS were tested at NASA Stennis.NASA/Danny Nowlin The following employees received the Silver Snoopy award presented by NASA astronaut Reid Wiseman on Aug. 21 at NASA’s Stennis Space Center: William Berry NASA Stennis employee William Berry, a native of Diamondhead, Mississippi, is a metrology technician for Alutiiq Essential Services, LLC at NASA Stennis. The Picayune, Mississippi, resident received the honor for his dedication to duty and commitment to improving the operations of the center’s Measurement Standards and Calibration Laboratory. His contributions help ensure the laboratory achieves its fiscal goals of delivering customer equipment on time. Allen Blow NASA Stennis employee Allen Blow, a native of Yorktown, Virginia, is a principal engineer for Syncom Space Services at NASA Stennis. The New Orleans resident received the honor for providing engineering services to ensure the success of the SLS (Space Launch System) Exploration Upper Stage test project on the Thad Cochran Test Stand (B-2) and the RS-25 engine test project on the Fred Haise Test Stand. Michael Brown NASA Stennis employee Michael Brown, a native of Cerritos, California, is a quality engineer for Aerojet Rocketdyne, an L3Harris Technologies company, at NASA Stennis. The Slidell, Louisiana, resident received the honor for his commitment to test flight support, attention to detail, and unwavering passion for spaceflight. Tessa Keating NASA Stennis employee Tessa Keating, a native and resident of Carriere, Mississippi, received the honor for her outstanding contributions to the NASA Stennis Office of Communications and to NASA. She continually provides excellent work in telling the NASA story to diverse audiences, including influential leaders, equipping them with a broader knowledge of, and appreciation for, the center’s role in the agency. Rhonda Lavigne NASA Stennis employee Rhonda Lavigne, a native of Pass Christian, Mississippi, is a corrective action request manager for SaiTech at NASA Stennis. The Gulfport, Mississippi, resident received the honor for her dedication to the NASA Stennis Audit Program. Her support ensures all reviews are well planned, audit objectives are met, and compliance for continual improvement of programs impacting the NASA Stennis mission is promoted. Stephen O’Neill NASA Stennis employee Stephen O’Neill, a native and resident of Poplarville, Mississippi, is a NASA industrial hygienist in the Center Operations Directorate at NASA Stennis. O’Neill received the honor for his contributions in helping the site achieve critical engine and stage test project goals for NASA’s SLS (Space Launch System) rocket. Benjamin Stevens NASA Stennis employee Benjamin Stevens, a native of Lake Charles, Louisiana, is a NASA information technology specialist for the NASA Shared Services Center, located at NASA Stennis. The Picayune, Mississippi, resident received the honor for his expertise toward improving the integration and security posture of the NASA Shared Services Center’s information technology telecommunications and networking environment. His work enables shared services delivery to the agency’s engineers, scientists, researchers, and administrative professionals. Glenn Varner NASA Stennis employee Glenn Varner, a native and resident of Gulfport, Mississippi, is a NASA mechanical test engineer in the Engineering and Test Directorate at NASA Stennis. He received the honor for his performance and contributions to Thad Cochran Test Stand (B-2) operations for SLS (Space Launch System) core stage testing for Artemis I. Varner’s work helped improve facility performance and responsiveness, leading to successful testing of the SLS core stage. Steven Wood NASA Stennis employee Steven Wood, a native and resident of Picayune, Mississippi, is a NASA contract specialist for the NASA Shared Services Center, located at NASA Stennis. He received the honor for going above and beyond normal work assignments to accomplish several highly visible contract actions for NASA’s Early-Stage Innovation and Partnerships programs. Thomas Wolfe NASA Stennis employee Thomas Wolfe is a senior mechanical engineering associate for Syncom Space Services at NASA Stennis. He received the honor for contributions to numerous safe and successful government and commercial test projects at NASA Stennis, along with his record of consistent performance and achievement. > Back to Top Center Activities Summer Interns Display NASA Stennis Work NASA Stennis summer intern Joseph Dulog, left, shares about his work on a lunar fluid systems developmental platform during an Aug. 7 event hosted by the Office of STEM Engagement. Dulog, a student at Rowan University in Glassboro, New Jersey, worked with the NASA Stennis Autonomous Systems Laboratory. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration. NASA/Danny Nowlin NASA Stennis summer intern Madison Godbold, right, shares about her work of inspiring the Artemis Generation through ASTRO Camp activities during an Aug. 7 event hosted by the Office of STEM Engagement. Godbold, a student at The University of Southern Mississippi in Hattiesburg, worked with the NASA Stennis Office of STEM Engagement. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration. NASA/Danny Nowlin NASA Stennis summer intern Lekh Patel shares about his work on lunar communications during an Aug. 7 event hosted by the Office of STEM Engagement. Patel, a student at Rutgers University in Newark, New Jersey, worked with the NASA Stennis Autonomous Systems Laboratory. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration.NASA/Danny Nowlin NASA Stennis summer intern Logan Blesse, left, shares about his work on future lunar autonomous robotic development during an Aug. 7 event hosted by the Office of STEM Engagement. Blesse, a student at The University of Southern Mississippi in Hattiesburg, worked with the NASA Stennis Autonomous Systems Laboratory. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration. NASA/Danny Nowlin NASA Stennis summer intern Jordan Thomas is shown with his presentation on the 2024 Sustainability Report for NASA Stennis during an Aug. 7 event hosted by the Office of STEM Engagement. Thomas, a student at the University of South Alabama in Mobile, worked with the NASA Stennis Center Operations Directorate. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration. NASA/Danny Nowlin NASA Stennis summer intern Dylan Williams is shown with his presentation highlighting work with test operations during an Aug. 7 event hosted by the Office of STEM Engagement. Williams, a student at Meridian Community College in Meridian, Mississippi, worked with the NASA Stennis Engineering and Test Directorate. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration. NASA’s Rocket Propulsion Test Program Office Visits NASA Stennis NASA and contractor representatives working with NASA’s Rocket Propulsion Test Program Office stand at the base of the Thad Cochran Test Stand during a tour of the test complex on Aug. 15 at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The program office hosted a Risk Workshop and Program Management Review meeting at NASA Stennis on Aug. 13-15. The representatives are from NASA Stennis; NASA’s Neil Armstrong Test Facility in Sandusky, Ohio; NASA’s Michoud Assembly Facility in New Orleans; NASA’s Marshall Space Flight Center in Huntsville, Alabama; NASA’s Wallops Flight Facility in Virginia; and NASA Headquarters in Washington. NASA Stennis is preparing the Thad Cochran Test Stand (B-2) to test the exploration upper stage, which will fly on future SLS (Space Launch System) missions as NASA continues its mission of exploring the secrets of the universe for the benefit of all. The upper stage is being built at NASA Michoud as a more powerful second stage to send the Orion spacecraft to deep space. It is expected to fly on the Artemis IV mission. Before that, it will be installed on the test stand at NASA Stennis to undergo a series of Green Run tests of its integrated systems to demonstrate it is ready to fly. NASA/Shane Corr Java with John Hosts NASA Stennis Employees NASA Stennis Director John Bailey hosts a Java with John session with agency employees Aug. 22. The employee-led discussion happens in a relaxed environment with conversations aimed at fostering a culture where employees are welcome to share what matters most to them at work. NASA/Danny Nowlin NEX Stennis Receives 2023 Bingham Award The Navy Exchange Service Command presented NEX Stennis with the 2023 Bingham Award during an Aug. 26 ceremony at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. NEX Stennis, a gas station and minimart at NASA Stennis, is one of nine winners for the award recognizing excellence in customer service, operations, and management. NEX Stennis and the Naval Construction Battalion in Gulfport, Mississippi, topped sales category six by earning between $2.5 million and $4 million for the year. NASA Stennis Associate Director Rodney McKellip accepted the award on behalf of the center. Pictured (left to right) are Steve Dienes, NEX Stennis manager; McKellip; Robert Bianchi, rear admiral (retired) and chief executive officer of the Navy Exchange Service Command; and Katie Wilson, NEX Stennis general manager. NASA/Danny Nowlin > Back to Top NASA in the News FAQ: NASA’s Boeing Crew Flight Test Return Status – NASA NASA Engagement Platform Brings Experts to Classrooms, Communities – NASA Artemis Emergency Egress System Emphasizes Crew Safety – NASA NASA Teams Change Brakes to Keep Artemis Crew Safe – NASA NASA’s X-59 Progresses Through Tests on the Path to Flight International Observe the Moon Night – Moon: NASA Science Employee Profile: Joseph Ladner Joseph Ladner’s experiences working at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, motivate him to “pay it forward” so more people can be a part of something great. Joseph Ladner stands at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, where he leads a team managing the budgets to fund the nation’s premier propulsion test site. NASA/Danny Nowlin Read More About Joseph Ladner > Back to Top Additional Resources STEM: NASA Astro Camp Community Partners Program (fox8live.com) Catching up with Stennis Space Center’s New Director – WXXV News 25 (wxxv25.com) New and Notables: John Bailey – Biz New Orleans Good Things with Rebecca Turner – SuperTalk Mississippi (interview with NASA Stennis employees Lee English Jr. and Noah English) Certifying Artemis Rocket Engines – NASA (Houston We Have a Podcast segment featuring NASA Stennis engineers Chip Ellis and Bradley Tyree) NASA Stennis Overview – Going Further video Subscription Info Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail). The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin. To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address. Explore More 5 min read Lagniappe for August 2024 Article 4 weeks ago 6 min read Lagniappe for July 2024 Article 2 months ago 9 min read Lagniappe for June 2024 Explore the Lagniappe for June 2024 issue, featuring an innovative approach to infrastructure upgrades, how… Article 3 months ago View the full article
  7. Joseph Ladner stands at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, where he leads a team managing the budgets to fund the nation’s premier propulsion test site. NASA/Danny Nowlin Joseph Ladner’s experiences working at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, motivate him to “pay it forward” so more people can be a part of something great. “It is exciting to be at a place like NASA Stennis that continues to reinvent itself to stay relevant,” Ladner said. “You can do just about anything you can imagine with a workforce committed to its success.” The Gulfport, Mississippi, resident is the lead budget analyst in the NASA Stennis Office of the Chief Financial Officer. His team manages budgets that fund the nation’s premier propulsion test site. Ladner can point to three pivotal moments propelling him to a career with NASA. The first came by attending ASTRO CAMP at NASA Stennis every summer as a child. The thrilling experiences of launching paper rockets and conducting science experiments left him with the question, “How do I get to work there?” The answer came into focus years later. Much like launching paper rockets, Ladner’s career started at ground level before reaching higher heights. He started on the lowest end of the General Schedule pay scale as a GS-1 clerk for the Naval Oceanographic Office, located at NASA Stennis, while attending Mississippi Gulf Coast Community College. A second pivotal moment also came during this time. The Saucier, Mississippi, native credits mentor Pamela Stenum for putting him on a career path in procurement so he could use the math and analytical skills that came natural to him. The clerk role, expected to be only for one semester, continued through Ladner’s studies at The University of Southern Mississippi, where he earned a bachelor’s degree in Business Administration. “I literally came in from the bottom, and someone saw potential in me,” Ladner said. “She realized I was a hard worker and that I cared about the product I was putting out.” The third, and most profound, moment leading Ladner to a NASA career happened when the space shuttle Columbia orbiter suffered a catastrophic failure during return to Earth. “I will never forget standing in the crowd that morning waiting for the launch of Columbia (in 2003) and hearing the commander over the loudspeakers thank everyone for the efforts to get them to this point and saying farewell to his family,” Ladner said. “No one knew it would ultimately be the crew’s last farewell. That tragic incident left me with a greater sense that there are many opportunities, but life is short. That thought and NASA’s return to flight mission left me with a desire to be part of NASA.” Ladner started his career with the agency two years later and has worked inspired ever since. His role as lead budget analyst contributes to the Artemis campaign that will establish the foundation for long-term scientific exploration of the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. His job currently involves navigating challenges of increased costs and reduced budgets. From Ladner’s perspective, the challenges present opportunities for innovation and new ideas. “Knowing my work is part of a greater cause impacting the Artemis Generation that could make a difference to society is the best thing about working at NASA Stennis,” Ladner said. “There is some awe and wonder about working at NASA, so it is neat to say you are a part of that.” Learn more about the people who work at NASA Stennis View the full article
  8. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The Dash 7 aircraft that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration project is seen taking off from Moses Lake, Washington en route to Seattle for a ceremony unveiling its new livery. The aircraft is currently operating with a traditional fuel-based propulsion system but will eventually be modified with a hybrid electric system. NASA / David C. Bowman Parked under the lights inside a hangar in Seattle, a hybrid electric research aircraft from electric motor manufacturer magniX showed off a new look symbolizing its journey toward helping NASA make sustainable aviation a reality. During a special unveiling ceremony hosted by magniX on Aug. 22, leaders from the company and NASA revealed the aircraft, with its new livery, to the public for the first time at King County International Airport, commonly known as Boeing Field. The aircraft is a De Havilland Dash 7 that was formerly used for carrying cargo. Working under NASA’s Electrified Powertrain Flight Demonstration (EPFD) project, magniX will modify it to serve as a testbed for hybrid electric aircraft propulsion research. The company’s goal under EPFD is to demonstrate potential fuel savings and performance boosts with a hybrid electric system for regional aircraft carrying up to 50 passengers. These efforts will help reduce environmental impacts from aviation by lowering greenhouse gas emissions. This livery recognizes the collaborative effort focused on proving that hybrid electric flight for commercial aircraft is feasible. “We are a research organization that continues to advance aviation, solve the problems of flight, and lead the community into the future,” said Robert A. Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate. “Through our EPFD project, we’re taking big steps in partnership to make sure electric aviation is part of the future of commercial flight.” Lee Noble, director for NASA’s Integrated Aviation Systems Program (right) and Robert Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate (middle) chat with an AeroTEC test pilot for the Dash 7. Battery packs are stored along the floor of the cabin for magniX’s hybrid electric flight demonstrationsNASA / David C. Bowman Collaborative Effort NASA is collaborating with industry to modify existing planes with new electrified aircraft propulsion systems. These aircraft testbeds will help demonstrate the benefits of hybrid electric propulsion systems in reducing fuel burn and emissions for future commercial aircraft, part of NASA’s broader mission to make air travel more sustainable. “EPFD is about showing how regional-scale aircraft, through ground and flight tests, can be made more sustainable through electric technology that is available right now,” said Ben Loxton, vice president for magniX’s work on the EPFD project. Thus far, magniX has focused on developing a battery-powered engine and testing it on the ground to make sure it will be safe for work in the air. The company will now begin transitioning over to a new phase of the project — transforming the Dash 7 into a hybrid electric research vehicle. “With the recent completion of our preliminary design review and baseline flight tests, this marks a transition to the next phase, and the most exciting phase of the project: the modification of this Dash 7 with our magniX electric powertrain,” Loxton said. To make this possible, magniX is working with their airframe integrator AeroTEC to help modify and prepare the aircraft for flight tests that will take place out of Moses Lake, Washington. Air Tindi, which supplied the aircraft to magniX for this project, will help with maintenance and support of the aircraft during the testing phases. The Dash 7 that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration project on display with its new livery for the first time. In front of the plane is an electric powertrain that magniX will integrate into the current aircraft to build a hybrid electric propulsion system.NASA/David C. Bowman Creating a Hybrid Electric Aircraft A typical hybrid electric propulsion system combines different sources of energy, such as fuel and electricity, to power an aircraft. For magniX’s demonstration, the modified Dash 7 will feature two electric engines fed by battery packs stored in the cabin, and two gas-powered turboprops. The work will begin with replacing one of the aircraft’s outer turboprop engines with a new, magni650-kilowatt electric engine – the base of its hybrid electric system. After testing those modifications, magniX will swap out the remaining outer turboprop engine for an additional electric one. Earlier this year, magniX and NASA marked the milestone completion of successfully testing the battery-powered engine at simulated altitude. Engineers at magniX are continuing ground tests of the aircraft’s electrified systems and components at NASA’s Electric Aircraft Testbed (NEAT) facility in Sandusky, Ohio. By rigorously testing these new technologies under simulated flight conditions, such as high altitudes and extreme temperatures, researchers can ensure each component operates safely before taking to the skies. The collaboration between EPFD, NASA, GE Aerospace, and magniX works to advance hybrid electric aircraft propulsion technologies for next-generation commercial aircraft in the mid-2030 timeframe. NASA is working with these companies to conduct two flight demonstrations showcasing different approaches to hybrid electric system design. Researchers will use data gathered from ground and flight tests to identify and reduce certification gaps, as well as inform the development of new standards and regulations for future electrified aircraft. “We at NASA are excited about EPFD’s potential to make aviation more sustainable,” Pearce said. “Hybrid electric propulsion on a megawatt scale accelerates U.S. progress toward its goal of net-zero greenhouse gas emissions by 2050, benefitting all who rely on air transportation every day.” Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 2 min read NASA G-IV Plane Will Carry Next-Generation Science Instrument Article 6 days ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators Article 1 week ago 2 min read NASA Composite Manufacturing Initiative Gains Two New Members Article 2 weeks ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Sep 03, 2024 EditorJim BankeContactMichael Jorgensen Related TermsAeronauticsAeronautics Research Mission DirectorateElectrified Powertrain Flight DemoGlenn Research CenterGreen Aviation TechIntegrated Aviation Systems Program View the full article
  9. Técnicos ponen a prueba un conjunto de enormes paneles solares que miden aproximadamente 14,2 metros de largo y 4,1 metros de alto para la nave espacial Europa Clipper de la NASA, dentro de la Instalación de servicio de carga peligrosa de la agencia en el Centro Espacial Kennedy en Florida el 7 de agosto.Crédito: NASA/Kim Shiflett Read this release in English here. La NASA y SpaceX tienen planificado que la ventana para el lanzamiento de la misión Europa Clipper se abra el jueves 10 de octubre. Esta misión ayudará a los científicos a determinar si una de las lunas heladas de Júpiter podría albergar vida. Esta misión de la NASA despegará a bordo de un cohete Falcon Heavy de SpaceX, desde el Complejo de Lanzamientos 39A en el Centro Espacial Kennedy de la NASA en Florida. Europa Clipper llevará a bordo nueve instrumentos y un experimento científico sobre gravedad para recopilar mediciones detalladas mientras se encuentra en órbita alrededor de Júpiter y realiza varios sobrevuelos cercanos de su luna Europa. Las investigaciones sugieren que, debajo de la corteza de hielo de Europa, existe un océano que tiene dos veces el volumen de todos los océanos de la Tierra. Los medios de comunicación interesados en cubrir el lanzamiento de Europa Clipper deben solicitar una acreditación de prensa. Los plazos para la acreditación de los medios son los siguientes: Los ciudadanos estadounidenses que representen a medios de comunicación nacionales o internacionales deben solicitar su acreditación antes de las 11:59 p.m. hora del este del viernes 27 de septiembre. Los representantes de medios internacionales con ciudadanía de otros países deben presentar su solicitud antes de las 11:59 p.m. hora del este del viernes 20 de septiembre. Los medios de comunicación que requieran arreglos logísticos especiales, tales como espacio para camiones de transmisión satelital, tiendas de campaña o conexiones eléctricas, deben escribir por correo electrónico a ksc-media-accreditat@mail.nasa.gov antes del 1 de octubre. Una copia del reglamento de la NASA para la acreditación de medios está disponible en línea (en inglés). Si tienes preguntas sobre tu acreditación, por favor envía un correo electrónico a ksc-media-accreditat@mail.nasa.gov. Para otras preguntas sobre la misión, por favor comunícate con la sala de prensa del Centro Espacial Kennedy al teléfono 321-867-2468. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si deseas solicitar entrevistas en español, comunícate con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371. Los medios de comunicación acreditados tendrán la oportunidad de participar en una serie de sesiones informativas previas al lanzamiento y entrevistas con el personal clave de la misión, incluyendo una sesión informativa la semana del 9 de septiembre. La NASA comunicará detalles adicionales sobre el programa de eventos para los medios a medida que se acerque la fecha de lanzamiento. La NASA también publicará actualizaciones sobre los preparativos para el lanzamiento de la nave espacial en el blog (en inglés) de Europa Clipper de la NASA. El principal objetivo científico de Europa Clipper es determinar si existen lugares debajo de la superficie de Europa que pudieran sustentar la vida. Los tres objetivos científicos principales de la misión son comprender la naturaleza de la capa de hielo y el océano que está debajo de ella, junto con la composición y la geología de esta luna. La detallada exploración de Europa que lleve a cabo esta misión ayudará a los científicos a comprender mejor el potencial astrobiológico de los mundos habitables más allá de nuestro planeta. Administrado por Caltech en Pasadena, California, el Laboratorio de Propulsión a Chorro (JPL, por sus siglas en inglés) de la NASA en el sur de California lidera el desarrollo de la misión Europa Clipper, en asociación con el Laboratorio de Física Aplicada Johns Hopkins (APL, por sus siglas en inglés) en Laurel, Maryland, para la Dirección de Misiones Científicas de la NASA en Washington. APL diseñó el cuerpo principal de la nave espacial en colaboración con JPL y el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. La Oficina del Programa de Misiones Planetarias en el Centro de Vuelo Espacial Marshall de la NASA en Huntsville, Alabama, gestiona la ejecución del programa de la misión Europa Clipper. El Programa de Servicios de Lanzamiento de la NASA, con sede en el centro Kennedy, gestiona el servicio de lanzamiento de la nave espacial Europa Clipper. Para obtener más detalles sobre la misión y actualizaciones sobre los preparativos del lanzamiento, visita el sitio web (en inglés): https://science.nasa.gov/mission/europa-clipper Leejay Lockhart Centro Espacial Kennedy, Florida 321-747-8310 leejay.lockhart@nasa.gov Karen Fox / Alana Johnson Sede de la NASA, Washington 202-358-1600 / 202-358-1501 karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov María José Viñas Sede de la NASA, Washington 240-458-0248 maria-jose.vinasgarcia@nasa.gov Julian Coltre Sede de la NASA, Washington 202-358-1100 Julian.n.coltre@nasa.gov View the full article
  10. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) El técnico de soporte vital de la NASA Matthew Sechler ayuda a instalar un asiento eyectable en el avión X-59, en las instalaciones de Lockheed Martin Skunk Works, en Palmdale, California. La culminación de instalación del asiento marca un hito en la integración de la aeronave mientras se prepara para las pruebas en tierra firme.Crédito: Lockheed Martin Read this story in English here. El equipo que prepara el X-59 de la NASA continúa realizando pruebas en preparación para que el avión supersónico y silencioso realice su primer vuelo. Esto incluye un trío de importantes pruebas estructurales e inspecciones críticas en el camino hacia el vuelo. El X-59 es un avión experimental que volará más rápido que la velocidad del sonido sin un fuerte estampido sónico. Será el primero de su clase en volar, con el objetivo de recopilar datos de sonido para la misión Quesst de la NASA, que podría abrir la puerta a vuelos supersónicos comerciales sobre tierra en el futuro. Debido a su diseño único, el equipo de ingenieria del X-59 debe hacer todo lo posible para predecir cada aspecto del avión antes de que despegue, incluyendo cómo se comportarán juntos su fuselaje, las alas y las superficies de control en vuelo. Eso significa que las pruebas en la tierra darán al equipo los datos necesarios para validar los modelos que han desarrollado. Las pruebas no sólo nos dicen que tan estructuralmente sólido es el avión, sino también qué tipo de fuerzas puede soportar una vez que esté en el aire. WALT SILVA Investigador científico superior del Centro de Investigación Langley de la NASA en Hampton, Virginia, que dirige las estructuras de la NASA para el X-59. Las pruebas estructurales del X-59 proporcionan información valiosa para el equipo. Entre 2022 y 2024, los ingenieros recopilaron datos sobre las fuerzas que el avión experimentará en vuelo y los efectos potenciales de las vibraciones en el avión. “Haces estas pruebas, obtienes los datos, y las cosas se comparan bien en algunas áreas y en otras quieres mejorarlas,” Silva dijo. “Así que lo averiguas todo y luego trabajas para mejorarlo.” Los técnicos de Lockheed Martin retiran temporalmente la cubierta del X-59 en preparación para la instalación final del asiento eyectable en el avión.Crédito: Lockheed Martin A principios de este año, el X-59 se sometió a pruebas de acoplamiento estructural que vieron sus superficies de control, incluyendo sus alerones, aletas y timón, movidos por computadora. Fue la última de tres pruebas estructurales vitales. En 2023, los ingenieros aplicaron “agitadores” a partes del avión para evaluar su reacción a las vibraciones, y a principios de 2022 realizaron un examen de prueba para asegurar que el avión absorberá las fuerzas que experimentará durante el vuelo. Este año se instaló el asiento eyectable del X-59 y pasó su inspección. El asiento eyectable es una medida de seguridad adicional que es crítica para la seguridad del piloto durante todo aspecto del vuelo. Con las pruebas estructurales y la instalación del asiento eyectable finalizadas, el avion avanzará hacia un nuevo hito: encenderá sus motores para una serie de pruebas en tierra. El X-59 también tiene por delante la prueba del sistema de aviónica y cableado extensivo para detectar posibles interferencias electromagnéticas, imitando las condiciones de vuelo en un entorno de pruebas en tierra y finalmente, completar las pruebas de rodaje para validar la movilidad en tierra antes de su primer vuelo. “Los primeros vuelos siempre son muy intensos,” dijo Natalie Spivey, ingeniera aeroespacial del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California. “Hay mucha anticipación, pero estamos listos para llegar allí y ver cómo responde el avion en el aire. Será muy emocionante.” Artículo Traducido por: Nicolas Cholula y Elena Aguirre Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 7 min read La NASA invita a creadores de las redes sociales al lanzamiento de la misión Europa Clipper Article 2 hours ago 10 min read Preguntas frecuentes: Estado del retorno de la prueba de vuelo tripulado Boeing de la NASA Article 2 weeks ago 6 min read Diez maneras en que los estudiantes pueden prepararse para ser astronautas Article 5 months ago Keep Exploring Discover More Topics From NASA Missions Humans In Space Supersonic Flight Explore NASA’s History Share Details Last Updated Sep 03, 2024 EditorLillian GipsonContactKristen Hatfieldkristen.m.hatfield@nasa.gov Related TermsNASA en españolAeronáutica View the full article
  11. On Aug. 30, 1984, space shuttle Discovery lifted off on the STS-41D mission, joining NASA’s fleet as the third space qualified orbiter. The newest shuttle incorporated newer technologies making it significantly lighter than its two predecessors. Discovery lofted the heaviest payload up to that time in shuttle history. The six-person crew included five NASA astronauts and the first commercial payload specialist. During the six-day mission, the crew deployed a then-record three commercial satellites, tested an experimental solar array, and ran a commercial biotechnology experiment. The astronauts recorded many of the activities using a large format film camera, the scenes later incorporated into a motion picture for public engagement. The mission marked the first of Discovery’s 39 trips to space, the most of any orbiter. Left: Space shuttle Discovery rolls out of Rockwell’s Palmdale, California, facility. Middle: Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight. Right: Discovery arrives at NASA’s Kennedy Space Center in Florida. Space shuttle Discovery, the third space-qualified orbiter in NASA’s fleet and named after several historical ships of exploration, incorporated manufacturing lessons learned from the first orbiters. In addition, through the use of more advanced materials, the new vehicle weighed nearly 8,000 pounds less than its sister ship Columbia and 700 pounds less than Challenger. Discovery rolled out of Rockwell International’s plant in Palmdale, California, on Oct. 16, 1983. Five of the six crew members assigned to its first flight attended the ceremony. Workers trucked Discovery overland from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB), where they mounted it atop a Shuttle Carrier Aircraft (SCA), a modified Boeing 747, for the transcontinental ferry flight to NASA’s Kennedy Space Center (KSC) in Florida. Discovery arrived at KSC on Nov. 9 following a two-day stopover at Vandenberg Air Force, now Space Force Base, in California. Left: STS-41D crew patch. Middle: Official photograph of the STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry “Hank” W. Hartsfield, and Michael L. Coats; Charles D. Walker, back row left, and Judith A. Resnik. Right: Payloads installed in Discovery’s payload bay for the STS-41D mission include OAST-1, top, SBS-4, Telstar 3C, and Leasat-2. To fly Discovery’s first flight, originally designated STS-12 and later renamed STS-41D, in February 1983 NASA assigned Commander Henry W. Hartsfield, a veteran of STS-4, and first-time flyers Pilot Michael L. Coats, and Mission Specialists R. Michael Mullane, Steven A. Hawley, and Judith A. Resnik, all from the 1978 class of astronauts and making their first spaceflights. In May 1983, NASA announced the addition of Charles D. Walker, an employee of the McDonnell Douglas Corporation, to the crew, flying as the first commercial payload specialist. He would operate the company’s Continuous Flow Electrophoresis System (CFES) experiment. The mission’s primary payloads included the Leasat-1 (formerly known as Syncom IV-1) commercial communications satellite and OAST-1, three experiments from NASA’s Office of Aeronautics and Space Technology, including the Solar Array Experiment, a 105-foot long lightweight deployable and retractable solar array. Following the June 1984 launch abort, NASA canceled the STS-41F mission, combining its payloads with STS-41D’s, resulting in three communications satellites – SBS-4 for Small Business Systems, Telstar 3C for AT&T, and Leasat 2 (Syncom IV-2) for the U.S. Navy – launching on the flight. The combined cargo weighed 41,184 pounds, the heaviest of the shuttle program up to that time. A large format IMAX® camera, making its second trip into space aboard the shuttle, flew in the middeck to film scenes inside the orbiter and out the windows. Left: First rollout of Discovery from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Right: The June 26 launch abort. The day after its arrival at KSC, workers towed Discovery to the Orbiter Processing Facility (OPF) to begin preparing it for its first space flight. They towed it to the Vehicle Assembly Building (VAB) on May 12, 1984, for mating with its External Tank (ET) and Solid Rocket Boosters (SRBs). The completed stack rolled out to Launch Pad 39A a week later. On June 2, engineers successfully completed an 18-second Flight Readiness Firing of Discovery’s main engines. Post test inspections revealed a debonding of a thermal shield in main engine number 1’s combustion chamber, requiring its replacement at the pad. The work pushed the planned launch date back three days to June 25. The failure of the shuttle’s backup General Purpose Computer (GPC) delayed the launch by one day. The June 26 launch attempt ended just four seconds before liftoff, after two of the main engines had already ignited. The GPC detected that the third engine had not started and shut all three down. It marked the first time a human spaceflight launch experienced an abort after the start of its engines since Gemini VI in October 1965. The abort necessitated a rollback to the VAB on July 14 where workers demated Discovery from the ET and SRBs. Engineers replaced the faulty engine, and Discovery rolled back out to the launch pad on Aug. 9 for another launch attempt. The six-person crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown to launch, on Aug. 15. A software issue delayed the first launch attempt on Aug. 29 by one day. Left: The STS-41D crew pose at Launch Pad 39A at NASA’s Kennedy Space Center in Florida following the Terminal Countdown Demonstration Test. Right: Liftoff of Discovery on the STS-41D mission. Finally, on Aug. 30, 1984, Discovery roared off its launch pad on a pillar of flame and within 8 and a half minutes entered orbit around the Earth. The crew got down to work and on the first day Mullane and Hawley deployed the SBS-4 satellite. On the second day in space, they deployed Leasat, the first satellite designed specifically to be launched from the shuttle. On the third day, they deployed the Telstar satellite, completing the satellite delivery objectives of the mission. Resnik deployed the OAST-1 solar array to 70% of its length to conduct dynamic tests on the structure. On the fourth day, she deployed the solar array to its full length and successfully retracted it, completing all objectives for that experiment. The deployment of the SBS-4, left, Leasat-2, and Telstar 3C satellites during STS-41D. Walker remained busy with the CFES, operating the unit for about 100 hours, and although the experiment experienced two unexpected shutdowns, he processed about 85% of the planned samples. Hartsfield and Coats exposed two magazines and six rolls of IMAX® film, recording OAST-1 and satellite deployments as well as in-cabin crew activities. Clips from the mission appear in the 1985 IMAX® film “The Dream is Alive.” On the mission’s fifth day, concern arose over the formation of ice on the orbiter’s waste dump nozzle. The next day, Hartsfield used the shuttle’s robotic arm to dislodge the large chunk of ice. Left: Payload Specialist Charles D. Walker in front of the Continuous Flow Experiment System. Middle: Henry “Hank” W. Hartsfield loading film into the IMAX® camera. Right: The OAST-1 Solar Array Experiment extended from Discovery’s payload bay. On Sep. 5, the astronauts closed Discovery’s payload bay doors in preparation for reentry. They fired the shuttle’s Orbital Maneuvering System engines to slow their velocity and begin their descent back to Earth. Hartsfield guided Discovery to a smooth landing at Edwards AFB in California, completing a flight of 6 days and 56 minutes. The crew had traveled 2.5 million miles and orbited the Earth 97 times. Left: The STS-41D crew pose in Discovery’s middeck. Right: Space shuttle Discovery makes a perfect landing at Edwards Air Force Base in California to end the STS-41D mission. By Sept. 10, workers had returned Discovery to KSC to prepare it for its next mission, STS-51A, in November 1984. During its lifetime, Discovery flew a fleet leading 39 missions, making its final trip to space in February 2011. It flew both return to flight missions, STS-26 in 1988 and STS-114 in 2005. It launched the Hubble Space Telescope in 1990 and flew two of the missions to service the facility. Discovery flew two mission to Mir, docking once. It completed the first docking to the International Space Station in 1999 and flew a total of 13 assembly and resupply missions to the orbiting lab. By its last mission, Discovery had traveled 149 million miles, completed 5,830 orbits of the Earth, and spent a cumulative 365 days in space in the span of 27 years. The public can view Discovery on display at the National Air and Space Museum’s Stephen F. Udvar-Hazy Center in Chantilly, Virginia. Read recollections of the STS-41D mission by Hartsfield, Coats, Mullane, Hawley, and Walker in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-41D mission. Explore More 6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus Article 5 days ago 11 min read 15 Years Ago: STS-128 Delivers Cargo to Enable Six-Person Space Station Crew Article 6 days ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project Article 1 week ago View the full article
  12. Live High-Definition Views from the International Space Station (Official NASA Stream)
  13. Live Video from the International Space Station (Official NASA Stream)
  14. Crédito: NASA Read this article in English here La NASA invita a los creadores de contenido digital a inscribirse para asistir al lanzamiento de la nave espacial Europa Clipper, la cual recopilará datos para ayudar a los científicos a determinar si Europa, la luna helada de Júpiter, podría albergar vida. La NASA y SpaceX planean que la ventana de lanzamiento se abra el jueves 10 de octubre. La misión despegará a bordo de un cohete Falcon Heavy de SpaceX, desde el Complejo de Lanzamientos 39A en el Centro Espacial Kennedy de la NASA en Florida. La nave espacial Europa Clipper llevará a bordo nueve instrumentos científicos para recopilar mediciones detalladas mientras realiza unos 50 sobrevuelos cercanos de esta luna del sistema joviano (es decir, perteneciente al planeta Júpiter). Las investigaciones sugieren que, debajo de la corteza de hielo de Europa, existe un océano que tiene dos veces el volumen de todos los océanos de la Tierra. La exploración detallada de Europa que llevará a cabo esta misión ayudará a los científicos a comprender mejor el potencial astrobiológico de los mundos habitables más allá de nuestro planeta. Si tu pasión es comunicar e interactuar con el mundo digital, ¡este evento es para ti! Aprovecha la oportunidad para ver y compartir el lanzamiento de la misión Europa Clipper. Se seleccionará a un máximo de 50 usuarios de las redes sociales para que asistan a este evento de dos días. Estos asistentes tendrán un acceso similar al de los medios de comunicación. Los participantes de este evento de NASA Social tendrán la oportunidad de: Ver el lanzamiento de un cohete Falcon Heavy de SpaceX y la nave espacial Europa Clipper Recorrer las instalaciones de la NASA en el Centro Espacial Kennedy Conocer a expertos en temas relacionados con Europa Clipper e interactuar con ellos Conocer a otros entusiastas del espacio que están activos en las redes sociales La inscripción de los participantes de NASA Social para el lanzamiento de Europa Clipper comenzará el martes 3 de septiembre, y la fecha límite para inscribirse es el lunes 9 de septiembre hasta las 10 a.m. hora del este. Todas las solicitudes de los creadores en redes sociales se considerarán caso por caso. INSCRÍBETE YA ¿Necesito tener una cuenta en las redes sociales para inscribirme? Sí. Este evento está diseñado para personas que: Utilizan activamente diferentes plataformas y herramientas de redes sociales para difundir información a un público característico Producen con regularidad nuevos contenidos que incluyen elementos multimedia Tienen el potencial de llegar a una gran cantidad de personas que utilizan plataformas digitales, o llegan a un público característico, definido y diferente de los medios de comunicación o los públicos tradicionales de la NASA Deben tener un historial acreditado de publicación de contenido en plataformas de redes sociales Tienen publicaciones anteriores que han logrado una gran visibilidad y que son respetadas y ampliamente reconocidas Se anima a los usuarios de todas las redes sociales a utilizar la etiqueta #NASASocial. Las actualizaciones y la información sobre el evento se compartirán en X a través de las cuentas @NASASocial, @NASA_ES, y @NASAKennedy, y a través de publicaciones en Facebook e Instagram. ¿Cómo me inscribo? Las inscripciones para este evento comienzan el martes 3 de septiembre y concluyen a las 10 a.m. hora del este del lunes 9 de septiembre. La inscripción es solo para una persona (tú) y no es transferible. Cada persona que desee asistir debe inscribirse por separado. Todas las solicitudes se considerarán caso por caso. ¿Puedo inscribirme si no tengo ciudadanía estadounidense? Sí, cualquiera puede aplicar a este evento. ¿Cuándo sabré si mi inscripción ha sido seleccionada? Después de que se hayan recibido y procesado las inscripciones, se enviará a los seleccionados un correo electrónico con información de confirmación e instrucciones adicionales. Esperamos enviar las notificaciones de aceptación antes del 30 de septiembre. ¿Qué son las credenciales de NASA Social? Todas las solicitudes de los creadores en redes sociales se considerarán caso por caso. Las personas seleccionadas deben demostrar a través del proceso de inscripción que cumplen con los criterios específicos de participación. Aunque tu inscripción no sea elegida en la lista de participantes para este evento de NASA Social, aún puedes asistir al lanzamiento fuera del sitio y participar en la conversación en línea. Descubre las formas en que puedes presenciar un lanzamiento en esta página web (en inglés). ¿Cuáles son los requisitos para la inscripción? La inscripción debe indicar tu intención de viajar al Centro Espacial Kennedy de la NASA en Florida y de asistir en persona a este evento de dos días de duración. Eres responsable de tus propios gastos de viaje, alojamiento, comida y otros servicios. La programación de algunos eventos y participantes en el evento está sujeta a cambios sin previo aviso. La NASA no se hace responsable de las pérdidas o daños ocasionados como resultado de la asistencia. Además, la NASA no es responsable de las pérdidas o daños ocasionados si el evento es cancelado con un aviso limitado o sin previo aviso. Por favor, planifica como corresponda. El centro Kennedy es una instalación del gobierno. Aquellas personas seleccionadas deberán completar un paso de inscripción adicional para recibir autorización de ingresar a las áreas de seguridad. IMPORTANTE: Para ingresar, deberás proporcionar dos formas de identificación vigentes emitidas por el gobierno; una debe ser una identificación con foto y esta debe coincidir con el nombre proporcionado en tu inscripción. No podrán ingresar personas sin la debida identificación. Para obtener una lista completa de las formas de identificación aprobadas, visita el sitio web (en inglés): Requisitos de identificación para la acreditación de la NASA. Todos los solicitantes deben tener al menos 18 años de edad cumplidos. ¿Qué sucede si cambia la fecha de lanzamiento? Muchos factores diferentes pueden hacer que una fecha de lanzamiento programada cambie varias veces. Si la fecha de lanzamiento cambia, la NASA puede ajustar la fecha del evento de NASA Social como corresponda para que coincida con la nueva fecha de lanzamiento señalada. La NASA notificará por correo electrónico a las personas inscritas de cualquier cambio que ocurra. Si el lanzamiento se pospone, se invitará a los asistentes a asistir a una fecha de lanzamiento posterior. La NASA no puede alojar a los asistentes por retrasos de más de 72 horas. Los asistentes al evento de NASA Social son responsables de todos los gastos adicionales ocasionados en relación con cualquier retraso en el lanzamiento. Recomendamos encarecidamente a los participantes que hagan arreglos de viaje que sean reembolsables o flexibles. ¿Qué sucede si no puedo ir al Centro Espacial Kennedy? Si no puedes venir al Centro Espacial Kennedy y asistir en persona, no debes inscribirte en el evento de NASA Social. Puedes seguir la conversación en línea usando la etiqueta#NASASocial. Puedes ver el lanzamiento en NASA+ o en el sitio web plus.nasa.gov. La NASA ofrecerá actualizaciones periódicas sobre el lanzamiento y la misión en las cuentas @NASA_ES, @NASA, @NASAKennedy, @NASA_LSP, @NASAJPL y @EuropaClipper, así como en el blog de la misión Europa Clipper de la NASA (en inglés). Si no puedes asistir a este evento de NASA Social, no te preocupes; ¡la NASA está planificando muchos otros eventos para participantes de las redes sociales en el futuro cercano que se realizarán en diferentes lugares! View the full article
  15. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Data from one of the two CubeSats that comprise NASA’s PREFIRE mission was used to make this data visualization showing brightness temperature — the intensity of infrared emissions — over Greenland. Red represents more intense emissions; blue indicates lower intensities. The data was captured in July. NASA’s Scientific Visualization Studio The PREFIRE mission will help develop a more detailed understanding of how much heat the Arctic and Antarctica radiate into space and how this influences global climate. NASA’s newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment (PREFIRE) are key to better predicting how climate change will affect Earth’s ice, seas, and weather — information that will help humanity better prepare for a changing world. One of PREFIRE’s two shoebox-size cube satellites, or CubeSats, launched on May 25 from New Zealand, followed by its twin on June 5. The first CubeSat started sending back science data on July 1. The second CubeSat began collecting science data on July 25, and the mission will release the data after an issue with the GPS system on this CubeSat is resolved. The PREFIRE mission will help researchers gain a clearer understanding of when and where the Arctic and Antarctica emit far-infrared radiation (wavelengths greater than 15 micrometers) to space. This includes how atmospheric water vapor and clouds influence the amount of heat that escapes Earth. Since clouds and water vapor can trap far-infrared radiation near Earth’s surface, they can increase global temperatures as part of a process known as the greenhouse effect. This is where gases in Earth’s atmosphere — such as carbon dioxide, methane, and water vapor — act as insulators, preventing heat emitted by the planet from escaping to space. “We are constantly looking for new ways to observe the planet and fill in critical gaps in our knowledge. With CubeSats like PREFIRE, we are doing both,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “The mission, part of our competitively-selected Earth Venture program, is a great example of the innovative science we can achieve through collaboration with university and industry partners.” Earth absorbs much of the Sun’s energy in the tropics; weather and ocean currents transport that heat toward the Arctic and Antarctica, which receive much less sunlight. The polar environment — including ice, snow, and clouds — emits a lot of that heat into space, much of which is in the form of far-infrared radiation. But those emissions have never been systematically measured, which is where PREFIRE comes in. “It’s so exciting to see the data coming in,” said Tristan L’Ecuyer, PREFIRE’s principal investigator and a climate scientist at the University of Wisconsin, Madison. “With the addition of the far-infrared measurements from PREFIRE, we’re seeing for the first time the full energy spectrum that Earth radiates into space, which is critical to understanding climate change.” This visualization of PREFIRE data (above) shows brightness temperatures — or the intensity of radiation emitted from Earth at several wavelengths, including the far-infrared. Yellow and red indicate more intense emissions originating from Earth’s surface, while blue and green represent lower emission intensities coinciding with colder areas on the surface or in the atmosphere. The visualization starts by showing data on mid-infrared emissions (wavelengths between 4 to 15 micrometers) taken in early July during several polar orbits by the first CubeSat to launch. It then zooms in on two passes over Greenland. The orbital tracks expand vertically to show how far-infrared emissions vary through the atmosphere. The visualization ends by focusing on an area where the two passes intersect, showing how the intensity of far-infrared emissions changed over the nine hours between these two orbits. The two PREFIRE CubeSats are in asynchronous, near-polar orbits, which means they pass over the same spots in the Arctic and Antarctic within hours of each other, collecting the same kind of data. This gives researchers a time series of measurements that they can use to study relatively short-lived phenomena like ice sheet melting or cloud formation and how they affect far-infrared emissions over time. More About PREFIRE The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. A division of Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory manages the mission for NASA’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built and now operates the CubeSats, and the University of Wisconsin-Madison is processing and analyzing the data collected by the instruments. To learn more about PREFIRE, visit: https://science.nasa.gov/mission/prefire/ 5 Things to Know About NASA’s Tiny Twin Polar Satellites Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance News Media Contacts Jane J. Lee / Andrew Wang Jet Propulsion Laboratory, Pasadena, Calif. 818-354-0307 / 626-379-6874 jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 2024-116 Share Details Last Updated Sep 03, 2024 Related TermsPREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment)Climate ChangeEarthEarth SciencePolar Explore More 2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects On August 13, 2024, the publishers of the journal Insects notified authors of three papers… Article 4 hours ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice Article 5 days ago 7 min read NASA Project in Puerto Rico Trains Students in Marine Biology Article 6 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  16. Technicians test a set of massive solar arrays measuring about 46.5 feet (14.2 meters) long and about 13.5 feet (4.1 meters) high for NASA’s Europa Clipper spacecraft inside the agency’s Payload Hazardous Servicing Facility at Kennedy Space Center in Florida on Aug. 7.Credits: NASA/Kim Shiflett NASA and SpaceX are targeting a launch period opening Thursday, Oct. 10, for the agency’s Europa Clipper mission, which will help scientists determine if one of Jupiter’s icy moons could support life. The mission will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Europa Clipper will carry nine instruments and a gravity science experiment aboard to gather detailed measurements as it orbits Jupiter and conducts multiple close flybys of its moon, Europa. Research suggests an ocean twice the volume of all of Earth’s oceans exists under Europa’s icy crust. Media interested in covering the Europa Clipper launch must apply for media accreditation. Deadlines for accreditation are as follows: U.S. citizens representing domestic or international media must apply for accreditation by 11:59 p.m. EDT, Friday, Sept. 27. International media without U.S. citizenship must apply by 11:59 p.m., Friday, Sept. 20. Media requiring special logistical arrangements, such as space for satellite trucks, tents, or electrical connections, should email ksc-media-accreditat@mail.nasa.gov by Tuesday, Oct. 1. A copy of NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact NASA Kennedy’s newsroom at 321-867-2468. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371. Accredited media will have the opportunity to participate in a series of prelaunch briefings and interviews with key mission personnel, including a briefing the week of Sept. 9. NASA will communicate additional details regarding the media event schedule as the launch date approaches. NASA also will post updates on spacecraft launch preparations on NASA’s Europa Clipper blog. Clipper’s primary science goal is to determine whether there are places below the surface of Europa that could support life. The mission’s three main science objectives are to understand the nature of the ice shell and the ocean beneath it, along with the moon’s composition and geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet. Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory in Southern California leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA Headquarters in Washington. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft. For further details about the mission and updates on launch preparations, visit: https://science.nasa.gov/mission/europa-clipper -end- Leejay Lockhart Kennedy Space Center, Florida 321-747-8310 leejay.lockhart@nasa.gov Karen Fox / Alana Johnson NASA Headquarters, Washington 202-358-1600 / 202-358-1501 karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov Julian Coltre NASA Headquarters, Washington 202-358-1100 Julian.n.coltre@nasa.gov Share Details Last Updated Sep 03, 2024 LocationNASA Headquarters Related TermsEuropa ClipperEuropaJet Propulsion LaboratoryJupiterJupiter MoonsKennedy Space CenterLaunch Services ProgramNASA HeadquartersSpace Operations Mission Directorate View the full article
  17. NASA

    Great Aurora

    A vivid aurora streams over the Earth as the International Space Station orbited 273 miles above the southern Indian Ocean in between Australia and Antarctica. Image Credit: NASA/Shane Kimbrough View the full article
  18. Digital content creators are invited to register to attend the launch of the Europa Clipper spacecraft, which will collect data to help scientists determine if Jupiter’s icy moon Europa could support life. NASA and SpaceX are targeting a launch period opening Thursday, Oct. 10. The mission will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The Europa Clipper spacecraft will carry nine science instruments on board to gather detailed measurements while performing approximately 50 close flybys of the Jovian moon. Research suggests an ocean twice the volume of all the Earth’s oceans exists under Europa’s icy crust. Detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet. If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the Europa Clipper mission launch. A maximum of 50 social media users will be selected to attend this two-day event and will be given access similar to news media. NASA Social participants will have the opportunity to: View a launch of the SpaceX Falcon Heavy rocket and Europa Clipper spacecraft Tour NASA facilities at Kennedy Space Center Meet and interact with Europa Clipper subject matter experts Meet fellow space enthusiasts who are active on social media NASA Social registration for the Europa Clipper launch opens on Tuesday, Sept. 3, and the deadline to apply is at 10 a.m. EDT on Monday, Sept. 9. All social applications will be considered on a case-by-case basis. APPLY NOW Do I need to have a social media account to register? Yes. This event is designed for people who: Actively use multiple social networking platforms and tools to disseminate information to a unique audience. Regularly produce new content that features multimedia elements. Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences. Must have an established history of posting content on social media platforms. Have previous postings that are highly visible, respected and widely recognized. Users on all social networks are encouraged to use the hashtag #NASASocial. Updates and information about the event will be shared on X via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram. How do I register? Registration for this event opens on Tuesday, Sept. 3, and closes at 10 a.m. EDT on Monday, Sept. 9. Registration is for one person only (you) and is non-transferable. Each individual wishing to attend must register separately. Each application will be considered on a case-by-case basis. Can I register if I am not a U.S. citizen? Yes, this event is open for all to apply. When will I know if I am selected? After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by Sept. 30. What are NASA Social credentials? All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria. If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here. What are the registration requirements? Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities. Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly. Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas. IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted. For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements. All registrants must be at least 18 years old. What if the launch date changes? Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email. If the launch is postponed, attendees will be invited to attend a later launch date. NASA cannot accommodate attendees for delays beyond 72 hours. NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible. What if I cannot come to the Kennedy Space Center? If you cannot come to the Kennedy Space Center and attend in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial. You can watch the launch on NASA+ or plus.nasa.gov. NASA will provide regular launch and mission updates on @NASA, @NASAKennedy, @NASA_LSP, @NASAJPL and @EuropaClipper as well as on NASA’s Europa Clipper Mission blog. If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! View the full article
  19. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Sonifications of three images have been released to mark the 25th anniversary of Chandra’s “First Light” image. For Cassiopeia A, which was one of the first objects observed by Chandra, X-ray data from Chandra and infrared data from Webb have been translated into sounds, along with some Hubble data. The second image in the sonification trio, 30 Doradus, also contains Chandra and Webb data. NGC 6872 contains data from Chandra as well as an optical image from Hubble. Each of these datasets have been mapped to notes and sounds based on properties observed by these telescopes.NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) A quarter of a century ago, NASA released the “first light” images from the agency’s Chandra X-ray Observatory. This introduction to the world of Chandra’s high-resolution X-ray imaging capabilities included an unprecedented view of Cassiopeia A, the remains of an exploded star located about 11,000 light-years from Earth. Over the years, Chandra’s views of Cassiopeia A have become some of the telescope’s best-known images. To mark the anniversary of this milestone, new sonifications of three images – including Cassiopeia A (Cas A) – are being released. Sonification is a process that translates astronomical data into sound, similar to how digital data are more routinely turned into images. This translation process preserves the science of the data from its original digital state but provides an alternative pathway to experiencing the data. This sonification of Cas A features data from Chandra as well as NASA’s James Webb, Hubble, and retired Spitzer space telescopes. The scan starts at the neutron star at the center of the remnant, marked by a triangle sound, and moves outward. Astronomers first saw this neutron star when Chandra’s inaugural observations were released 25 years ago this week. Chandra’s X-rays also reveal debris from the exploded star that is expanding outward into space. The brighter parts of the image are conveyed through louder volume and higher pitched sounds. X-ray data from Chandra are mapped to modified piano sounds, while infrared data from Webb and Spitzer, which detect warmed dust embedded in the hot gas, have been assigned to various string and brass instruments. Stars that Hubble detects are played with crotales, or small cymbals. Another new sonification features the spectacular cosmic vista of 30 Doradus, one of the largest and brightest regions of star formation close to the Milky Way. This sonification again combines X-rays from Chandra with infrared data from Webb. As the scan moves from left to right across the image, the volume heard again corresponds to the brightness seen. Light toward the top of the image is mapped to higher pitched notes. X-rays from Chandra, which reveal gas that has been superheated by shock waves generated by the winds from massive stars, are heard as airy synthesizer sounds. Meanwhile, Webb’s infrared data show cooler gas that provides the raw ingredients for future stars. These data are mapped to a range of sounds including soft, low musical pitches (red regions), a wind-like sound (white regions), piano-like synthesizer notes indicating very bright stars, and a rain-stick sound for stars in a central cluster. The final member of this new sonification triumvirate is NGC 6872, a large spiral galaxy that has two elongated arms stretching to the upper right and lower left, which is seen in an optical light view from Hubble. Just to the upper left of NGC 6872 appears another smaller spiral galaxy. These two galaxies, each of which likely has a supermassive black hole at the center, are being drawn toward one another. As the scan sweeps clockwise from 12 o’clock, the brightness controls the volume and light farther from the center of the image is mapped to higher-pitched notes. Chandra’s X-rays, represented in sound by a wind-like sound, show multimillion-degree gas that permeates the galaxies. Compact X-ray sources from background galaxies create bird-like chirps. In the Hubble data, the core of NGC 6872 is heard as a dark low drone, and the blue spiral arms (indicating active star formation) are audible as brighter, more highly pitched tones. The background galaxies are played as a soft pluck sound while the bright foreground star is accompanied by a crash cymbal. More information about the NASA sonification project through Chandra, which is made in partnership with NASA’s Universe of Learning, can be found at https://chandra.si.edu/sound/. The collaboration was driven by visualization scientist Kimberly Arcand (CXC), astrophysicist Matt Russo, and musician Andrew Santaguida, (both of the SYSTEM Sounds project), along with consultant Christine Malec. NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and the Jet Propulsion Laboratory. More about Chandra Chandra, managed for NASA by Marshall in partnership with the CXC, is one of NASA’s Great Observatories, along with the Hubble Space Telescope and the now-retired Spitzer Space Telescope and Compton Gamma Ray Observatory. It was first proposed to NASA in 1976 by Riccardo Giacconi, recipient of the 2002 Nobel Prize for Physics based on his contributions to X-ray astronomy, and Harvey Tananbaum, who would later become the first director of the Chandra X-ray Center. Chandra was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar, who earned the Nobel Prize in Physics in 1983 for his work explaining the structure and evolution of stars. Learn more about the Chandra X-ray Observatory and its mission here: https://www.nasa.gov/mission/chandra-x-ray-observatory/ https://cxc.harvard.edu News Media Contact Lane Figueroa Marshall Space Flight Center, Huntsville, Alabama 256-544-0034 lane.e.figueroa@nasa.gov Share Details Last Updated Sep 03, 2024 LocationMarshall Space Flight Center Related TermsChandra X-Ray ObservatoryMarshall Space Flight Center Explore More 5 min read Cassiopeia A, Then the Cosmos: 25 Years of Chandra X-ray Science Article 1 week ago 9 min read 25 Years Ago: STS-93, Launch of the Chandra X-Ray Observatory Article 1 month ago 5 min read 25 Years On, Chandra Highlights Legacy of NASA Engineering Ingenuity Article 1 month ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  20. Congratulations to the ACS3 Team on the Successful Unfurling of Solar Sail Ames and Langley just added another light to the night sky. Congratulations to the Advanced Composite Solar Sail System (ACS3) team on the successful test of our next-generation solar sail technology that will allow future small spacecraft to “sail on sunlight” as they explore the cosmos. On Aug. 29, the team saw the first images captured by the CubeSat cameras as the mission accomplished its primary objective – successfully deploying the reflective polymer solar sail and its four composite booms in space. We are eager to share high-resolution images from the spacecraft in the coming weeks. Artist’s conception of the Advanced Composite Solar Sail System fully opened. The solar sail employs the pressure of sunlight for propulsion, eliminating the need for conventional rocket propellant.Graphic credit: NASA As the team celebrates achieving this milestone and the exciting possibilities for future small spacecraft missions, it’s a bittersweet victory. As many of you know, the mission’s lead systems engineer, Alan Rhodes, passed away unexpectedly in June. He devoted more than three years to the mission and watched with enthusiasm as the CubeSat launched on April 23. He is in our thoughts as the mission celebrates this latest milestone. After sunset, the best opportunities to see the CubeSat’s sail that spans 33 x 33 feet or half a tennis court will be in the northern skies. Stay tuned to NASA.gov and @NASAAmes on social media for updates on how to see the spacecraft passing over your area. Look for details in an upcoming centerwide with instructions on how to use the NASA App to help you narrow your search for the most accurate viewing opportunities. This mission is another shining example of the inspiration, talent, and innovation that drives the work that we do to develop forward-thinking technologies. Our efforts are impactful and continue to create new possibilities for robotic spaceflight. We can’t wait to see what’s next for the Advanced Composite Solar Sail System. Ames Welcomes Agency Senior Leadership by Tara Friesen NASA Associate Administrator Jim Free, NASA Deputy Associate Administrator Casey Swails, and Director of Cross Agency Strategy Integration John Keefe, visited Ames on Aug. 28 to meet with Ames leadership, tour the facilities, and meet with employees. This was Free’s first visit to Ames since he was appointed associate administrator in November 2023, and Keefe’s first visit since recently joining NASA. Terry Fong, right, explains the operation of the Volatiles Investigating Polar Exploration Rover (VIPER) using a model of the rover. Left to right: Director of Cross Agency Strategy Integration John Keefe, Deputy Associate Administrator Casey Swails, and Ames Associate Center Director Amir Deylami in the Multi-Mission Operations Center (MMOC), building N240.Photo credit: NASA/Ames Donald Richey While spending the day at the center, Free, Swails, and Keefe heard from Ames subject matter experts across many center core competences and missions. They visited the Space Biosciences Research Lab, the Advanced Supercomputing Facility where they were able to see the Hyperwall and the Modular Supercomputer; the VIPER (Volatiles Investigating Polar Exploration Rover) Mission Control Center, and the Arc Jet Facility. They also visited Future Flight Central, the AOL (Airspace Operations Lab), and took part in a wildfire demonstration and discussion. They completed their tour in the NASA Research Park and then toured the Unitary Plan Wind Tunnel drive system where they viewed a model of the X-66 demonstrator aircraft semi span currently in the test section. They also walked through the area where the proposed Berkeley Space Center will be built. Deputy Associate Administrator Casey Swails examines a sample of algae through a microscope in the Space Biosciences Research Laboratory, in building N288.Photo credit: NASA/Ames Donald Richey As we always say, there’s a little bit of Ames in every NASA mission. Thank you to all the members of the Ames community who supported this visit and shared updates on their work with agency senior leadership. NASA Celebrates Ames’ Legacy of Research on National Aviation Day by Tara Friesen NASA works every day to improve air travel – and has been doing so since its creation decades ago. On National Aviation Day, Aug. 19, NASA and all fans of aviation got the chance to celebrate the innovative research and development the agency has produced to improve capability and safety in flight. Early research at NASA’s Ames Research Center in California’s Silicon Valley — then known as NACA Ames Aeronautical Laboratory – included ground tests of “hot wing” anti-icing systems on a Lockheed 12A aircraft.Photo credit: NASA NASA’s Ames Research Center in California’s Silicon Valley has a historic legacy in aeronautics research. When the center was founded in 1939 by the National Advisory Committee for Aeronautics (NACA), its early research included working to reduce icing on aircraft wings. When ice coats the wings of an airplane, it reduces lift and increases drag, which can cause the aircraft to lose altitude and control. Ames researchers developed different approaches to solve the icing challenge, including a “hot wing” thermal anti-icing system. The system worked by running hot engine exhaust along the leading edges of aircraft wings, warming them and preventing ice buildup. Ames researchers modified aircraft and tested them before traveling to Minnesota, where they were flown in icy conditions. Today, many turbine-powered aircraft, like passenger jets, use “bleed air” anti-icing systems, which warm the leading edges of aircraft wings using compressed air from their engines. These systems are built upon the early research and testing done at Ames. The legacy of aviation innovation continues at Ames, through aeroscience research like wind tunnel testing, air traffic management, and advanced aircraft systems. Ames’ WIN, WiO and the USAF Host Inspiring Women’s Equality Day Event In 1973, Congress designated August 26 as Women’s Equality Day to commemorate the 1920 certification of the 19th Amendment to the Constitution, granting women the right to vote. Since then, the observance has grown to include focusing attention on women’s continued efforts toward gaining full equality. Voting is one of the primary ways we participate in the political process, express our opinions, and help shape the goals and values of our nation. Since 1973, we have celebrated Women’s Equality Day on Aug. 26 to commemorate the certification of the 19th Amendment in 1920, which granted women the right to vote. We honor the efforts of the suffragists who fought tirelessly for equality throughout the early 1900s and the work that continued after certification to ensure all women were able to exercise that right. The WIN/WiO panel included the following speakers, left to right: Dr. Meghan Saephan, computer engineer in the Intelligent Systems Division and chair of the Women’s Influence Network Employee Resource Group; Shaina Sethna, safety engineer in the Plant Engineering Branch, member of the Women in Operations group and Women’s Influence Network, and the Special Emphasis Program manager for Federal Women at Ames; Erin Cook, deputy center director of Center Operations and colonel in the Air Force Reserves, where she serves as the Individual Mobilization Augmentee to the vice commander Air Logics Complex, in Oklahoma City, and the Ames Women in Operations group executive sponsor; and Bee Davis, a senior infrastructure engineer at Johnson Space Center in the Flight Operations Directorate, and member of the Women’s Influence Network Employee Resource Group. The moderator, far right, was Airman First Class Nicholas Mangrum. At the time of its founding in 1958, NASA was a male-dominated workforce. By the 1960s, women were making significant contributions to the Apollo mission. Today, the trend continues to head in the right direction. Five of NASA’s 10 centers have women directors in center leadership and women are engaged in every facet of science, discovery, and exploration. Ames’ Women’s Influence Network (WIN), Women in Operations (WiO), and the US Air Force National Guard hosted an inspiring Women’s Equality Day event on Aug. 26 at the RQW Airmen Resiliency Center in Mountain View. The Ames event included a panel featuring women from WIN and WiO, as well as presentations from NASA leaders, local elected officials, and other government agencies. Mayor Yan Zhao from the City of Saratoga attended. Mayor Pat Showalter from the City of Mountain View provided opening remarks, along with Deputy Center Director Dr. Dave Korsmeyer. A presentation by the 129th Rescue Wing, which consists of the entire Air National Guard unit at Moffett Field. This portion of the program highlighted airmen in the 129thRescue Wing that had gone above and beyond. A second panel discussion was then held by the San Francisco Federal Bureau of Investigation. NASA also hosted an agencywide event on Aug. 26, featuring Deputy Administrator Pam Melroy, Armstrong Flight Research Center’s Deputy Center Director Laurie Grindle, and NASA Historian Jennifer Ross-Nazzal. Women’s Equality Day provides an opportunity to underscore the agency’s commitment to providing an inclusive and equitable workplace today and ensuring a welcoming future for the next generation of employees. It is not only the right thing to do; it is essential to NASA’s success. Family Members Tour VIPER Mission Center On Aug. 14, family members of the Volatiles Investigating Polar Exploration Rover (VIPER) were invited to see demonstrations and participate in hands-on activities at Ames for a friends and family day Chris Provencher, center standing, explains the Volatiles Investigating Polar Exploration Rover (VIPER) mission to his family in the Multi-Mission Operations Center (MMOC), in building N240, for VIPER Friends and Family Day. Dennis Heher is seated at the control console on the left. Photo credit: NASA/Ames Donald Richey Antoine Tardy, left, explains the operation of the Moon Gravity Representative Unit (MGRU3) at the Roverscape during Friends and Family Day for team members of the Volatiles Investigating Polar Exploration Rover (VIPER). MGRU3 is a weight equivalent mobility and navigation test platform for VIPER. It is used to test, develop, and validate the different mobility and navigation techniques and capabilities of the VIPER rover. Photo credit: NASA/Ames Donald Richey Arno Rogg explains the Volatiles Investigating Polar Exploration Rover (VIPER) mission to visitors in the Multi-Mission Operations Center (MMOC), in building N240, during the VIPER Friends and Family Day. Photo credit: NASA/Ames Donald Richey Right to left: Jay Trimble, Rachel Hoover, and Kelsey Herrmann in the Multi-Mission Operations Center (MMOC), in building N240, during the Volatiles Investigating Polar Exploration Rover (VIPER) Friends and Family Day. Photo credit: NASA/Ames Donald Richey National Full Scale Aerodynamic Complex (NFAC) Turns 80 National Full Scale Aerodynamic Complex (NFAC) 80th Anniversary commemorative group photo in the 40-foot-by-80-foot wind tunnel test section. Front row, kneeling, left to right, Jarvis Gross, Paul Gillis, Bartolome Aganon, Andrew Carrigan, Ana Chaverri, Matthew Nugyen, Kyle Lukacovic, Luisito Icari, Tristan Eberbach, Nili Gold, James Bailey, Sarah Sarra, Emily Sayles, Angela Carter, Janice Lim, and Brenda Fox. Second row, from left to right, Meliton Abenojar, Daniel Brookbank, Frank Pichay, Ryan Edwards, Dan Pruyn, Tyler Pearsall, Joseph Candaso, April Gage, Steve Nance, Doug Wardwell, Tim Naumowicz, Vick Corsiglia, Alfred Lizak, Kenneth Mort, Mike Herrick, Chutchai Chompupong, Emmanuel Nyangweso, Sandra Ruiz, Michelle Foster, Rick Shinoda, Brian Vazquez, and Derek Witman. Thrid Row, from left to right, , Pete Zell, Abiael Rivera Lopez, Cory Koehne, Shawn Abedajos, Chris Nykamp, Kevin Boyce, Jose Navarrete, Alex Shikman, Daniel Grieb, Nathan Noma, Patrick Goulding, David Wang, Dan Boyd, Bill Warmbroth, Wally Acree, Hank Schwoob, Joseph Sacco, Scott Jaffa, Rob Fong, Jim Ross, Tom Norman, Jeffrey Johnson, Tom Arledge, Arturo Zamora, Athena Chan, Craig Morrison, Jonathan Winegar, Samuel Huang, Johannes van Aken, and Todd Fuller.Photo credit: NASA/Ames Brandon Torres NASA Seeks Input on Safety for Future Commercial Drone Operations by Hillary Smith NASA recently gathered representatives from the Federal Aviation Administration (FAA), police and fire departments, and commercial industry to figure out how to take an important step for public safety drones: allowing them to fly past where their operators can see them. Currently, most drone operations are limited to areas known as “visual line of sight” for safety purposes. However, engineers and researchers are developing the infrastructure to allow drones to operate beyond this point. As the FAA works to authorize these types of flights, NASA is helping ensure these operations are safe and efficient.  Drones in flight in downtown Reno, Nevada, during shakedown tests for NASA’s Unmanned Aircraft Systems Traffic Management project, or UTM. The final phase of flight tests, known as Technical Capability Level 4, ran from May through August 2019 and studied how the UTM system can integrate drones into urban areas.Photo credit: NASA/Ames Dominic Hart This work from NASA and the FAA could have significant commercial applications – including drone deliveries – but at their June meeting, the agencies were focused on public safety drones used for search-and-rescue, accident scene reconstruction, and situational awareness during fires and other emergencies. Researchers need to figure out how drones on public safety missions can operate safely beyond visual line of sight – and do so in airspace shared with drones on commercial missions. Hosted by NASA’s Ames Research Center in California’s Silicon Valley, the meeting took place in Arlington, Texas City Hall. Attendees included members of the FAA, the Department of Homeland Security, the Texas Department of Public Safety, the Arlington local police and fire departments, and representatives of the Dallas-Fort Worth International Airport. The group’s discussion included the special considerations needed for public safety drone operations beyond visual line of sight. And they identified at least one significant challenge: how to ensure that public safety drones have priority when operating in the same airspace with commercial drones. NASA researchers provided feedback from this session to the FAA, commercial drone operators, and service providers. Input from the public safety meeting will support the FAA’s evaluation of commercial drone flights beyond visual line of sight, which the agency is currently conducting in the Dallas-Fort Worth area. Data from these operations will inform FAA rulemaking. NASA’s work is led by its Uncrewed Aircraft Systems Traffic Management System Beyond Visual Line of Sight effort, which falls under the Air Traffic Management Exploration project. This subproject directly supports NASA’s Advanced Air Mobility mission. Advanced Air Mobility aims to transform our communities by bringing the movement of people and goods off the ground, on demand, and into the sky.  New Zealand Prime Minister Tours Ames, Celebrates Partnership On July 12, Ames welcomed the Prime Minister of New Zealand, Christopher Luxon. New Zealand was a pivotal partner in crafting the Artemis Accords and is a longstanding partner with NASA in commercial space and Earth science. At Ames, the prime minister was hosted in the Advanced Supercomputing Facility where he was briefed on Ames’ core competences and learned about NASA’s partnership with Rocket Lab to launch missions from New Zealand’s coast including the Advanced Composite Solar Sail,Starling, and CAPSTONE. Ames Center Director Eugene Tu, left, and New Zealand Prime Minister Christopher Luxon, right, in front of the HyperWall facility in building N258.Photo credit: NASA/Ames Brandon Torres He also met with two Ames interns from New Zealand’s Space Scholarship program, Alex McKendry, who is researching neuromorphic computing applications in small spacecraft autonomy, and Faun Watson, who is using the Low Density Shock Tube to simulate sustainable satellite de-orbiting technology. The students are here under the NASA International Internships Project. New Zealand Prime Minister Christopher Luxon, left, greets NASA interns Faun Watson and Alexandra McKendry before departing the lobby of N258.Photo credit: NASA/Ames Brandon Torres In addition, Ames experts briefed the prime minister on NASA’s and New Zealand’s collaborative efforts to study Earth’s interconnected systems. He also learned about SOFIA’s enduring connection to New Zealand, which hosted the aircraft seven times to observe objects visible in the southern hemisphere. Before leaving the center, the prime minister visited the Pleiades and Cabeus supercomputers and examined the capabilities of the facility’s upgraded hyperwall, which brings numerical data to life with over a billion pixels across 128 screens. Ames leadership spoke with the prime minister about a partnership between NASA’s Indigenous Peoples Initiative, the Society for Māori Astronomy Research and Traditions, and members of the Māori Working Group in Aerospace. This partnership will support the need for Māori-led initiatives to monitor environmental and ecological impacts in their communities and add diverse voices to Earth observations and research. It is a privilege to welcome our international partners to Ames and share our wealth of knowledge and technology. Collaboration is critical to NASA’s mission, particularly as we go back to the Moon and beyond, together. We value our continued partnership with New Zealand and their role in Earth science and the evolving commercial space industry. NASA’s Upgraded Hyperwall Offers Improved Data Visualization by Tara Friesen In May, the NASA Advanced Supercomputing (NAS) facility, located at Ames Research Center, celebrated the newest generation of its hyperwall system, a wall of LCD screens that display supercomputer-scale visualizations of the very large datasets produced by NASA supercomputers and instruments. NAS visualization and data sciences lead Chris Henze (far left) demonstrates the newly upgraded hyperwall visualization system to Ames Center Director Eugene Tu (second from left), deputy center director David Korsmeyer (second from right), and High-End Computing Capability manager William Thigpen (far right.)Photo credit: NASA/Ames Brandon Torres The upgrade is the fourth generation of hyperwall clusters at NAS. The LCD panels provide four times the resolution of the previous system, now spanning across a 300-square foot display with over a billion pixels. The hyperwall is one of the largest and most powerful visualization systems in the world. Systems like the NAS hyperwall can help researchers visualize their data at large scale, across different viewpoints or using different parameters for new ways of analysis. The improved resolution of the new system will help researchers “zoom in” with greater detail. The hyperwall is just one way researchers can utilize NASA’s high-end computing technology to better understand their data. The NAS facility offers world-class supercomputing resources and services customized to meet the needs of about 1,500 users from NASA centers, academia and industry. Liftoff! Redesigned NASA Ames Visitor Center Engages Kids, Families by Tara Friesen The San Francisco Bay Area has a new and interactive way to learn more about the innovative work of NASA’s Ames Research Center. A newly redesigned NASA Ames Visitor Center at Chabot Space & Science Center in Oakland, California, reopened to the public June 22 at the NASA Fest at Chabot celebration. The newly revitalized NASA Ames Visitor Center opened at the Chabot Space and Science Center in Oakland, California on June 22, 2024.Photo credit: NASA/Ames Donald Richey Chabot Space & Science Center director Adam Tobin, right, welcomes NASA Ames center director Eugene Tu, left, and deputy center director David Korsmeyer, center, to the updated NASA Ames Visitor Center.Photo credit: NASA/Ames Donald Richey The two-day festival included hands-on activities, workshops, and conversations with NASA Ames experts, as well as presentations from local STEM organizations. “Curiosity and inspiration are the core of what we do at NASA,” said Eugene Tu, center director at Ames. “This new exhibit is a chance for us to share a bit of what happens behind the scenes that makes our work possible and inspire the next generation.” The NASA Ames Visitor Center includes exhibits and activities, sharing the work of NASA in Silicon Valley with the public.Photo credit: NASA/Ames Donald Richey The updated visitor center includes a fully reimagined 360-degree experience, featuring new exhibits, models, and more. An interactive exhibit puts visitors in the shoes of a NASA Ames scientist, designing and testing rovers, planes, and robots for space exploration. The NASA Ames Visitor Center first opened at Chabot in November 2021. The newly reimagined space is one way NASA seeks to engage and excite kids and families in science and technology. NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic by John Gould Just like your smartphone navigation app can instantly analyze information from many sources to suggest the best route to follow, a NASA-developed resource is now making data available to help the aviation industry do the same thing. To assist air traffic managers in keeping airplanes moving efficiently through the skies, information about weather, potential delays, and more is being gathered and processed to support decision making tools for a variety of aviation applications. Appropriately named the Digital Information Platform (DIP), this living database hosts key data gathered by flight participants such as airlines or drone operators. It will help power additional tools that, among other benefits, can save you travel time. This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.Photo credit: NASA “Through DIP we’re also demonstrating how to deliver digital services for aviation users via a modern cloud-based, service-oriented architecture,” said Swati Saxena, DIP project manager at NASA’s Ames Research Center in California. The intent is not to compete with others. Instead, the hope is that industry will see DIP as a reference they can use in developing and implementing their own platforms and digital services. “Ultimately, the aviation industry – the Federal Aviation Administration, commercial airlines, flight operators, and even the flying public – will benefit from what we develop,” Saxena said. The platform and digital services have even more benefits than just saving some time on a journey. For example, NASA recently collaborated with airlines to demonstrate a traffic management tool that improved traffic flow at select airports, saving thousands of pounds of jet fuel and significantly reducing carbon emissions. Now, much of the data gathered in collaboration with airlines and integrated on the platform is publicly available. Users who qualify can create a guest account and access DIP data at a new website created by the project. It’s all part of NASA’s vision for 21st century aviation involving revolutionary next-generation future airspace and safety tools. Managing Future Air Traffic During the 2030s and beyond, the skies above the United States are expected to become much busier. Facing this rising demand, the current National Airspace System – the network of U.S. aviation infrastructure including airports, air navigation facilities, and communications – will be challenged to keep up. DIP represents a key piece of solving that challenge. NASA’s vision for future airspace and safety involves new technology to create a highly automated, safe, and scalable environment. What this vision looks like is a flight environment where many types of vehicles and their pilots, as well as air traffic managers, use state-of-the-art automated tools and systems that provide highly detailed and curated information. These tools leverage new capabilities like machine learning and artificial intelligence to streamline efficiency and handle the increase in traffic expected in the coming decades. Digital Services Ecosystem in Action To begin implementing this new vision, our aeronautical innovators are evaluating their platform, DIP, and services at several airports in Texas. This initial stage is a building block for larger such demonstrations in the future. “These digital services are being used in the live operational environment by our airline partners to improve efficiency of the current airspace operations,” Saxena said. “The tools are currently in use in the Dallas/Fort Worth area and will be deployed in the Houston airspace in 2025.” The results from these digital tools are already making a difference. Proven Air Traffic Results During 2022, a NASA machine learning-based tool named Collaborative Digital Departure Rerouting, designed to improve the flow of air traffic and prevent flight delays, saved more than 24,000 lbs. (10,886 kg.) of fuel by streamlining air traffic in the Dallas area. If such tools were used across the entire country, the improvements made in efficiency, safety, and sustainability would make a notable difference to the flying public and industry. “Continued agreements with airlines and the aviation industry led to the creation and expansion of this partnership ecosystem,” Saxena said. “There have been benefits across the board.” DIP was developed under NASA’s Airspace Operations and Safety Program. Ames Selected Co-Winner 2024 NASA Software of the Year Award Ames Research Center is a co-winner for the 2024 NASA Software of the Year (SOY) award for “ProgPy -Prognostics Python” software, which was among five submissions competing this year. NASA Johnson Space Center also was selected as co-winner of the SOY award. Put simply, ProgPy helps predict how long a machine will work before it runs into challenges, essentially computing its remaining useful life (more information below). The agency-wide annual SOY competition rewards high-quality, innovative, and robust software using efficient software engineering processes that meet NASA’s stringent safety and reliability standards. Sponsors of the competition include the NASA Chief Engineer, the NASA Chief Information Officer, and the NASA Office of Safety and Mission Assurance. NASA’s Inventions and Contribution Board (ICB) reviewed and ranked the nominations, in coordination with the sponsors. Congratulations to the ProgPy team from Code TI: Christopher Teubert, Katelyn Griffith, Matteo Corbetta, Chetan Kulkarni, Jason Watkins, Matthew J. Daigle, Portia Banerjee, Adam Sweet and interns, Miryam Strautkalns, and Aditya Tummala for this recognition by the agency. The NASA Prognostic Package (ProgPy) is a python prognostics framework focused on building, using, and evaluating models and algorithms for prognostics (computation of remaining useful life). It also includes the health management of engineering systems and provides a set of prognostics models for select components and prognostics algorithms developed within this framework, suitable for use in prognostics for these components. In addition to algorithms for state estimation and prediction, including uncertainty propagation. ProgPy combines NASA’s prog_models and prog_algs packages into a single python package, for simplicity and clarity. Every new software developed or improved, helps advance the agency’s work. Employees are invited to submit disclosures on your software and technology development work at https://invention.nasa.gov to make these important benefits a reality. Special Thanks Appreciation and special thanks to Ames’ Technology Transfer Office, Inventions and Contributions Board (ICB) members, and 2024 NASA SOY selection panel members who reviewed and selected the technology that Ames put forward for the agencywide competition. They helped assemble, vet, and submit the nomination package and helped prepare the team for their final presentation delivered to the SOY Judging Panel. Congratulations to the ProgPY team for this recognition and for continuing the Ames tradition of leading the agency in software development! Former NASA Software of the Year Winners As a center, we have enjoyed great success in previous NASA Software of the Year (SOY) competitions. This achievement adds to our legacy, which includes: Unsteady Pressure-Sensitive Paint (uPSP), (Honorable Mention, 2023) Porous Microstructure Analysis (PuMA), (Software of the Year, 2022) Airspace Technology Demonstration 2 (ATD-2) (Runner-Up, 2021) Astrobee Robot and Ground Software (Runner-Up, 2020) UAS Traffic Management Services (UTM) (Software of the Year, 2019) NASA Task Load Index TLX, (Runner-Up, 2018) TSAS for Air Traffic Control (Software of the Year, 2017) Pegasus 5 CFD Tool (Software of the Year, 2016) NEQAIR v14.x Non-Equilibrium Radiative Transport and Spectra Program (Software of the Year, 2015) Configuration-Based Aerodynamics (CBAERO) with Marshall Space Flight Center (Software of the Year, 2014) NASA App with JPL (Software of the Year, 2012) Kepler Science Operations Center (SOC) (Software of the Year, 2010) World Wind Java (Software of the Year, 2009) Data Parallel Line Relaxation Code (DPLR) (Software of the Year, 2007) Future Air Traffic Management Concepts Evaluation Tool (FACET) (Software of the Year, 2006) Cart3D (Software of the Year, 2002) Remote Agent with JPL (Software of the Year, 1999) Center TRACON Automation System (Software of the Year, 1998) Flow Analysis Software Toolkit (FAST) (Software of the Year, 1995) Incompressible Navier-Stokes Flow Solver in Three Dimensions (INS3D) (Software of the Year, 1994) The ICB members included Leland Stone (Code TH) and Mary Livingston (Code AA). Leland also serves as chair of Ames’ Software of the Year selection panel. From the Ames Technology Transfer Office (Code DI): Kim Hines (Chief), Kimberly Minafra, Hong Vong, Jay Singh, and Katie Smyth. The 2024 Ames SoY Selection Panel members were Harry Partridge (Code D), Craig Pires (Code D), Robert Duffy (Code TI), Robert Windhorst (Code AFH), Estela Buchmann (Code AF), Sean Colgan (Code STA). Careers & disABLED Magazine names Nathaniel Smith 2024 Employee of the Year Nathanial (Neal) Smith, an aerospace engineer at Ames in the Experimental Aero-Physics Branch (Code AOX) was selected as Employee of the Year by Careers & the disABLED Magazine for his professional and advocacy efforts on behalf of people with disabilities in the workplace and in the community. His research is computer vision-based technique implementations for novel approaches to optical data reduction, and flow physics analysis. He is open to sharing about his disability to inspire others. Aerospace Engineer Nathanial (Neal) Smith has been selected as Employee of the Year by CAREERS & the disABLED Magazine. Congratulations Neal! As Administrator Nelson has said, ensuring NASA is inclusive and accessible is critical to the agency’s ability to innovate, achieve excellence, and advance the mission. We are fortunate to benefit from Neal’s commitment to this goal here at Ames. The NASA Ames family is proud of your contributions to the agency and your continuous involvement with the Ames Disability Advocates employee resource group. Find out more about Neal and his award in the Spring Awards issue of Careers & the disABLED. Awardees of the FY24 Ames Research Innovation Award Announced The Office of the Chief Scientist (OCS) is pleased to announce the FY24 Ames Research Innovation Award (ARIA) awardees. ARIA promotes the vitality of Ames through strategic investments in scientific research, capabilities, and people. It encourages the development of new, high-risk/high-return investigations that stress innovation, exploration, and/or interdisciplinary work. ARIA focuses on innovative or basic scientific research in areas that are relevant to agency and center goals, without necessarily being tied to any specific future mission opportunity. ARIA proposals must be research oriented and are considered seedling funding for innovative/disruptive research that will enable next generation science and research. Image credit: NASA Please join us in congratulating the FY24 ARIA awardees: Don Banfield, “Ice Giant Watchdog Concept” Jared Broddrick, “Systems Biology Analysis of Biological Payload Telemetry Data” Egle Cekanaviciute, “Human Airway Model Responses to Airborne Stimuli” Michael Flynn, “Radio-catalytic Radiation Protection” Jessica Koehne, “Detection and Characterization of Single Mag-EC ELISA Constructs for Ultra-Low LOD Life Detection” Yasaman Shirazi, “Assessing miRNA Biomarkers Associated with Spaceflight Induced Bone Loss and Fracture Risk” Visit the OCS website for more information. Congratulations to the Awardees of the 2024 Internal Research and Development Ames Research Center is pleased to announce the awardees of the FY24 Internal Research and Development (IRAD).The IRAD develops strategic technical capabilities in support of the center competencies and thereby enables science, technology, and engineering efforts for future agency missions. The advances in science and technology through this program will provide potential opportunities for technical risk reduction and/or increased cost effectiveness and initiate potentially transformational solutions. Image credit: NASA Congratulations to the FY24 IRAD awardees: Walter Alvarado, Biomarkers in Radiation Exhalation Assessment Tool for Health Evaluation (BREATHE). Don Banfield, Mars Doppler Wind & Thermal Sounder Ozone Cell Maturation. Grace Belancik, Cryocooler-Deposited CO2 Purifier. Amanda Brecht, AIR (Ames Infrared Imager): Maturation of a Compact and Versatile Hyperspectral Imager. Anthony Colaprete, Moon3D and Dust Particle Suite: An Artemis IV Deployed Payload. Magnus Haw, IMPedance Analysis and Certification Technology (IMPACT). Tori Hoehler, Verification and Validation of ARC Enceladus Life Signatures and Habitability (ELSAH) Payload Elements for New Frontiers 5. Brian Kempa, DARTS: Distributed Autonomous Robotic Tomography of Seismics. Jessica Lee, Fluorescence detection and optogenetic activation for microbial experimentation beyond LEO. Mike Padgen, SAMMS: Spaceflight Autonomous Multigenerational Microbial Sequencer. Keith Peterson, PICA-Flex: A Low-Cost Advanced Ablative TPS in NASA’s New MERINO Family of Materials (Materials Engineered for Re-entry using Innovative Needling Operations). Richard Quinn, Microfluidic Icy-World Chiral-Chemistry Analyzer (MICCA). Naseem Rangwala, Enabling a New Vacuum High-Contrast Imaging Testbed for NASA’s Habitable Worlds Observatory. Farid Salama, Developing a New Negative Ion Production System on the COSmIC Facility for Interstellar and Planetary applications. This year, the IRAD was highly competitive with more than 65 proposals submitted from across the center and represents an over 100% increase in the number of proposals submitted compared to last year. The 14 proposals selected represent an approximately $2.8 million center investment over two years and consists of 13 proposals by principal investigators not in the FY23 awards. We appreciate everyone’s interest in this important program and look forward to hearing about the results of these investigations. Congratulations to all the FY24 IRAD recipients! Visit the IRAD website for more information. Dr. Yvonne Cagle Receives Presidential Lifetime Achievement Award, Gold Medal Congratulations to NASA astronaut and longtime Ames Management Astronaut Representative, Dr. Yvonne Cagle, currently assigned to the Partnerships Office, who was presented with the Presidential Lifetime Achievement Award, Gold Medal, on June 17. Dr. Yvonne Cagle recent recipient of the Presidential Lifetime Achievement Award, Gold Medal.Photo credit: NASA Cagle received the award during Black Space Week, following her participation on a panel with fellow astronauts Victor Glover, Jessica Watkins, Leland Melvin, and Joan Higginbotham at the National Museum of African American History and Culture. The panel examined the past, present, and future of space exploration. At the event, Cagle shared her insight upon returning from a sailing research trip studying the geoscience and thermal chemical profiles of the oceans in anticipation of planetary soil sampling opportunities for future lunar and Mars missions. As NASA prepares to send humans back to the Moon and on to Mars, we need to consider, “The way the planet speaks, the way the soil speaks, the way the ocean can let us know when its coasts are under strain, and how that can be really disruptive to our planet and our lives… And I began to realize that the Earth is alive; it breathes. And I really want to use some of the discoveries I’ve made over my years as a medical doctor and overlay them on the face of the Earth, and then take that perspective to look back from the lens of space to see if we can all come together, work together to regenerate, thrive, and sustain ourselves both here on the planet and off.” This most recent award joins many others that recognize Cagle’s excellence, including the National Defense Service Medal, Air Force Achievement Medal, United States Air Force Air Staff Exceptional Physician Commendation and National Technical Association Distinguished Scientist Award. A senior flight surgeon and a contributor to the study of astronaut health, Cagle is a valued colleague at Ames and an inspiration to the next generation of medical doctors, scientists, and space explorers. National Academies Study Selects Dr. Jen Heldmann as Geosciences Panel Chair Ames’ Planetary Scientist Dr. Jen Heldmann has been selected as Chair of the Geosciences Panel in a study led by the National Academies of Science, Engineering and Medicine (NASEM) entitled “A Science Strategy for the Human Exploration of Mars.” The Geosciences panel is one of four that will provide input to the steering committee to identify and prioritize Mars science objectives best conducted by humans. The panel’s report will also outline mission campaigns to achieve these prioritized science objectives. Dr. Jen Heldmann, recently selected as Chair of the Geosciences Panel in a study led by the National Academies of Science, Engineering and Medicine. Aligning with NASA’s Moon to Mars Objectives According to the National Academies: “A Science Strategy for the Human Exploration of Mars will identify high priority science objectives (in all relevant disciplines) to be addressed by human explorers across multiple science campaigns on the surface of Mars. This includes identifying and prioritizing science objectives from the relevant decadal survey reports and discipline roadmaps and NASA’s Moon to Mars Objectives, determining types of samples to be collected and measurements to be taken, identifying science campaigns to address the objectives, and identifying preliminary criteria for the selection of appropriate landing sites. Research Interests Heldmann’s research interests focus on planetary volatiles, in-situ resource utilization (ISRU) and enabling human exploration of the Moon and Mars. Her expertise includes spacecraft data analysis, numerical modeling, and fieldwork in Mars-analog environments in locations such as Chile’s Atacama Desert, the Canadian High Arctic and Antarctica. She has contributed to space missions starting with the Ames-led LCROSS (Lunar Crater Observation and Sensing Satellite) mission to the Moon, and currently serves as a science team member for the VIPER (Volatiles Investigating Polar Exploration Rover) mission. Heldmann serves as principal investigator (PI) for both NASA’s FINESSE (Field Investigations to Enable Solar System Science & Exploration) and RESOURCE (Resource Exploration and Science of OUR Cosmic Environment) projects and has served as PI or co-I on a host of other projects and grants. She has supported the Artemis Program as a member of the Artemis III Science Definition Team, as co-lead of the Artemis III Geology Team, and as a crew trainer for Artemis Astronauts (among other duties). Congratulations to Dr. Heldmann in her new role helping to lead NASA into the coming decades of human Mars exploration! NASA Public Engagement Specialist Jonas Dino Loves to Inspire Kids with STEM by Gianine Figliozi Careers at NASA were not on his radar growing up. But Jonas Dino, public engagement specialist at NASA’s Ames Research Center in California’s Silicon Valley, ended up with his perfect job that involves connecting people with NASA. Jonas Dino speaks to students at the Cezar Chavez Middle School in Union City, California, as part of a NASA-sponsored traveling space museum tour of Bay Area schools.Photo credit: NASA Ames/Dominic Hart One of the best parts of his job is to learn first-hand about NASA’s cutting-edge research and translate these concepts to the next generation. “I’m excited about what NASA does and where we are going,” said Dino, “As an extrovert, I love interacting with the public, especially little kids.” When speaking to younger children, Dino often kneels, to get to their level. With the future of aeronautics and space exploration in mind, he has a message for them: ‘NASA needs you.’ “They love space and think it is very cool, but many don’t think they could ever work at NASA,” said Dino. “I want to help them see: anything is possible.” NASA’s Ames Research Center in California’s Silicon Valley takes NASA’s message on the road to area schools and public events with its public engagement trailer. Jonas Dino is shown unloading the trailer for an event.Photo credit: NASA Ames/Dominic Hart A path to NASA he didn’t know existed A first-generation immigrant from the Philippines, Dino’s academic start focused on studying life sciences. “As a Filipino, you’re encouraged to go into the medical field as a career,” said Dino. After joining the Marine Corps, Reserve, he returned home to study biology at San Jose State University (SJSU). After doing poorly at organic chemistry, he took his next “logical” step and switched his major to nursing. After working in the field, he realized that was not for him either. Luckily, he had been taking psychology classes, following his interests, and could graduate with a psychology degree by only taking two more classes. After three changes in major and just getting ready to graduate, Dino was hit by a car. His injury and subsequent recovery gave him time to evaluate what he wanted to do with his life. “I was pretty good at talking to people and teaching,” said Dino. “Maybe I could do that as a job?” Dino started his teaching career at James Logan – the same high school he graduated from in 1985. He eventually ran for and was elected as a trustee for the New Haven Unified School District in the San Francisco Bay Area. Unfortunately, to take that seat, he could not be a teacher in the district – a conflict of interest. Suddenly needing a job, he found the internship book at SJSU where he was getting his master’s degree. Soon, he was evaluating opportunities: a high-tech company or NASA? “It was during the dotcom boom and my family strongly encouraged me to take the high-tech internship,” said Dino. “I took the internship at NASA Ames and have never regretted my decision.” Working as a communicator, Dino has covered the gamut of NASA projects from aeronautics to space missions, including a lunar mission, LCROSS, that helped confirm the presence of water on the Moon. His favorite part of his job is STEM engagement. “There is nothing like seeing a kid’s eyes get larger, or that proverbial light-bulb-turn-on-above-their-heads when you teach them something new,” said Dino. “When you see kids are hungry for science, you need to feed it.” He did serve his community on the school board for four terms – 16 years. Now, he serves as an advocate for the NASA Ames workforce as president of the Ames Federal Employees Union. “NASA is a great place to work, it has been a blast, for nearly 24 years.” Science data from NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS) mission’s 2009 lunar impact helped confirm the presence of water on the Moon. Here, LCROSS Project Manager Daniel Andrews (left), points to a model of the LCROSS spacecraft integrated with the Atlas V Centaur upper stage rocket. Jonas Dino (right) led public communications for the mission at NASA Ames.Photo credit: NASA Ames/Eric James Nudging an asteroid A little push in the right direction, even incidental, can have a huge effect on your trajectory – and thus where you end up – if it happens early on. This is true both for rogue rocks, on the loose in the solar system, and for people too. “When I was a kid, I took apart everything because I wanted to know what’s inside and how everything worked,” said Dino. “Looking back, I should have been an engineer.” “I have two children, a son and a daughter,” said Dino. “I’m encouraging my daughter to go into STEM; we need more young women in STEM careers but too many girls are pushed away from this choice by the time they are in middle school. I also want to encourage Filipino kids to make their own career choices and maybe even to come work for NASA.” To help pursue these goals, Dino started a memorial scholarship in honor of his father for Filipino students going into STEM fields. He handed out the inaugural scholarship for this last May. NASA never stops for Dino. Whether at work or on his free time, he’s always talking about NASA. While dishing out samples of his Filipino adobo recipe during a recent adobo-cooking contest – according to Dino, every Filipino family has their own recipe for this dish – he also handed out NASA knowledge. He won second place. Summer Interns Present at Poster Session Ames summer interns presented their research projects that they worked on during the summer to center leadership and mentors during a poster session event in Building 3 in the NASA Research Park. Interns at Ames explain their research project posters to interested parties at the recent summer intern poster session.Photo credit: NASA Ames/Donald Richey Photo credit: NASA Ames/Donald Richey Mountain View Tech Showcase and Panel Highlight Local Innovations Ames participated in a technology panel and exhibited at the two-day Mountain View Technology Showcase event July 24 and 25, held annually at the Mountain View Center for the Performing Arts. This event was a testament to the collaborative spirit of companies and partners from within the city and surrounding areas, all coming together to highlight the latest technology innovations. Chetan Kulkarni, Code T, shared his work on algorithm development, and Donald Durston, Code A, shared his work on supersonic aircraft, sonic booms, and the X-59. The panel provided the general public with a better understanding of the current and future state of unmanned airspace use in Mountain View, particularly the long history of air and space research and development, the myriad of uses, the challenges of managing use at different altitudes, what aspects our local companies are focusing on, and how they all fit together to help our everyday lives. Speaking at the podium, Joseph Rios, Chief Technologist for the Aviation Systems Division at Ames, discusses Urban Air Mobility (UAM) and the current state of Unmanned Traffic Management (UTM). This was during the panel discussion about the future of airspace at the 9th Annual Technology Showcase in the Mountain View Center for the Performing Arts. Seated left to right: Robert Rose, Jim Tighe, and Alex Norman.Photo credit: NASA Ames/Donald Richey Chetan Kulkarni, right, sharing his work on technology maturation of Prognostics and Decision-Making (PDM) at the July 24 Technology Showcase.Photo credit: Mona Lisa Sharp Donald Durston, center, shares his work on supersonic aircraft, sonic boom, and the X-59 at the July 24 Technology Showcase.Photo credit: Mona Lisa Sharp Space Life Sciences Training Program (SLSTP) Interns Tour Ames The Space Life Sciences Training Program (SLSTP) interns investigate the 24-foot diameter centrifuge of the Space Biosciences Artificial Gravity Lab in N239A during the recent tour at Ames on July 26.Photo credit: NASA Ames/Donald Richey Joshua Alwood of the Space Biosciences Artificial Gravity Lab, right, explains the 1.22-meter radius (8-foot diameter) centrifuge to the Space Life Sciences Training Program (SLSTP) interns in N239A during their tour on July 26.Photo credit: NASA Ames/Donald Richey Surfing NASA’s Internet of Animals: Satellites Study Ocean Wildlife Anchoring the boat in a sandbar, research scientist Morgan Gilmour steps into the shallows and is immediately surrounded by sharks. The warm waters around the tropical island act as a reef shark nursery, and these baby biters are curious about the newcomer. They zoom close and veer away at the last minute, as Gilmour slowly makes her way toward the kaleidoscope of green sprouting from the island ahead. An aerial view of Palmyra Atoll, where animal tracking data now being studied by NASA’s Internet of Animals project was collected using wildlife tags by partners at The Nature Conservancy, the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, and several universities.Photo credit: The Nature Conservancy/Kydd Pollock Gilmour, a scientist at NASA’s Ames Research Center in California’s Silicon Valley, conducts marine ecology and conservation studies using data collected by the U.S. Geological Survey (USGS) from animals equipped with wildlife tags. Palmyra Atoll, a United States marine protected area, provides the perfect venue for this work. A collection of roughly 50 small islands in the tropical heart of the Pacific Ocean, the atoll is bursting with life of all kinds, from the reef sharks and manta rays circling the shoreline to the coconut crabs climbing palm branches and the thousands of seabirds swooping overhead. By analyzing the movements of dolphins, tuna, and other creatures, Gilmour and her collaborators can help assess whether the boundaries of the marine protected area surrounding the atoll actually protect the species they intend to, or if its limits need to shift. Launched in 2020 by The Nature Conservancy and its partners – USGS, NOAA (National Oceanic and Atmospheric Administration), and several universities – the project team deployed wildlife tags at Palmyra in 2022, when Gilmour was a scientist with USGS. Now with NASA, she is leveraging the data for a study under the agency’s Internet of Animals project. By combining information transmitted from wildlife tags with information about the planet collected by satellites – such as NASA’s Aqua, NOAA’s GOES (Geostationary Operational Environmental Satellite) satellites, and the U.S.-European Jason-3 – scientists can work with partners to draw conclusions that inform ecological management. The Palmyra Atoll is a haven for biodiversity, boasting thriving coral reef systems, shallow waters that act as a shark nursery, and rich vegetation for various land animals and seabirds. In the Landsat image above, a small white square marks the research station, where scientists from all over the world come to study the many species that call the atoll home.Photo credit: NASA/Earth Observatory Team “Internet of Animals is more than just an individual collection of movements or individual studies; it’s a way to understand the Earth at large,” said Ryan Pavlick, then Internet of Animals project scientist at NASA’s Jet Propulsion Laboratory in Southern California, during the project’s kickoff event. The Internet of Animals at Palmyra “Our work at Palmyra was remarkably comprehensive,” said Gilmour. “We tracked the movements of eight species at once, plus their environmental conditions, and we integrated climate projections to understand how their habitat may change. Where studies may typically track two or three types of birds, we added fish and marine mammals, plus air and water column data, for a 3D picture of the marine protected area.” Tagged Yellowfin Tuna, Grey Reef Sharks, and Great Frigatebirds move in and out of a marine protected area (blue square), which surrounds the Palmyra Atoll (blue circle) in the tropical heart of the Pacific. These species are three of many that rely on the atoll and its surrounding reefs for food and for nesting.Photo credit: NASA/Lauren Dauphin Now, the NASA team has put that data into a species distribution model, which combines the wildlife tracking information with environmental data from satellites, including sea surface temperature, chlorophyll concentration, and ocean current speed. The model can help researchers understand how animal populations use their habitats and how that might shift as the climate changes. Preliminary results from Internet of Animals team show that the animals tracked are moving beyond the confines of the Palmyra marine protected area. The model identified suitable habitats both in and around the protected zone – now and under predicted climate change scenarios – other researchers and decisionmakers can utilize that knowledge to inform marine policy and conservation. Research scientist Morgan Gilmour checks on a young great frigatebird in its nest. The marine protected area around Palmyra Atoll protects these birds’ breeding grounds.Photo credit: UC Santa Barbara/Devyn Orr Following a 2023 presidential memorandum, NOAA began studying and gathering input on whether to expand the protected areas around Palmyra and other parts of the Pacific Remote Islands Marine National Monument. Analysis from NASA’s Internet of Animals could inform that and similar decisions, such as whether to create protected “corridors” in the ocean to allow for seasonal migrations of wildlife. The findings and models from the team’s habitat analysis at Palmyra also could help inform conservation at similar latitudes across the planet. Beyond the Sea: Other Internet of Animals Studies Research at Palmyra Atoll is just one example of work by Internet of Animals scientists. Claire Teitelbaum, a researcher with the Bay Area Environmental Research Institute based at NASA Ames, studies avian flu in wild waterfowl, investigating how their movement may contribute to transmission of the virus to poultry and other domestic livestock. Teams at Ames and JPL are also working with USGS to create next-generation wildlife tags and sensors. Low-power radar tags in development at JPL would be lightweight enough to track small birds. Ames researchers plan to develop long-range radio tags capable of maximizing coverage and transmission of data from high-flying birds. This could help researchers take measurements in hard-to-reach layers of the atmosphere. With the technology brought together by the Internet of Animals, even wildlife can take an active role in the study of Earth’s interacting systems, helping human experts learn more about our planet and how best to confront the challenges facing the natural world. To learn more about the Internet of Animals visit: https://www.nasa.gov/nasa-earth-exchange-nex/new-missions-support/internet-of-animals/ The Internet of Animals project is funded by NASA and managed at NASA’s Jet Propulsion Laboratory in Southern California. The team at NASA’s Ames Research Center in California’s Silicon Valley is part of the NASA Earth Exchange, a Big Data initiative providing unique insights into Earth’s systems using the agency’s supercomputers at the center. Partners on the project include the U.S. Geological Survey, The Nature Conservancy, the National Oceanic and Atmospheric Administration, the Yale Center for Biodiversity and Global Change, Stanford University, University of Hawaii, University of California Santa Barbara, San Jose State University, University of Washington, and the Max Planck Institute for Animal Behavior. NASA’s Speakers Bureau Unveils New “NASA Engages” Tool The NASA Speakers Bureau is excited to share a new online tool called NASA Engages! The tool matches the NASA workforce’s individual interests and expertise with internal and external engagement activities. The tool will allow us to engage learners and the public in NASA’s mission through sharing individual experiences, expertise, and content! This tool will help facilitate the teaching that our NASA Experts are eager to share with the public and we want to help expand learning for the public in the fields of math, science and space exploration. Photo credit: NASA You can join the more than 1,000 other NASA employees in sharing your passion for space exploration with communities and students. You’ll also be guided through registering your profile and a demonstration of the new tool’s functionalities. Thousands of students, employees, organizations and industry leaders have been connected with NASA subject matter experts. We have heard that our speakers have enriched lives and helped people of all ages to become interested in math, science and space exploration. We want to continue to be a positive influence in the world. Ames Coded Structures Lab demonstrates SOLL-E Robot at the Roverscape The Ames Coded Structures Lab demonstrates the operation of the Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) at the Roverscape. This is a close-up view of the Scaling Omni-directional Lattice Locomoting Explorer (SOLL-E, pronounced “Sully”) robot that moves on the exterior of the structure, carries and places the building elements, called voxels. Photo credit: NASA/Ames Don Richey NASA Display Draws Comic-Con Attendee Fans and Space Enthusiasts Alike Ames’ Office of Communications, in collaboration with Johnson Space Center participated in the San Diego Comic-Con on July 26. Attendees were drawn to the NASA booth displays, eager to learn about NASA’s current and future missions. Comic-Con attendees visit the NASA booth and participate in NASA-led activities.Photo credit: photo by Swati Mohan Left to right: Jonas Dino, Code DO and Lara Lash, Sofia Tafolla, Avi Gileadi and Miranda Poltorak from Code AOX working in the NASA booth display area at the Comic-Con in San Diego.Photo credit: photo by Swati Mohan NASA display at San Diego Comic-ConPhoto credit: photo by Swati Mohan NASA Community College Aerospace Scholars (NCAS) Tour Ames William Warmbrodt gives an overview of the operation of the National Full-Scale Aerodynamics Complex (NFAC) in the test section of the 80-by-120-foot wind tunnel, building N211B, to the NASA Community College Aerospace Scholars (NCAS).Photo credit: NASA/Ames Donald Richey Brian Barrientez II, right, at the tower control workstation, leads a presentation to the NASA Community College Aerospace Scholars (NCAS) in FutureFlight Central’s (FFC) Tower, in building N262.Photo credit: NASA/Ames Donald Richey In Memoriam… NASA Science Instrument Development Manager Alan Rhodes Passes Away Alan Rhodes passed away on June 27 at his home in St. Louis, Missouri. Alan came to Ames in 2016 when he joined the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, our now retired flying telescope, and managed science instrument development efforts through 2020. He then joined the Advanced Composite Solar Sail System (ACS3) mission, a CubeSat that uses solar sails powered by the Sun, as the mission’s lead systems engineer. Manager, Alan Rhodes in the Instrument Lab for SOFIA’s EXES instrument, working with the Echelon-Cros-Echelle Spectrograph. Photos taken for the Partnership for Public Service “Best Places to Work in the Federal Government” Instagram site.Photo credit: NASA Alan served as a project manager for most of his career. After graduating college, he worked for the Naval Undersea Warfare Center as an acquisition management specialist from 2001-2003. From 2003-2005, he was a foreign comparative test project manager and from 2005-2006, he was a senior analyst in integrated warfare systems for Stanley Associates. His first position with NASA was as a test director and project manager at Johnson Space Center in Houston from 2006-2011. Between 2012-2016, Alan worked as project manager for the US Corps of Engineers, the Small Business Innovation Research (SBIR) for the National Oceanographic and Atmospheric Administration (NOAA) and Bonneville Power Administration. He rejoined NASA in 2016. Anyone who had the privilege of working with Alan can vouch for his enthusiasm. He believed in NASA’s mission and went out of his way to let colleagues know that he valued and appreciated them. He was genuinely excited to be involved in furthering our knowledge of space. He said at the time of the ACS3 launch in April 2024, “The hope is that the new technologies verified on this spacecraft will inspire others to use them in ways we haven’t even considered.” NASA Protective Services lower the NASA flag to honor the life of Alan Rhodes in front of the Ames Administration building, N200 on July 31. Colleagues and family members shared memories of him during the ceremony.Photo credit: NASA/Ames Donald Richey Although Alan witnessed the launch of the CubeSat and watched it meet its milestones, unfortunately, he did not get to see the final test. In the upcoming weeks, we can all watch in anticipation as ACS3 unfurls its sails in space and tests the novel lightweight flexible composite booms. Cameras mounted on the spacecraft will capture this spectacular feat to share with the world. Alan made a big impact in a relatively short time and his untimely death is a reminder that no one knows how much time we have on Earth. A flag ceremony was held at Ames to honor Alan on July 31, in front of the N200 flagpoles. Alan appreciated the importance of sharing NASA’s story so others can learn and build upon it. It’s important for us to never take one day for granted. Our work at NASA makes a difference to people today and the agency’s impact will benefit generations to come. Former Ames Deputy Director, Aeronautical Engineer Vic Peterson Passes Victor (Vic) Lowell Peterson, age 90, passed away at his home in Los Altos, California on July 10. Vic was active and engaged up until the very end. He learned of his extensive cancers days before his death. He lived an amazing, full, and rich life. Vic was born June 11, 1934 in Saskatoon, Saskatchewan, Canada to Edwin and Ruth (McKeeby) Peterson. His father served as headmaster of several deaf and blind schools through Canada and Montana before the family moved to Portland, Oregon. Vic was the last surviving member of his family as his older and younger brothers predeceased him. Victor L. Peterson, former Ames deputy director and aeronautical engineer. Vic was an avid midget and IndyCar race fan from the age of 12. He met a midget car owner on his paper route and was soon working as a pit crew member—the beginning of his love for engineering. They always referred to him as their son and introduced him to legendary race car drivers. Throughout high school, Vic worked at the Davidson Bakery where the owner wanted to send him to baking school with the intent of taking over the business. He played trombone in the high school band, with a subset of the band playing dance gigs. His love, however, was aeronautical engineering. He attended Oregon State University (1952 -1956) where he was part of the inaugural Aeronautical Engineering class. Vic was a member of Acacia Fraternity while at Oregon State. He earned his B.S. Aeronautical Engineering and was commissioned 2nd Lt. USAF upon graduation in 1956. He was honorably discharged from the USAF with rank of Captain after, as he put it, only having a desk job. Vic also earned an M.S. Aeronautics and Astronautics Sciences from Stanford University and an M.S. Management as an Alfred P. Sloan Fellow from Massachusetts Institute of Technology. He authored more than 50 technical publications and received numerous citations and awards, including the Presidential Rank Award of Distinguished Executive at the White House from President George H. W. Bush. Vic was recruited to work at the National Advisory Committee for Aeronautics (NACA), Ames Aeronautical Laboratory, at Moffett Field, right out of college. That was the beginning of his long and illustrious career at NASA. He began as an aeronautical research intern, was soon promoted to aeronautical research engineer, and aerospace research scientist before moving into managerial roles: assistant chief, Hypersonic Aerodynamics branch; chief, Aerodynamics branch; Chief, Thermo and Gas Dynamics division; director of Astronautics; director of Astrophysics; and finally deputy director. Vic retired in 1992. He always spoke fondly of the people and his time at Ames Research Center. He often remarked that he was fortunate to have his dream job at the place he most wanted to work for his entire career. Vic met Jacquie Hubbard at Oregon State. They married December 21, 1955. He is survived by his wife, Jacquie, of 68 years, his daughters Linda Fouquet and Janet Peterson, and son-in-law Sam Fouquet. His son, Victor Craig Peterson died in 2012. He had five grandchildren and four great-grandchildren. His family brought immense joy to him. He designed and built the addition of their Los Altos home and completed an elaborate landscaping project after retirement. He enjoyed his home, gardening, investing, and staying connected with his fellow NASA retirees. When asked what he did at work, Vic inevitably replied, “My day was a day like all days, filled with the events that make history.” And indeed it was. Vic Peterson was brilliant, committed, humble, and loving. A Service of Remembrance and Thanksgiving Celebrating the Life of Victor L. Peterson will be held on Oct. 8, 2024, at Noon at Sunnyvale United Methodist Church, located at 535 Old San Francisco Road, Sunnyvale, California, 94086. Former Chief Counsel at Ames Jack Glazer Passes Jack H. Glazer, S.J.D., died on May 24, at his home, a historical landmark on Nob Hill conveyed as his gift to the University of California, San Francisco (UCSF). Predeceasing him on August 30, 2001, was his beloved and adored wife, Zelda d’Angleterre Glazer, whose funeral urn was interred with him at Home of Peace Cemetery in Colma, California. Additionally, her name and accomplishments have been memorialized by Jack both in the creation of a Chair on Brain Tumor Research established at UCSF and in the identity of the historical property transferred by gift to that institution on his wife’s name. Distinguished career paths both in the U.S. Navy as a combat veteran and in his civilian pursuits as a lawyer were Jack’s lot in life. As to the Navy in 1945, at age 17, he left the South Bronx to enlist as an apprentice seaman, ultimately remaining through the years in the Ready Reserve and retiring from the Navy in 1988, after obtaining the rank of captain. Turning to his experiences as a member of the California and District of Columbia Bars, his more inviting assignments included service in Geneva Switzerland as legal counsel to the International Telecommunication Union, a United Nations specialized agency involved in the elaboration of the first multilateral treaties applicable to the legal regime of outer space. After returning to the United States, Jack embarked in 1965, upon an enviable legal career spanning some 23 years as Chief Counsel at Ames Research Center, an assignment capped by an award of NASA’s Exceptional Service Medal. On his academic side in the law, he was armed with degrees ranging from the baccalaureate to the doctorate from Duke University, Georgetown, and U.C. Berkeley. Jack also was a recognized writer and adjunct professor in the emerging field of Space Law, a subject he taught at the Hastings College of the Law and other universities in the Bay Area. Former Space Science & Astrobiology Division Manager Cora Millena Dies Corazon (Cora) Millena passed away on June 26. Cora began her career at NASA in 1985 and was a member of the Ames community for 39 years. Her life story had a memorable connection to NASA and you’re encouraged to take a moment to read her personal essay. Corazon (Cora) Millena Born in the Philippines, Cora was a fifth-grade student in 1960 when she learned about NASA’s Echo-1 communications satellite. Inspired by the launch, she hoped to one day immigrate to the United States and work for the space agency. Cora worked hard to overcome many challenges in her life. She studied business administration in college and graduated from the Mapua Institutes of Technology in the Philippines. She finally realized her dream when she moved to San Jose with her family in 1975. As a program manager in the Space Science and Astrobiology Division at Ames, Cora worked on the Cassini mission, the Mars Climate Modeling Center, and on the Stratospheric Observatory for Infrared Astronomy (SOFIA) program. She was also a longtime member of the Ames Asian American, Native Hawaiian, and Pacific Islander community. View the full article
  21. Lunar geologist Zachary Morse scrabbles over Earth’s rocky landscapes to test equipment for future missions to the Moon and Mars. Name: Zachary Morse Title: Assistant Research Scientist in Planetary Geology Organization: The Planetary Geology, Geophysics and Geochemistry Laboratory, Science Directorate (Code 698) Zachary Morse is an assistant research scientist in planetary geology at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo courtesy of Zachary Morse What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission? I work with teams that integrate field instrumentation into future lunar and Mars exploration missions. We go to analog field sites, places on Earth that are geologically similar to the Moon or Mars, to test field instruments. I also support the development of science operations for crewed exploration of the lunar surface. Why did you become a geologist? What is your educational background? I always knew that I wanted to study space. In college I started in engineering, but switched to geology because much of the science NASA does on the Moon or Mars involves studying the rocks. In 2013, I got a B.S. in geology from West Virginia University. In 2018, I got a Ph.D. in planetary science from Western University in London, Ontario. “I work with teams that integrate field instrumentation into future lunar and Mars exploration missions,” said Zachary. “We go to analog field sites, places on Earth that are geologically similar to the Moon or Mars, to test field instruments.”Photo courtesy of Zachary Morse What brought you to Goddard? In January 2020, I came to Goddard to do a post-doctoral fellowship because I wanted to work on the Remote, In Situ, and Synchrotron Studies for Science and Exploration 2 (Rise2) project. We go into the field to test handheld geologic instruments that could later be incorporated into missions. What have been some of your favorite trips into the field? Iceland, Hawaii, and the New Mexico desert, which is our primary field site for Rise2. These were organized as part of the Goddard Instrument Field Team, a group that hosts trips each year to different analog field sites. The Iceland trip was my favorite because the place we got to explore looked almost exactly like pictures of the Moon’s surface. It was beautiful and the right setting to learn about the Earth and the Moon. Our team was about 40 people. We were there for two weeks. We mostly camped. It was definitely a unique experience, one hard to put in words. On Earth, you would normally go camping in a lush forest. But there were no trees, just rock and dust. It was absolutely beautiful in its own way. The Hawaii trip was also unique. Our team of about 30 people spent almost the entire 10 days in the lava tubes. Not many people get to go into lava tubes. It was very exciting. The biggest part of the lava tube was about 20 feet high and about 10 feet wide. The smallest was so small we had to crawl through. How do you document field work? In addition to scientific data, we always take pictures of the rocks and outcrops. It is important to document what a site is like before people interact with it. Sometimes we collect rock samples to bring back to the lab, but we leave the place as we found it. “I always knew that I wanted to study space,” said Zachary. “In college I started in engineering, but switched to geology because much of the science NASA does on the Moon or Mars involves studying the rocks.”Photo courtesy of Zachary Morse Where do you see yourself in five years? I hope to remain at Goddard; I love it. The team is great and the science is fascinating and important. I want to keep pursuing opportunities for field work. My main goal is to get involved in a lunar mission and support Artemis lunar exploration. What do you do for fun? I love the outdoors. I love kayaking on lakes, rivers, and streams. My favorite place is in the Adirondacks. I also love hiking, which I do all over, especially in West Virginia. Who is your mentor and what did your mentor teach you? Kelsey Young is my supervisor and mentor. She has taught me so many things including how missions will function and how we can best test equipment in the field for future missions. She taught me how to be organized and focused. Kelsey Young Dives Into Fieldwork With Aplomb Who inspires you? Jack Schmitt is an Apollo 17 astronaut who inspired me because he is a geologist. He was the first and only professional geologist who walked on the surface of the Moon during the Apollo missions. I have heard him speak many times and have personally met him. I would jump at the chance to be the next geologist-astronaut! What rock formations in the world would you like to explore? Top of my list would be to explore Acadia National Park in Maine. There is a ton of diverse geology in a small area and the pictures all look stunning. I would also love to visit Glacier National Park to experience the glacier before it melts. What is your “six-word memoir”? A six-word memoir describes something in just six words. Exploring Earth to prepare lunar missions. By Elizabeth M. Jarrell NASA’s Goddard Space Flight Center, Greenbelt, Md. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Share Details Last Updated Sep 03, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related TermsPeople of GoddardGoddard Space Flight CenterPeople of NASA Explore More 5 min read Aaron Vigil Helps Give SASS to Roman Space Telescope Article 5 days ago 7 min read Tyler Parsotan Takes a Long Look at the Transient Universe with NASA’s Swift Article 2 weeks ago 7 min read Xiaoyi Li Engineers Instruments and the Teams that Get Them Done Instrument Systems Engineer Xiaoyi Li leads technical teams united by a common vision to achieve… Article 3 weeks ago View the full article
  22. “Some people [may say], ‘You have too many cooks in the kitchen,’ but I think there’s a line. It’s good to have a lot of input because people bring many different perspectives that you would never even consider if you just pushed an idea forward with one person. This is especially true in the area we work in with digital [communications], which is changing so frequently; you constantly have to innovate, so including diverse voices and thoughts is important. “I’m an older sister, and I don’t know if some of that [leadership style] comes from when we were kids, always making sure that I involved her and ensuring people could understand what she wanted or needed. And maybe that translated into who I am, making sure people have voices and are heard [at NASA]…I’ve achieved a lot that I didn’t even know I wanted to accomplish because I couldn’t have imagined this career progression for myself. “But now that I’m here, I would like to achieve more in terms of what NASA looks like internally, especially after getting involved with the NASA Science IDEA working group and diversity efforts. I would love to one, help people outside of NASA realize that they could work here and two, push people internally to the forefront so that they can be considered for higher-level things and progress.” – Emily Furfaro, Digital Manager, Science Mission Directorate, NASA Headquarters Image Credit: NASA/Keegan Barber Interviewer: NASA/Tahira Allen Check out some of our other Faces of NASA. View the full article
  23. Skywatching Skywatching Home Eclipses What’s Up Explore the Night Sky Night Sky Network More Tips and Guides FAQ A Harvest supermoon eclipse A partial lunar eclipse makes the full supermoon on Sept. 17th extra super. Also, chances to observe five planets this month, and a global night for observing. Highlights All month – Venus sits low in the west following sunset. Saturn’s visible all night. Jupiter and Mars rise in the couple of hours after midnight and are visible in the southeast before sunrise. September 1-7 – If you’re in the Northern Hemisphere, you can spot Mercury this week during morning twilight if you can find an unobstructed view toward the east. It appears low in the east just before dawn. September 2 – New moon September 14 – Join fellow Moon enthusiasts around the world for International Observe the Moon Night tonight! Find an event or simply observe at home. Details at moon.nasa.gov/observe. September 16 – The Moon leads Saturn across the sky tonight. Find them in the southeastern sky following sunset. For the western U.S., the Moon will begin to occult, or cover, Saturn the following morning before sunrise. September 17 – Full moon – Harvest moon – Supermoon – Partial lunar eclipse. The eclipse is in the evening hours for U.S. observers (while the Moon is rising for the West Coast). The Moon looks ever so slightly bigger and brighter that the average full moon, though in practice it’s tough to tell the difference. The September full moon is often called the harvest moon, due to its association with harvest time in the Northern Hemisphere. September 22 – The Moon passes through the Pleiades star cluster tonight for U.S. observers. September 23 – Jupiter and the Moon glide across the sky together this evening. They rise late tonight and climb high into the southeast as dawn approaches. September 25 – The crescent moon appears near Mars this morning. See them with Jupiter and the bright stars of the winter constellations in the predawn sky. The Moon passes through the Pleiades star cluster tonight for U.S. observers. Transcript What’s Up for September? Five planets and a supermoon eclipse, a NASA solar sail that you can spot from the ground, and a global night for the Moon. And stick around until the end to view some highlights shared in last month’s video. Starting with the visibility of the planets this month, you’ll notice Venus sitting very low in the west in the hour following sunset. Over the next several months it will rise higher, increasingly becoming a fixture of the early evening sky for the rest of the year. Saturn’s in the southeastern sky early in the evening. From there it’ll be visible overhead all night, and you’ll find it setting in the west as dawn approaches. Sky chart showing The Moon near Jupiter in the morning sky before sunrise on September 24, along with some of the well-known (Northern Hemisphere) winter stars and constellations. NASA/JPL-Caltech As for the ongoing pair-up of Jupiter and Mars, Jupiter’s rising around midnight or soon after, with Mars rising an hour to an hour and a half behind it. So it’s best to look for them high in the south-southeastern sky in the early morning before sunrise. And in morning twilight during the first week of September, if you can find an unobstructed view toward the east, it’s a decent opportunity to spot Mercury for those in the Northern Hemisphere. Turning now to the Moon, the full moon on September 17th is a supermoon, meaning it’s just a little bit closer to Earth in its orbit than your average full moon. It looks ever so slightly bigger and brighter, though in practice, the difference is hard to see. It really is super though, as the September full moon is often called the “Harvest Moon” given its association with harvest time in the Northern Hemisphere, plus it’s also going to show us a partial lunar eclipse. You’ll see a little bite taken out of one side of the Moon over about an hour. Check the timing of the eclipse for your local area using your favorite skywatching app or website. In Europe, the eclipse takes place in the early morning hours; while in the U.S., it’s in the evening – and that’s while the Moon’s rising, for the West Coast. Sky chart showing the full moon very near Saturn in the morning sky for U.S. observers on September 17. The Moon occults, or passes in front of, Saturn as the pair get lower in the sky. NASA/JPL-Caltech As for Moon-planet pair-ups, the Moon leads Saturn across the sky on the 16th. Look for the pair in the southeastern sky following sunset. For those in the U.S., the pair will appear very close together early the next morning on the 17th, as they get lower in the western sky. In fact, those in the western half of the U.S. can actually watch the Moon start to occult, or pass in front of Saturn before they set. On the 22nd, the Moon rises a couple of hours after dark sitting super close to the Pleiades. And this is kind of a special pairing if you’re in the U.S., as the Moon will actually pass right through the Pleiades over the course of the night. So if you have binoculars or a small telescope, you can look periodically over the course of the night as the Moon crosses directly in front of the bright star cluster. On the 23rd, the Moon rises in the late evening hours with giant Jupiter. They climb high into the southeast sky as dawn approaches. And then on the morning of the 25th, the crescent Moon appears near Mars. This last full week of September is really lovely before the sky brightens, as you have the Moon and two bright planets together with the bright stars of the winter constellations. So don’t miss it! There’s a new opportunity to observe a bright NASA spacecraft sailing across the night sky. NASA’s Advanced Composite Solar Sail System, or “ACS3,” is a small satellite that’s testing new technologies in low Earth orbit. It recently deployed its 30-foot-wide solar sails. These are a means of propulsion that could allow small spacecraft to “sail on sunlight.” The ACS3 solar sails are highly reflective, and make the spacecraft appear nearly as bright as Sirius, the brightest star in the sky. You can find out when the solar sail spacecraft will pass over your location using the NASA app on your mobile device. International Observe the Moon Night is September 14th. It’s an annual event when fellow Moon enthusiasts come together worldwide to participate in events and, you guessed it, observe our nearby natural satellite. You can join from wherever you are. Attend or host a virtual or in-person event, or simply observe the Moon from home. 20. On the 14th, in addition to many lunar maria and all 6 of the Apollo landing sites, this year offers an opportunity to see the Marius Hills – volcanic domes and cones that are notoriously difficult to observe even with a telescope, unless sunlight is streaming across them nearly horizontally. Fortunately, that will be the case on International Observe the Moon Night 2024, when we’ll get to watch a lunar sunrise across this knobby terrain. So however you pronounce it, grab your telescope, or find an event near you, and join this annual celebration of observation. Here are a few views of the highlights in last month’s sky. And here are the phases of the Moon for September. The phases of the Moon for September 2024. NASA/JPL-Caltech Stay up to date on NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month. Keep Exploring Discover More Topics From NASA Skywatching Skywatching FAQ Frequently asked questions about skywatching, answered by NASA. What’s Up Explore the Night Sky View the full article
  24. 3 min read NASA’s Mini BurstCube Mission Detects Mega Blast The shoebox-sized BurstCube satellite has observed its first gamma-ray burst, the most powerful kind of explosion in the universe, according to a recent analysis of observations collected over the last several months. “We’re excited to collect science data,” said Sean Semper, BurstCube’s lead engineer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s an important milestone for the team and for the many early career engineers and scientists that have been part of the mission.” The event, called GRB 240629A, occurred on June 29 in the southern constellation Microscopium. The team announced the discovery in a GCN (General Coordinates Network) circular on August 29. BurstCube, trailed by another CubeSat named SNOOPI (Signals of Opportunity P-band Investigation), emerges from the International Space Station on April 18, 2024. NASA/Matthew Dominick BurstCube deployed into orbit April 18 from the International Space Station, following a March 21 launch. The mission was designed to detect, locate, and study short gamma-ray bursts, brief flashes of high-energy light created when superdense objects like neutron stars collide. These collisions also produce heavy elements like gold and iodine, an essential ingredient for life as we know it. BurstCube is the first CubeSat to use NASA’s TDRS (Tracking and Data Relay Satellite) system, a constellation of specialized communications spacecraft. Data relayed by TDRS (pronounced “tee-driss”) help coordinate rapid follow-up measurements by other observatories in space and on the ground through NASA’s GCN. BurstCube also regularly beams data back to Earth using the Direct to Earth system — both it and TDRS are part of NASA’s Near Space Network. After BurstCube deployed from the space station, the team discovered that one of the two solar panels failed to fully extend. It obscures the view of the mission’s star tracker, which hinders orienting the spacecraft in a way that minimizes drag. The team originally hoped to operate BurstCube for 12-18 months, but now estimates the increased drag will cause the satellite to re-enter the atmosphere in September. “I’m proud of how the team responded to the situation and is making the best use of the time we have in orbit,” said Jeremy Perkins, BurstCube’s principal investigator at Goddard. “Small missions like BurstCube not only provide an opportunity to do great science and test new technologies, like our mission’s gamma-ray detector, but also important learning opportunities for the up-and-coming members of the astrophysics community.” BurstCube is led by Goddard. It’s funded by the Science Mission Directorate’s Astrophysics Division at NASA Headquarters. The BurstCube collaboration includes: the University of Alabama in Huntsville; the University of Maryland, College Park; the Universities Space Research Association in Washington; the Naval Research Laboratory in Washington; and NASA’s Marshall Space Flight Center in Huntsville. Download high-resolution photos and videos of BurstCube By Jeanette Kazmierczak NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Claire Andreoli 301-286-1940 claire.andreoli@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. Facebook logo @NASAUnvierse @NASAUniverse Instagram logo @NASAUniverse Share Details Last Updated Sep 03, 2024 Related Terms Astrophysics BurstCube CubeSats Gamma Rays Gamma-Ray Bursts Goddard Space Flight Center Small Satellite Missions The Universe View the full article
  25. Learn Home NASA Earth Science Education… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science 2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects On August 13, 2024, the publishers of the journal Insects notified authors of three papers selected to receive “Insects 2022 Best Paper Award” for research and review articles published in Insects from January 1 to December 31, 2022. One of the winning papers was co-authored by Russanne Low, PhD, Institute for Global Environmental Strategies (IGES). Low is a member of the NASA Earth Science Education Collaborative (NESEC), a NASA Science Activation project, and science lead for the Global Learning & Observations to Benefit the Environment (GLOBE) Mosquito Habitat Mapper. The paper – Integrating global citizen science platforms to enable next-generation surveillance of invasive and vector mosquitoes – was published as part of a special issue of Insects on Citizen Science Approaches to Vector Surveillance. It is in the top 5% of all research outputs scored by Altmetric, which is a high-level measure of the quality and quantity of online attention that it has received. The scoring algorithm takes various factors into account, such as the relative reach of the different sources of attention. The paper has been cited 23 times. Papers were selected by the journal’s Award Committee according to the following criteria: – Scientific merit and broad impact; – Originality of the research objectives and/or the ideas presented; – Creativity of the study design or uniqueness of the approaches and concepts; – Clarity of presentation; – Citations and downloads. Each winner of the best paper award will receive CHF 500 and a chance to publish a paper free of charge in Insects in 2024 after peer review. The paper is a result of a collaboration by IGES with University of South Florida, Woodrow Wilson International Center for Scholars, Universitat Pompeu Fabra, and iNaturalist. Following is the full citation: Ryan M. Carney, Connor Mapes, Russanne D. Low, Alex Long, Anne Bowser, David Durieux, Karlene Rivera, Berj Dekramanjian, Frederic Bartumeus, Daniel Guerrero, Carrie E. Seltzer, Farhat Azam, Sriram Chellappan, John R. B. Palmer.Role of Insects in Human Society Citizen Science Approaches to Vector Surveillance. Insects 2022, 13(8), 675; https://doi.org/10.3390/insects13080675 – 27 Jul 2022 NESEC is supported by NASA under cooperative agreement award number NNX16AE28A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn Screenshot of the Global Mosquito Observations interactive dashboard that combines various types of observations from data streams into an interoperable visualization. Each color-coded dot represents a citizen scientist’s observation and can be clicked to access the associated photos and data. Share Details Last Updated Sep 03, 2024 Editor NASA Science Editorial Team Related Terms Earth Science Science Activation Explore More 2 min read Co-creating authentic STEM learning experiences with Latino communities Article 4 days ago 6 min read NASA Discovers a Long-Sought Global Electric Field on Earth An international team of scientists has successfully measured a planet-wide electric field thought to be… Article 6 days ago 3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night Article 6 days ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
×
×
  • Create New...