Jump to content

NASA

Publishers
  • Posts

    4,764
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Don Sullivan, Serena Trieu, Emmett Quigley, and Zara Mirmalek. Their commitment to the NASA mission represents the talent, camaraderie, and vision needed to explore this world and beyond. Earth Science Star: Don Sullivan Don Sullivan enables cutting-edge research in the Earth Science Division, serving as telemetry and communications lead for the Airborne Science Program. As Principal Investigator, Don led the highly successful and innovative STRATO long-duration balloon flight project in August 2024 with the United States Forest Service (USFS) that demonstrated last-mile connectivity and near real-time infrared imagery to a remote wildfire incident command station. Space Biosciences Star: Serena Trieu Serena Trieu conducts research in the Bioengineering Branch for projects that develop Earth-independent spaceflight instrumentation, especially for the International Space Station (ISS). She has excelled in coordinating the inventory for 21 spaceflight trash batches sent to Sierra Space, Inc., for ground-unit testing of the Trash Compaction Processing System (TCPS). Tapping into her innovative spirit and technical expertise, she developed a new method to prepare trash batches for the ISS without freezing. Space Science & Astrobiology Star: Emmett Quigley Emmett Quigley is a mechanical technician with the Astrophysics Branch who goes above and beyond to serve Ames. As a specialist in small precision manufacturing, Emmett has designed and built lab hardware, telescopes, and airborne instruments, as well as small satellites and instruments heading to the Moon and beyond. His collaborative disposition and dedication to problem solving have enabled delivery of numerous projects on behalf of the Space Science and Astrobiology Division and the Earth Science Division. Space Science & Astrobiology Star: Zara Mirmalek Zara Mirmalek is the Deputy Science Operations Lead for VIPER within the Space Science & Astrobiology Division and has been pivotal in the design and build efforts of the VIPER Mission Science Operations team and Mission Science Center. She has applied her expertise in science team social-technical interactions to recommend discussions, groupings, and timelines that enable the VIPER Science Team to advance pre-planning for VIPER surface operations. View the full article
  2. NASA

    A Striped Surprise

    Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read A Striped Surprise NASA’s Mars Perseverance rover captured this image of a black-and-white striped rock using its Left Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was acquired on Sept. 13, 2024 (Sol 1268) at the local mean solar time of 12:40:29. NASA/JPL-Caltech/ASU Last week, team scientists and the internet alike were amazed when Perseverance spotted a black-and-white striped rock unlike any seen on Mars before. Is this a sign of exciting discoveries to come? It has now nearly been a month since the rover began its climb up the steep slopes leading to the crater rim, on the hunt for ancient rocks that could teach us about early Martian history. While these tricky slopes made for a slow initial ascent, drive progress has improved greatly in recent days, as Perseverance has cruised along a flatter stretch. From this overlook, the rover can now spot landmarks from earlier in the mission like the iconic ‘Kodiak’ butte on the hazy horizon, thick with dust from nearby dust storms. While driving across unremarkable pebbly terrain, beady-eyed team members spotted a cobble in the distance with hints of an unusual texture in low resolution Navcam images, and gave it the name ‘Freya Castle’. The team planned a multispectral observation using the Mastcam-Z camera in order to get a closer look before driving away. When these data were downlinked a couple days later, after Perseverance had already left the area, it became clear just how unusual it was! ‘Freya Castle’ is around 20 cm across, and has a striking pattern with alternating black and white stripes. The internet immediately lit up with speculation about what this “zebra rock” might be, and we’ve enjoyed reading your theories! The science team thinks that this rock has a texture unlike any seen in Jezero Crater before, and perhaps all of Mars. Our knowledge of its chemical composition is limited, but early interpretations are that igneous and/or metamorphic processes could have created its stripes. Since Freya Castle is a loose stone that is clearly different from the underlying bedrock, it has likely arrived here from someplace else, perhaps having rolled downhill from a source higher up. This possibility has us excited, and we hope that as we continue to drive uphill, Perseverance will encounter an outcrop of this new rock type so that more detailed measurements can be acquired. ‘Freya Castle’ is merely the latest in a series of intriguing rocks found recently; ever since arriving in the vicinity of the crater rim, the team has noticed an increased variety of rocks, such as the diverse collection of boulders at ‘Mount Washburn’. Could these be our first glimpses at ancient rocks uplifted from depth by the Jezero impact, now exposed on the crater rim? Only time will tell… Written by Athanasios Klidaras, Ph.D. student at Purdue University Share Details Last Updated Sep 23, 2024 Related Terms Blogs Explore More 3 min read Sols 4311–4313: A Weekend of Engineering Curiosity Article 40 mins ago 3 min read Sols 4309–4310: Leaning Back, Driving Back Article 4 days ago 2 min read Sols 4307-4308: Bright Rocks Catch Our Eyes Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  3. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Sols 4311–4313: A Weekend of Engineering Curiosity NASA’s Mars rover Curiosity captured this image of its rover wheels using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on February 5, 2024, Sol 4088 — Martian day 4,088 of the Mars Science Laboratory Mission — on Feb. 5, 2024 at 10:40:14 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Friday, Sept. 20, 2024 Today, we planned for 3 sols over the weekend. On Sol 4311, we have a lot of science activities planned, including some ChemCam and Mastcam observations of the “Obelisk” target. These activities will allow our instruments to gather data about rock features of interest within the rover workspace, including a LIBS analysis which will give us more insight into chemical composition. We will also take some landscape images of the ridges within the upper Gediz Vallis channel. But we don’t only plan for science activities – as a robotic arm engineer, I’m looking forward to a new in-flight activity we are executing on Sol 4311. We are testing parallelism between arm activities and a telecommunications window between the rover and an orbiter. As we get further and further into the mission, we have been testing what activities we might be able to do in parallel (ie: they are happening at the same time on the rover!) in order to be more efficient during our on time. After this execution, we’ll be able to get more information on how both activities went, and if it was successful, this will be able to save us a lot of time in the future! On 4312, we have some remote science planned, including a Navcam dust devil movie, a ChemCam active observation, and some Mastcam imaging. Equally exciting, though, is our planned full MAHLI wheel imaging. This is a traverse activity where we do a short drive, take photos of the wheels, do another short drive and take more photos, such that we are getting imaging of the entire circumference of our wheels. This is an activity we do periodically to assess the state and health of the wheels. For full documentation of our wheel state, we will drive seven meters over the course of about three hours. I’ve included an image above of the last time we performed full MAHLI wheel imaging (on Sol 4088). On 4313, we will execute some more science activities. This includes more remote science with a Navcam suprahorizon movie and a dust devil survey, and ChemCam AEGIS execution. Recall that AEGIS is our autonomous targeting system that will be able to pick out targets of interest around our new location post-drive. We’ll also execute some early morning science including a Mastcam tau atmospheric observation to measure dust in the atmosphere. From an engineering perspective, I am looking forward to seeing how our parallelism test went, and to view the updated imaging of our wheels. It will definitely be an exciting weekend for our little rover! Written by Remington Free, Operations Systems Engineer at NASA Jet Propulsion Laboratory Share Details Last Updated Sep 23, 2024 Related Terms Blogs Explore More 3 min read A Striped Surprise Last week, team scientists and the internet alike were amazed when Perseverance spotted a black-and-white… Article 30 mins ago 3 min read Sols 4309–4310: Leaning Back, Driving Back Article 4 days ago 2 min read Sols 4307-4308: Bright Rocks Catch Our Eyes Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  4. The Pride Progress Flag is seen waving in the wind following a flag raising ceremony in recognition and celebration of LGBTQI+ Pride Month at the Mary W. Jackson NASA Headquarters building in Washington on June 1, 2023.Credits: NASA/Keegan Barber Two new resources are available for businesses that provide products and services to support NASA’s missions, from supersonic flight to lunar exploration, as well as companies that aim to engage the agency as a customer. While NASA practices transparency in its procurement processes to ensure access and participation by all businesses, we recognize that barriers to participation remain for smaller, less experienced companies. In addition, new federal-wide policy and guidance has increased focus on NASA’s small and minority business goals. “NASA’s dedication to fostering collaboration with small and disadvantaged businesses remains at the forefront of our mission,” said NASA Deputy Administrator Pam Melroy. “By implementing innovative practices and refining our procurement processes, we aim to not only drive forward our key mission objectives but also to stimulate industry-wide innovation and inclusivity. These efforts are vital as we seek to leverage the full spectrum of talent and creativity available, ensuring that all voices have a chance to contribute to our groundbreaking work in space exploration.” To assess the agency’s best practices and biggest barriers, Deputy Administrator Melroy established a multi-disciplinary team that included the Offices of Procurement and Small Business Programs. One of the outcomes was the creation of a communication plan for the small and minority business enterprise alongside NASA’s annual vendor communication plan. “Inherent in NASA’s commitment to innovation and ingenuity, is the recognition that a diverse and broad supply chain is essential for mission success,” said Karla Smith Jackson, assistant administrator for NASA’s Office of Procurement. “The updated Vendor Communication and the new Small and Minority Business Enterprise Communication plans are the next logical step in NASA’s continuous effort to foster an inclusive acquisition environment. By broadening our communication and outreach, we are strengthening our industrial base and empowering businesses of all sizes to contribute to the future of space exploration.” In the NASA Small and Minority Business Enterprise Communication Plan, the agency outlines its goals for enhancing its outreach efforts and increasing spending with these businesses to reduce obstacles to participation in NASA’s missions and more intentionally engage companies throughout the procurement process. Engagement activities outlined in these plans support more robust communication with potential vendors. As an example, the NASA Acquisition Innovation Launchpad (NAIL) encourages one-on-one conversations with small and minority-owned businesses to improve participation, drive innovation, identify and remove barriers as well as collaboration to share best practices and methods across the agency. Further, by publishing annual forecasts we give industry insight as early as possible to promote maximum competition. “Our commitment to small and minority businesses is unwavering,” said Dwight Deneal, assistant administrator for NASA’s Office of Small Business Programs. “This communication plan is not just about outreach; it’s about building lasting partnerships that drive innovation and inclusion across NASA’s missions.” The Vendor Communication Plan goes into more depth on how NASA engages with all businesses before, during, and after contract awards are given, providing various examples of events and methods of communication the agency uses to remain in contact with award recipients. This includes holding webinars with award applicants and recipients, providing email support throughout the award process, and reviewing final performance and financial reports. NASA also provides information about how the agency promotes diversity throughout the contracting process, including a dedicated equity action plan and increased subcontracting opportunities. In the spirit of exploration, NASA is expanding its reach to new entrants and businesses that have not traditionally done business with the agency. NASA is committed to increasing its small business prime and subcontract awards, with an emphasis on innovative barrier reducing procurement practices and transparent contracting methods. Learn more about how NASA is improving its acquisition process at: https://www.nasa.gov/procurement Share Details Last Updated Sep 23, 2024 LocationNASA Headquarters Related TermsNASA HeadquartersGeneralGet InvolvedOffice of Small Business Programs (OSBP)Opportunities to Contribute to NASA Missions & Get InvolvedPartner With UsSmall Business Innovation Research / Small Business View the full article
  5. NASA/JPL-Caltech What will remain of our solar system a few billion years from now? We’re launching the Exoasteroids project to gather some clues. Join this new citizen science project, and help search for variable white dwarfs – bizarre objects that we can catch in the act of disassembling planetary systems. White dwarfs each pack the mass of a star into a ball the size of a planet. They are also the future of our solar system. A few billion years from now, the Sun will evolve into a red giant and then into a white dwarf, devouring the innermost planets and millions of asteroids in the process. With the Exoasteroids project, you’ll search for white dwarfs that are growing brighter or dimmer. Such white dwarfs may be remnants of planetary systems still actively munching on asteroids, leading to outbursts detectable in images from NASA’s Wide-field Infrared Survey Explorer (WISE) space telescope. Help us find planetary remains and disintegrating asteroids in other solar systems! Anyone with a laptop or cell phone can participate. Participation does not require citizenship in any particular country. Facebook logo @DoNASAScience @DoNASAScience Share Details Last Updated Sep 23, 2024 Related Terms Astrophysics Astrophysics Division Citizen Science Explore More 2 min read Hubble Lights the Way with New Multiwavelength Galaxy View Article 3 days ago 2 min read When Will That Star Dim? Amateur Planet-Chasers Got You! Article 4 days ago 4 min read NASA’s Webb Provides Another Look Into Galactic Collisions Article 5 days ago View the full article
  6. NASA astronaut Tracy C. Dyson, along with Roscosmos cosmonauts Oleg Kononenko and Nikolai Chub, return to Earth after completing their mission to the International Space Station.Credit: NASA NASA astronaut Tracy C. Dyson completed a six-month research mission aboard the International Space Station on Monday, returning to Earth with Roscosmos cosmonauts Oleg Kononenko and Nikolai Chub. The trio departed the space station aboard the Soyuz MS-25 spacecraft at 4:36 a.m. EDT Monday, Sept. 23, making a safe, parachute-assisted landing at 7:59 a.m. (4:59 p.m. Kazakhstan time), southeast of the remote town of Dzhezkazgan, Kazakhstan. While aboard the orbiting laboratory, Dyson conducted multiple scientific and technology activities including the operation of a 3D bioprinter to print cardiac tissue samples, which could advance technology for creating replacement organs and tissues for transplants on Earth. Dyson also participated in the crystallization of model proteins to evaluate the performance of hardware that could be used for pharmaceutical production and ran a program that used student-designed software to control the station’s free-flying robots, inspiring the next generation of innovators. Dyson launched on March 23 and arrived at the station March 25 alongside Roscosmos cosmonaut Oleg Novitskiy and spaceflight participant Marina Vasilevskaya of Belarus. Novitskiy and Vasilevskaya were aboard the station for 12 days before returning home with NASA astronaut Loral O’Hara on April 6. Spanning 184 days in space, Dyson’s third spaceflight covered 2,944 orbits of the Earth and a journey of 78 million miles as an Expedition 70/71 flight engineer. Dyson also conducted one spacewalk of 31 minutes, bringing her career total to 23 hours, 20 minutes on four spacewalks. Kononenko and Chub, who launched with O’Hara to the station on the Soyuz MS-24 spacecraft last September, spent 374 days in space on a trip of 158.6 million miles, spanning 5,984 orbits. Kononenko completed his fifth flight into space, accruing a record of 1,111 days in orbit, and Chub completed his first spaceflight. Following post-landing medical checks, the crew will return to the recovery staging city in Karaganda, Kazakhstan. Dyson will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog. -end- Claire O’Shea / Julian Coltre Headquarters, Washington 202-358-1100 claire.a.o’shea@nasa.gov / julian.n.coltre@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Sep 23, 2024 LocationNASA Headquarters Related TermsInternational Space Station (ISS)AstronautsHumans in SpaceISS ResearchJohnson Space CenterTracy Caldwell Dyson View the full article
  7. Soyuz MS-25 Reentry and Landing with Tracy Dyson
  8. Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara won the $1 million grand prize in NASA’s Watts on the Moon Challenge. Their team developed a low-mass, high efficiency cable and featured energy storage batteries on both ends of their power transmission and energy storage system. Credit: NASA/GRC/Sara Lowthian-Hanna NASA has awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the agency’s Watts on the Moon Challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish long-term human presence on the Moon. This two-phase competition has challenged U.S. innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The final phase of the challenge concluded with a technology showcase and winners’ announcement ceremony Friday at Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland. “Congratulations to the finalist teams for developing impactful power solutions in support of NASA’s goal to sustain human presence on the Moon,” said Kim Krome-Sieja, acting program manager for NASA Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These technologies seek to improve our ability to explore and make discoveries in space and could have implications for improving power systems on Earth.” The winning teams are: First prize ($1 million): H.E.L.P.S. (High Efficiency Long-Range Power Solution) of Santa Barbara, California Second prize ($500,000): Orbital Mining Corporation of Golden, Colorado Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The simulation required the teams’ power systems to demonstrate operability over six hours of solar daylight and 18 hours of darkness with the user three kilometers (nearly two miles) away from the power source. During this competition stage, judges scored the finalists’ solutions based on a Total Effective System Mass (TESM) calculation, which measures the effectiveness of the system relative to its size and weight – or mass – and the total energy provided by the power source. The highest-performing solution was identified based on having the lowest TESM value – imitating the challenges that space missions face when attempting to reduce mass while meeting the mission’s electrical power needs. Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara, won the grand prize for their hardware solution, which had the lowest mass and highest efficiency of all competitors. The technology also featured a special cable operating at 800 volts and an innovative use of energy storage batteries on both ends of the transmission system. They also employed a variable radiation shield to switch between conserving heat during cold periods and disposing of excess heat during high power modes. The final 48-hour test proved their system design effectively met the power transmission, energy storage, and thermal challenges in the final phase of competition. Orbital Mining Corporation, a space technology startup, received the second prize for its hardware solution that also successfully completed the 48-hour testwith high performance. They employed a high-voltage converter system coupled with a low-mass cable and a lithium-ion battery. “The energy solutions developed by the challenge teams are poised to address NASA’s space technology priorities,” said Amy Kaminski, program executive for Prizes, Challenges, and Crowdsourcing in NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “These solutions support NASA’s recently ranked civil space shortfalls, including in the top category of surviving and operating through the lunar night.” During the technology showcase and winners’ announcement ceremony, NASA experts, media, and members of the public gathered to see the finalist teams’ technologies and hear perspectives from the teams’ participation in the challenge. After the winners were announced, event attendees were also welcome to meet NASA astronaut Stephen Bowen. The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall Space Flight Center manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA contracted HeroX to support the administration of this challenge. For more information on NASA’s Watts on the Moon Challenge, visit: https://www.nasa.gov/wattson -end- Jasmine Hopkins Headquarters, Washington 321-432-4624 jasmine.s.hopkins@nasa.gov Lane Figueroa Marshall Space Flight Center, Huntsville, Ala. 256-544-0034 lane.e.figueroa@nasa.gov Brian Newbacher Glenn Research Center, Cleveland 216-469-9726 Brian.t.newbacher@nasa.gov Share Details Last Updated Sep 20, 2024 LocationGlenn Research Center Related TermsScience Mission Directorate View the full article
  9. NASA/Joel Kowsky Joylette Hylick, left, and Katherine Moore, right, accept the Congressional Gold Medal on behalf of their mother, Katherine Johnson, during a Sept. 18, 2024, ceremony recognizing NASA’s Hidden Figures. Katherine Johnson, Dr. Christine Darden, Dorothy Vaughan, and Mary W. Jackson were awarded Congressional Gold Medals in recognition of their service to the United States. A Congressional Gold Medal was also awarded in recognition of all the women who served as computers, mathematicians, and engineers at the National Advisory Committee for Aeronautics and NASA between the 1930s and 1970s. See more photos from the ceremony. Image credit: NASA/Joel Kowsky View the full article
  10. 4 Min Read NASA Data Helps Protect US Embassy Staff from Polluted Air This visualization of aerosols shows dust (purple), smoke (red), and sea salt particles (blue) swirling across Earth’s atmosphere on Aug. 23, 2018, from NASA’s GEOS-FP (Goddard Earth Observing System forward processing) computer model. Credits: NASA’s Earth Observatory United States embassies and consulates, along with American citizens traveling and living abroad, now have a powerful tool to protect against polluted air, thanks to a collaboration between NASA and the U.S. State Department. Since 2020, ZephAir has provided real-time air quality data for about 75 U.S. diplomatic posts. Now, the public tool includes three-day air quality forecasts for PM2.5, a type of fine particulate matter, for all the approximately 270 U.S. embassies and consulates worldwide. These tiny particles, much smaller than a grain of sand, can penetrate deep into the lungs and enter the bloodstream, causing respiratory and cardiovascular problems. “This collaboration with NASA showcases how space-based technology can directly impact lives on the ground,” said Stephanie Christel, climate adaptation and air quality monitoring program lead with the State Department’s Greening Diplomacy Initiative. “This is not something the State Department could have done on its own.” For instance, placing air quality monitors at all U.S. diplomatic posts is prohibitively expensive, she explained. “NASA’s involvement brings not only advanced technology,” she added, “but also a trusted name that adds credibility and reliability to the forecasts, which is invaluable for our staff stationed abroad.” The forecasts, created using NASA satellite data, computer models, and machine learning, are crucial for U.S. embassies and consulates, where approximately 60,000 U.S. citizens and local staff work. Many of these sites are in regions with few local air quality monitors or early warning systems for air pollution. “ZephAir’s new forecasting capability is a prime example of NASA’s commitment to using our data for societal benefit,” said Laura Judd, an associate program manager for Health and Air Quality at NASA. “Partnering with the State Department allows us to extend the reach of our air quality data, providing embassies and local communities worldwide with vital information to protect public health.” Enhancing Health, Safety with NASA Air Quality Data To manage air pollution exposure, the tool can assist diplomatic staff with decisions on everything from building ventilation to outdoor activities at embassy schools. For many embassies, especially in regions with severe air pollution, having reliable air quality forecasts is crucial for safeguarding staff and their families, influencing both daily decisions and long-term planning. “Air quality is a top priority for my family as we think about [our next assignment], so having more information is a huge help,” said Alex Lewis, a political officer at the U.S. embassy in Managua, Nicaragua. A screenshot of the ZephAir web dashboard featuring air quality forecasts for Managua, Nicaragua. U.S. Department of State Previously, ZephAir only delivered data on current PM2.5 levels using air quality monitors on the ground from about 75 U.S. diplomatic locations and about 50 additional sources. Now, the enhanced tool provides PM2.5 forecasts for all sites, using the Goddard Earth Observing System forward processing (GEOS-FP), a weather and climate computer model. It incorporates data on tiny particles or droplets suspended in Earth’s atmosphere called aerosols from MODIS (Moderate-resolution Imaging Spectroradiometer) on NASA’s Terra and Aqua satellites. Aerosols are tiny airborne particles that come from both natural sources, like dust, volcanic ash, and sea spray, and from human activities, such as burning fossil fuels. PM2.5 refers to particles or droplets that are 2.5 micrometers or smaller in diameter — about 30 times smaller than the width of a human hair. “We use the GEOS-FP model to generate global aerosol forecasts,” said Pawan Gupta, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the lead scientist on the project. “Then we calibrate the forecasts for embassy locations, using historical data and machine learning techniques.” As of August 2024, the forecasting feature is available on the ZephAir web and mobile platforms. The new forecasts are about more than just protecting U.S. citizens and local embassy staff; they are also contributing to global action on air quality. The State Department engages with local governments and communities to raise awareness about air quality issues. “These forecasts are a critical part of our strategy to mitigate the impacts of air pollution not only for our personnel but also for the broader community in many regions around the world,” Christel said. Officials with the Greening Diplomacy Initiative partnered with NASA through the Health and Air Quality Applied Sciences Team to develop the new forecasts and will continue the collaboration through support from the Satellite Needs Working Group. Looking ahead, the team aims to expand ZephAir’s capabilities to include ground-level ozone data, another major pollutant that can affect the health of embassy staff and local communities. By Emily DeMarco NASA’s Earth Science Division, Headquarters Share Details Last Updated Sep 20, 2024 Editor Rob Garner Contact Rob Garner rob.garner@nasa.gov Location Goddard Space Flight Center Related Terms Aqua Benefits Back on Earth Earth Earth’s Atmosphere Goddard Space Flight Center Terra View the full article
  11. Hubble Space Telescope Home Hubble Lights the Way with New… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities 2 min read Hubble Lights the Way with New Multiwavelength Galaxy View This image from the NASA/ESA Hubble Space Telescope features the galaxy NGC 1559. ESA/Hubble & NASA, F. Belfiore, W. Yuan, J. Lee and the PHANGS-HST Team, A. Riess, K. Takáts, D. de Martin & M. Zamani (ESA/Hubble) The magnificent galaxy featured in this NASA/ESA Hubble Space Telescope image is NGC 1559. It is a barred spiral galaxy located in the constellation Reticulum, approximately 35 million light-years from Earth. The brilliant light captured in the current image offers a wealth of information. This picture is composed of a whopping ten different Hubble images, each filtered to collect light from a specific wavelength or range of wavelengths. It spans Hubble’s sensitivity to light, from ultraviolet through visible light and into the near-infrared spectrum. Capturing such a wide range of wavelengths allows astronomers to study information about many different astrophysical processes in the galaxy: one notable example is the red 656-nanometer filter used here. Ionized hydrogen atoms emit light at this particular wavelength, called H-alpha emission. New stars forming in a molecular cloud, made mostly of hydrogen gas, emit copious amounts of ultraviolet light that the cloud absorbs, ionizing the hydrogen gas causing it to glow with H-alpha light. Using Hubble’s filters to detect only H-alpha light provides a reliable way to detect areas of star formation (called H II regions). These regions are visible in this image as bright red and pink patches filling NGC 1559’s spiral arms. These ten images come from six different Hubble observing programs, spanning from 2009 all the way up to 2024. Teams of astronomers from around the world proposed these programs with a variety of scientific goals, ranging from studying ionized gas and star formation, to following up on a supernova, to tracking variable stars as a contribution to calculating the Hubble constant. The data from all of these observations lives in the Hubble archive, available for anyone to use. This archive is regularly used to generate new science, but also to create spectacular images like this one! This new image of NGC 1559 is a reminder of the incredible opportunities that Hubble provided and continues to provide. Along with Hubble’s observations, astronomers are using the NASA/ESA/CSA James Webb Space Telescope to continue researching this galaxy. This Webb image from February showcases the galaxy in near- and mid-infrared light. Download this image Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Sep 19, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Science Behind the Discoveries Hubble’s Galaxies Hubble Posters View the full article
  12. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NAACP Board Chair Leon Russell, left, and NASA Administrator Bill Nelson, right, sign a Space Act Agreement between NASA and the NAACP during a 5th Annual Hidden Figures Street Naming Anniversary event Thursday, Sept. 19, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. NASA/Keegan Barber During an event Thursday, NASA and the National Association for the Advancement of Colored People (NAACP) signed a Space Act Agreement to increase engagement and equity for underrepresented students pursuing science, technology, engineering, and mathematics (STEM) fields and to improve access to agency activities and opportunities. “NASA and the NAACP share a longstanding commitment to attracting more diverse students to STEM education and ultimately careers,” said Shahra Lambert, senior advisor for engagement and equity, NASA headquarters. “This agreement reaffirms that commitment and solidifies a partnership that will enable us to expand opportunities for more students of color to build their STEM identity and gain real-world experience through NASA STEM education, mentorship, and career awareness. With the NAACP’s help we’ll be able to truly impact young minds who will be our future scientists, engineers, explorers and more.” As part of the agreement, the NAACP will incorporate NASA STEM lessons, content, and themes into its Afro-Academic, Cultural, Technological and Scientific Olympics (ACT-SO) achievement program, which is a series of competitions where students compete for scholarships and other incentives in areas ranging from performing and culinary arts to business and STEM. In turn, NASA will provide guidance on programming, participate in information sharing, provide mentorship, and facilitate tours of NASA facilities when appropriate. “Much like NASA, brave, brilliant, Black women were critical to the success of the NAACP,” said Leon W. Russell, Chairman of the NAACP Board of Directors. “For years, we’ve worked to increase the number of diverse STEM students by providing scholarships and establishing key initiatives. Through our ACT-SO program and this new partnership with NASA, both organizations will make even greater progress to help pave the way for more Katherine Johnsons and Mary Jacksons. By enacting today’s agreement, we hope to increase the number of Black and underrepresented students in the STEM fields and help them reach for the stars.” While initial efforts will be led by NASA’s Office of STEM Engagement, the umbrella agreement also allows for further collaboration and partnership in the future. Specifically, the agency and the NAACP will look to support certain areas of NASA’s Equity Action Plan. NASA works to explore the secrets of the universe and solve the world’s most complex problems, which requires creating space for all people to participate in and learn from its work in space. Providing access to opportunities where young minds can be curious and see themselves potentially at NASA and beyond is how the agency will continue to inspire the next generation of STEM innovators. For more information on how NASA inspires students to pursue STEM visit: https://www.nasa.gov/learning-resources Share Details Last Updated Sep 19, 2024 Related TermsGeneral Explore More 1 min read NASA Glenn Attends Air Shows in Cleveland and Wisconsin Article 12 hours ago 3 min read Giant Leaps Start at Johnson for NASA’s SpaceX Crew-9 Commander Nick Hague Article 1 day ago 3 min read NASA to Develop Lunar Time Standard for Exploration Initiatives Article 1 week ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  13. The Roscosmos Soyuz MS-25 spacecraft is pictured docked to the International Space Station’s Prichal module in this long-duration photograph as it orbited 258 miles above Nigeria.Credit: NASA NASA astronaut Tracy C. Dyson, accompanied by Roscosmos cosmonauts Nikolai Chub and Oleg Kononenko, will depart from the International Space Station aboard the Soyuz MS-25 spacecraft, and return to Earth. Dyson, Chub, and Kononenko will undock from the orbiting laboratory’s Prichal module at 4:37 a.m. EDT Monday, Sept. 23, heading for a parachute-assisted landing at 8 a.m. (5 p.m. Kazakhstan time) on the steppe of Kazakhstan, southeast of the town of Dzhezkazgan. NASA’s live coverage of return and related activities will stream on NASA+ and the agency’s website. Learn how to stream NASA content through a variety of platforms, including social media. A change of command ceremony also will stream on NASA platforms at 10:15 a.m. Sunday, Sept. 22. Kononenko will hand over station command to NASA astronaut Suni Williams for Expedition 72, which begins at the time of undocking. Spanning 184 days in space, Dyson’s mission includes covering 2,944 orbits of the Earth and a journey of 78 million miles. The Soyuz MS-25 spacecraft launched March 23, and arrived at the station March 25, with Dyson, Roscosmos cosmonaut Oleg Novitskiy, and spaceflight participant Marina Vasilevskaya of Belarus. Novitskiy and Vasilevskaya were aboard the station for 12 days before returning home with NASA astronaut Loral O’Hara on April 6. Kononenko and Chub, who launched with O’Hara to the station on the Soyuz MS-24 spacecraft last September, will return after 374 days in space and a trip of 158.6 million miles, spanning 5,984 orbits. Dyson spent her fourth spaceflight aboard the station as an Expedition 70 and 71 flight engineer, and departs with Kononenko, completing his fifth flight into space and accruing an all-time record 1,111 days in orbit, and Chub, who completed his first spaceflight. After returning to Earth, the three crew members will fly on a helicopter from the landing site to the recovery staging city of Karaganda, Kazakhstan. Dyson will board a NASA plane and return to Houston, while Kononenko and Chub will depart for a training base in Star City, Russia. NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations): Sunday, Sept. 22 10:15 a.m. – Expedition 71/72 change of command ceremony begins on NASA+ and the agency’s website. Monday, Sept. 23 12:45 a.m. – Hatch closing coverage begins on NASA+ and the agency’s website. 1:05 a.m. – Hatch closing 4 a.m. – Undocking coverage begins on NASA+ and the agency’s website. 4:37 a.m. – Undocking 6:45 a.m. – Coverage begins for deorbit burn, entry, and landing on NASA+ and the agency’s website. 7:05 a.m. – Deorbit burn 8 a.m. – Landing For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future human missions to Mars. Learn more about International Space Station research and operations at: https://www.nasa.gov/station -end- Josh Finch / Claire O’Shea Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Sep 19, 2024 LocationNASA Headquarters Related TermsInternational Space Station (ISS)AstronautsHumans in SpaceISS ResearchJohnson Space CenterTracy Caldwell Dyson View the full article
  14. In September 1969, celebrations continued to mark the successful first human Moon landing two months earlier, and NASA prepared for the next visit to the Moon. The hometowns of the Apollo 11 astronauts held parades in their honor, the postal service recognized their accomplishment with a stamp, and the Smithsonian put a Moon rock on display. They addressed Congress and embarked on a 38-day presidential round the world goodwill tour. Eager scientists received the first samples of lunar material to study in their laboratories. Meanwhile, NASA prepared Apollo 12 for November launch as the astronauts trained for the mission with an increased emphasis on lunar science. Plans called for additional Moon landings in 1970, with spacecraft under construction and astronauts in training. Apollo 11 For Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin, their busy August 1969 postflight schedule continued into September with events throughout the United States and beyond. These included attending hometown parades, dedicating a stamp to commemorate their historic mission, unveiling a display of a Moon rock they collected, addressing a Joint Meeting of Congress, and visiting contractor facilities that built parts of their rocket and spacecraft. They capped off the hectic month with their departure, accompanied by their wives, on a presidential round-the-world goodwill tour that lasted into early November. Left: Neil A. Armstrong at his hometown parade in Wapakoneta, Ohio. Image credit: Ohio Historical Society. Middle: Edwin E. “Buzz” Aldrin at his hometown parade in Montclair, New Jersey. Image credit: Star-Register. Right: Michael Collins at his adopted hometown parade in New Orleans, Louisiana. Image credit: AP Photo. On Sep. 6, each astronaut appeared at hometown events held in their honor. Apollo 11 Commander Armstrong’s hometown of Wapakoneta, Ohio, welcomed him with a parade and other events. Montclair, New Jersey, held a parade to honor hometown hero Lunar Module Pilot (LMP) Aldrin. And New Orleans, Louisiana, the adopted hometown of Command Module Pilot (CMP) Michael Collins, honored him with a parade. Left: Apollo 11 astronauts Michael Collins, left, Neil A. Armstrong, and Edwin E. “Buzz” Aldrin with Postmaster General Winton M. Blount display an enlargement of the stamp commemorating the first Moon landing. Right: Aldrin, left, Collins, and Armstrong examine a Moon rock with Smithsonian Institution Director General of Museums Frank A. Taylor. Three days later, the astronauts reunited in Washington, D.C., where they appeared at the dedication ceremony of a new postage stamp that honored their mission. The U.S. Postal Service had commissioned artist Paul Calle in 1968 to design the stamp. The Apollo 11 astronauts had carried the stamp’s master die to the Moon aboard the Lunar Module (LM) Eagle and after its return to Earth the Postal Service used it to make the printing pages for the 10¢ postage stamp. At the National Postal Forum, Armstrong, Collins, and Aldrin unveiled the stamp together with Postmaster General Winton M. Blount, and each astronaut received an album with 30 of the “First Man on the Moon” stamps. On Sep. 15, the crew returned to Washington to present a two-pound rock they collected in the Sea of Tranquility during their historic Moon walk to Frank A. Taylor, the Director General of Museums at the Smithsonian Institution in Washington, D.C. The rock went on public display two days later at the Smithsonian’s Arts and Industries Building, the first time the public could view a Moon rock. Left: Apollo 11 astronauts Michael Collins, left, Edwin E. “Buzz Aldrin, and Neil A. Armstrong each addressed a Joint Meeting of Congress, with Vice President Spiro T. Agnew and Speaker of the House John W. McCormack seated behind them. Middle: Apollo 11 astronauts’ wives Joan Aldrin, left, Patricia Collins, and Janet Armstrong receive recognition in the Visitors Gallery of the House Chamber. Right: The Apollo 11 astronauts and their wives cut at a cake at a reception at the Capitol. With their wives observing from the Visitors Gallery of the House of Representatives, on Sep. 16 Armstrong, Aldrin, and Collins addressed a Joint Meeting of Congress. In this same chamber in May 1961, President John F. Kennedy committed the nation to land a man on the Moon and return him safely to the Earth before the end of decade. In a sense, the astronauts reported on the safe and successful completion of that challenge. Speaker of the House John W. McCormack introduced the astronauts to the gathering, as Vice President Spiro T. Agnew looked on. Each astronaut reflected on the significance of the historic mission. Armstrong noted that their journey truly began in the halls of Congress when the Space Act of 1958 established NASA. Aldrin commented that “the Apollo lesson is that national goals can be met when there is a strong enough will to do so.” Collins shared a favorite quotation of his father’s to describe the value of the Apollo 11 mission: “He who would bring back the wealth of the Indies must take the wealth of the Indies with him.” Armstrong closed with, “We thank you, on behalf of all the men of Apollo, for giving us the privilege of joining you in serving – for all mankind.” After their speeches, the astronauts presented one American flag each to Vice President Agnew in his role as President of the Senate and to Speaker McCormack. The flags, that had flown over the Senate and House of Representatives, had traveled to the Moon and back with the astronauts. Speaker McCormack recognized the astronauts’ wives Jan Armstrong, Joan Aldrin, and Pat Collins for their contributions to the success of the Apollo 11 mission. Left: Neil A. Armstrong and Michael Collins address North American Rockwell employees in Downey, California. Right: Presidential Boeing VC-137B jet at Ellington Air Force Base in Houston to take the Apollo 11 astronauts and their wives on the Giantstep goodwill world tour. On Sep. 26, Armstrong and Collins visited two facilities in California of North American Rockwell (NAR) Space Division, the company that built parts of the Saturn V rocket and Apollo 11 spacecraft. First, they stopped at the Seal Beach plant that built the S-II second stage of the rocket, where 3,000 employees turned out to welcome them. Armstrong commented to the assembled crowd that during the July 16, 1969, liftoff, “the S-II gave us the smoothest ride ever.” Collins added that despite earlier misgivings about using liquid hydrogen as a rocket fuel, “after the ride you people gave us, I sure don’t have doubts any longer.” About 7,000 employees greeted the two astronauts and showered them with confetti at their next stop, the facility in Downey that built the Apollo Command and Service Modules. Both Armstrong and Collins thanked the team for building an outstanding spacecraft that took them to the Moon and returned them safely to Earth. The astronauts inspected the Command Module (CM) for Apollo 14, then under construction at the plant. On the morning of Sep. 29, a blue and white Boeing VC-137B presidential jet touched down at Ellington Air Force Base in Houston. Neil and Jan Armstrong, Buzz and Joan Aldrin, and Mike and Pat Collins boarded the plane and joined their entourage of State Department and NASA support personnel. They departed Houston for Mexico City, the first stop on the Apollo 11 Giantstep goodwill world tour. They didn’t return to the United States until Nov. 5, having visited 29 cities in 24 countries, just nine days before Apollo 12 took off on humanity’s second journey to land on the Moon. Distribution of Apollo 11 lunar samples to scientists at the Lunar Receiving Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Back in Houston, distribution to scientists of samples of the lunar material returned by the Apollo 11 astronauts began on Sep. 17 at the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Daniel H. Anderson, curator of lunar samples at the LRL, supervised the distribution of approximately 18 pounds – about one-third of the total Apollo 11 lunar material – to 142 principal investigators from the United States and eight other countries according to prior agreements. The scientists examined the samples at their home institutions and reported their results at a conference in Houston in January 1970. They returned to the LRL any of the samples not destroyed during the examination process. Apollo 12 In September 1969, NASA continued preparations for the second Moon landing mission, Apollo 12, scheduled for launch on Nov. 14. The Apollo 12 mission called for a pinpoint landing in Oceanus Procellarum (Ocean of Storms) near where the robotic spacecraft Surveyor 3 had touched down in April 1967. They planned to stay on the lunar surface for about 32 hours, compared to Apollo 11’s 21 hours, and conduct two surface spacewalks totaling more than 5 hours. During the first of their two excursions, the astronauts planned to deploy the Apollo Lunar Surface Experiments Package (ALSEP) and collect lunar samples. During the second spacewalk, they planned to visit Surveyor 3 and remove some of its equipment for return to Earth and collect additional lunar samples. The Apollo 12 prime crew of Commander Charles “Pete” Conrad, CMP Richard F. Gordon, and LMP Alan L. Bean and their backups David R. Scott, Alfred M. Worden, and James B. Irwin continued intensive training for the mission. Left: The Apollo 12 Saturn V exits the Vehicle Assembly Building on its way to Launch Pad 39A. Middle: The Apollo 12 Saturn V rolling up the incline as it approaches Launch Pad 39A. Right: Apollo 12 astronauts Alan L. Bean, left, Richard F. Gordon, and Charles “Pete” Conrad pose in front of their Saturn V during the rollout to the pad. On Sep. 8, the Saturn V rocket with the Apollo 12 spacecraft on top rolled out from Kennedy Space Center’s (KSC) Vehicle Assembly Building to Launch Pad 39A. The rocket made the 3.5-mile trip to the pad in about 6 hours, with Conrad, Gordon, and Bean on hand to observe the rollout. Workers at the pad spent the next two months thoroughly checking out the rocket and spacecraft to prepare it for its mission to the Moon. The two-day Flight Readiness Test at the end of September ensured that the launch vehicle and spacecraft systems were in a state of flight readiness. In addition to spending many hours in the spacecraft simulators, Conrad and Bean as well as their backups Scott and Irwin rehearsed their lunar surface spacewalks including the visit to Surveyor 3. Workers at NASA’s Jet Propulsion Laboratory in Pasadena, California, shipped an engineering model of the robotic spacecraft to KSC, and for added realism, engineers there mounted the model on a slope to match its relative position on the interior of the crater in which it stood on the Moon. Conrad and Scott used the Lunar Landing Training Vehicle (LLTV) at Ellington Air Force Base (AFB) near MSC to train for the final 200 feet of the descent to the lunar surface. Left: Apollo 12 astronauts Alan L. Bean, left, and Charles “Pete” Conrad rehearse their lunar surface spacewalks at NASA’s Kennedy Space Center in Florida. Middle: Conrad trains in the use of the Hasselblad camera he and Bean will use on the Moon. Right: Bean, left, and Conrad train with an engineering model of a Surveyor spacecraft. With regard to lunar geology training, the Apollo 12 astronauts had one advantage over their predecessors – they could inspect actual Moon rocks and soil returned by the Apollo 11 crew. On Sep. 19, Conrad and Bean arrived at the LRL, where Lunar Sample Curator Anderson met them. Anderson brought out a few lunar rocks and some lunar soil that scientists had already tested and didn’t require to be stored under vacuum or other special conditions, allowing Conrad and Bean to examine them closely and compare them with terrestrial rocks and soil they had seen during geology training field trips. This first-hand exposure to actual lunar samples significantly augmented Conrad and Bean’s geology training. To highlight the greater emphasis placed on lunar surface science, the Apollo 12 crews (prime and backup) went on six geology field trips compared to just one for the Apollo 11 crews. Left: Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean prepare for water egress training aboard the MV Retriever in the Gulf of Mexico. Middle: Wearing Biological Isolation Garments and assisted by a decontamination officer, standing in the open hatch, Apollo 12 astronauts await retrieval in the life raft. Right: The recovery helicopter hoists the third crew member using a Billy Pugh net. Although the Apollo 11 astronauts returned from the Moon in excellent health and scientists found no evidence of any harmful lunar microorganisms, NASA managers still planned to continue the postflight quarantine program for the Apollo 12 crew members, their spacecraft, and the lunar samples they brought back. The first of these measures involved the astronauts donning Biological Isolation Garments (BIG) prior to exiting the spacecraft after splashdown. Since they didn’t carry the BIGs with them to the Moon and back, one of the recovery personnel, also clad in a BIG, opened the hatch to the capsule after splashdown and handed the suits to the astronauts inside, who donned them before exiting onto a life raft. On Sep. 20, the Apollo 12 astronauts rehearsed these procedures, identical to the ones used after the first Moon landing mission, in the Gulf of Mexico near Galveston, Texas, using a boilerplate Apollo CM and supported by the Motorized Vessel (MV) Retriever. As it turned out, NASA later removed the requirement for the crew to wear BIGs, and after their splashdown the Apollo 12 crew wore overalls and respirators. Apollo 13 Left: Apollo 13 prime crew members James A. Lovell and Thomas K. “Ken” Mattingly in the Command Module (CM) for an altitude chamber test – Fred W. Haise is out of the picture at right – at NASA’s Kennedy Space Center in Florida. Middle: Apollo 13 backup astronaut John L. “Jack” Swigert prepares to enter the CM for an altitude chamber test. Right: Apollo 13 backup crew members John W. Young, left, and Swigert in the CM for an altitude chamber test – Charles M. Duke is out of the picture at right. Preparations for Apollo 13 continued in parallel. In KSC’s Manned Spacecraft Operations Building (MSOB), Apollo 13 astronauts completed altitude chamber tests of their mission’s CM and LM. Prime crew members Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise completed the CM altitude test on Sep. 10, followed by their backups John W. Young, Jack L. Swigert, and Charles M. Duke on Sep. 17. The next day, Lovell and Haise completed the altitude test of the LM, followed by Young and Duke on Sep. 22. At the time of these tests, Apollo 13 planned to launch on March 12, 1970, on a 10-day mission to visit the Fra Mauro highlands region of the Moon. To prepare for their lunar surface excursions, Lovell, Haise, Young, and Duke, accompanied by geologist-astronaut Harrison H. “Jack” Schmitt and Caltech geologist Leon T. “Lee” Silver, spent the last week of September in Southern California’s Orocopia Mountains immersed in a geology boot camp. Apollo 14 and 15 Left: At North American Rockwell’s (NAR) Downey, California, facility, workers assemble the Apollo 14 Command Module (CM), left, and Service Module. Right: NAR engineers work on the CM originally intended for Apollo 15. Looking beyond Apollo 13, the Apollo 14 crew of Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had started training for their mission planned for mid-year 1970. At the NAR facility in Downey, engineers prepared the CM and SM and shipped them to KSC in November 1969. Also at Downey, workers continued assembling the CM and SM planned for the Apollo 15 mission in late 1970. As events transpired throughout 1970, plans for those two missions changed significantly. NASA management changes Left: Portrait of NASA astronaut James A. McDivitt. Right: NASA Administrator Thomas O. Paine, right, swears in George M. Low as NASA deputy administrator. On Sept. 25, NASA appointed veteran astronaut James A. McDivitt as the Manager of the Apollo Spacecraft Program Office at MSC. McDivitt, selected as an astronaut in 1962, commanded two spaceflights, Gemini IV in June 1965 that included the first American spacewalk and Apollo 9 in March 1969, the first test of the LM in Earth orbit. He succeeded George M. Low who, in that position since April 1967, led the agency’s efforts to recover from the Apollo 1 fire and originated the idea to send Apollo 8 on a lunar orbital mission. Under his tenure, NASA successfully completed five crewed Apollo missions including the first human Moon landing. MSC Director Robert R. Gilruth initially assigned Low to plan future programs until Nov. 13, when President Richard M. Nixon nominated him as NASA deputy administrator. The Senate confirmed Low’s nomination on Nov. 25, and NASA Administrator Thomas O. Paine swore him in on Dec. 3. Low filled the position vacant since March 20, 1969. To be continued … News from around the world in September 1969: September 2 – The first automated teller machine is installed at a Chemical Bank branch in Rockville Center, New York. September 13 – Hannah-Barbera’s “Scooby Doo, Where Are You?” debuts on CBS. September 20 – John Lennon announces in a private meeting his intention to leave The Beatles. September 22 – San Francisco Giant Willie Mays becomes the second player, after Babe Ruth, to hit 600 career home runs. September 23 – “Butch Cassidy and the Sundance Kid,” starring Paul Newman and Robert Redford, premieres. September 24 – Tokyo’s daily newspaper Asahi Shimbun announced that it would be the first to deliver an edition electronically, using a FAX machine that could print a page in five minutes. September 26 – Apple Records releases “Abbey Road,” The Beatles’ 11th studio album. Explore More 8 min read 65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane Article 2 days ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon Article 3 days ago 7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station Article 1 week ago View the full article
  15. 4 Min Read NASA’s Hidden Figures Honored with Congressional Gold Medals Sen. Shelly Moore Capito (R-WV), delivers remarks during a Congressional Gold Medal ceremony recognizing NASA’s Hidden Figures, Wednesday, Sept. 18, 2024, in Emancipation Hall at the U.S. Capitol in Washington. Credits: NASA/Joel Kowsky A simple turn of phrase was all it took for U.S. Sen. Shelley Moore Capito of Katherine Johnson’s home state of West Virginia to capture the feeling in Emancipation Hall at the U.S. Capitol in Washington. “It’s been said that Katherine Johnson counted everything,” she said. “But today we’re here to celebrate the one thing even she couldn’t count, and that’s the impact that she and her colleagues have had on the lives of students, teachers, and explorers.” That sense of admiration and awe toward the legacy and impact of NASA’s Hidden Figures was palpable Wednesday during a Congressional Gold Medal Ceremony to honor the women’s work and achievements during the space race. The Congressional Gold Medal in recognition of Katherine Johnson in recognition of her service to the United States as a Mathematician is seen during a ceremony recognizing NASA’s Hidden Figures, Wednesday, Sept. 18, 2024, in Emancipation Hall at the U.S. Capitol in Washington. Katherine Johnson’s family accepted this gold medal on her behalf.NASA/Joel Kowsky The ceremony, hosted by House Speaker Mike Johnson, honored Johnson, Dorothy Vaughan, Mary Jackson, and Dr. Christine Darden of NASA’s Langley Research Center in Hampton, Virginia, along with all the other women who served at the agency and its precursor, the National Advisory Committee for Aeronautics, or the NACA, as computers, mathematicians, and engineers. “The pioneers we honor today, these Hidden Figures — their courage and imagination brought us to the Moon. And their lessons, their legacy, will send us back to the Moon,” said NASA Administrator Bill Nelson. Margot Lee Shetterly, whose 2016 nonfiction book “Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race,” brought awareness to the stories of NASA’s human computers, spoke at the event.NASA/Joel Kowsky Author Margot Lee Shetterly detailed the stories of the women from NASA Langley in her 2016 nonfiction book “Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race.” Though the book focused on NASA Langley, where Shetterly’s father worked, it helped raise awareness of similar stories around NASA. A film adaptation of the book starring Taraji Henson as Johnson, Octavia Spencer as Vaughan, and Janelle Monáe as Jackson came out later that year and further elevated the topic. NASA participated under a Space Act Agreement with 20th Century Fox in activities around the movie, to provide historical guidance and advice during the filmmaking process. In her remarks, Shetterly noted that even as the Hidden Figures made such key contributions to NASA and the NACA before it, they remained active in their communities, leading Girl Scout troops and delivering meals to the hungry. “They spent countless hours tutoring kids so that those kids, too, would see the power and the beauty of numbers they believed in, tending to the small D democracy that binds us to each other as neighbors and as American citizens,” she said. The medal citations were as follows: Congressional Gold Medal to Katherine Johnson, in recognition of her service to the United States as a mathematician Congressional Gold Medal to Dr. Christine Darden, for her service to the United States as an aeronautical engineer Congressional Gold Medals in commemoration of the lives of Dorothy Vaughan and Mary Jackson, in recognition of their service to the United States during the space race Congressional Gold Medal in recognition of all the women who served as computers, mathematicians, and engineers at the National Advisory Committee Family members of Johnson, Vaughn, Jackson and Dr. Darden accepted medals on their behalves. Dr. Darden watched the ceremony from home. House Speaker Mike Johnson and Andrea Mosie, senior Apollo sample processor and lab manager who oversees the 842 pounds of Apollo lunar samples. Mosie accepted the medal awarded in recognition of all the women who served as computers, mathematicians, and engineers at the National Advisory Committee for Aeronautics and NASA between the 1930s and the 1970s.NASA/Joel Kowsky Andrea Mosie, senior Apollo sample processor and lab manager who oversees the 842 pounds of Apollo lunar samples, accepted the medal awarded to all NASA’s Hidden Figures. She began her career at NASA’s Johnson Space Center in Houston in the 1970s. Mosie thanked Congress for supporting NASA’s campaign to send the first woman and first person of color to the Moon as part of Artemis and the agency’s efforts to provide “opportunities for people, more representative of the way our country looks, to understand humanity’s place in the universe.” Several NASA Langley officials attended the event to honor the legacies of the women who worked there. “I am humbled by the significant contributions and lasting impact of these women to America’s aeronautics and space programs. Their brilliance and perseverance still echo not just through the halls of NASA Langley, but through the entire Agency,” said NASA Langley’s Acting Center Director Dawn Schaible. “They are an inspiration to me and countless others who have benefited from the paths they forged.” Rep. Eddie Bernice Johnson of Texas, who passed away in 2023, introduced H.R. 1396 – Hidden Figures Congressional Gold Medal Act on Feb. 27, 2019. It was signed into law later that year. In 2015, President Barack Obama presented Katherine Johnson with the Presidential Medal of Freedom, the nation’s highest civilian honor. Brittny McGraw and Joe Atkinson NASA Langley Research Center Share Details Last Updated Sep 19, 2024 Related TermsLangley Research Center Explore More 4 min read Going Back-to-School with NASA Data Article 3 days ago 3 min read Like a Diamond in the Sky: How to Spot NASA’s Solar Sail Demo in Orbit Article 1 week ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators Article 3 weeks ago View the full article
  16. Students participating in NASA’s Minority University Research AND Education Project (MUREP) Innovation and Tech Transfer Idea Competition on-site experience. Credit: Josh Valcarcel NASA is awarding $7.2 million to six minority-serving institutions to grow initiatives in engineering-related disciplines and fields for learners who have historically been underrepresented and underserved in science, technology, engineering, and math (STEM) fields. “NASA is excited to award funding to six minority-serving institutions, paving the way for greater diversity in engineering and STEM,” said Shahra Lambert, NASA senior advisor for engagement and equity, NASA’s Headquarters in Washington. “NASA is committed to fostering diversity and providing essential academic resources to empower the next generation of innovators.” NASA’s Minority University Research and Education Project (MUREP), in partnership with the National Science Foundation’s Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (INCLUDES) network, provides support to increase diversity in engineering. It offers academic resources to college students, aiming to have a long-term impact on the engineering field. “With these awards, we are continuing to create pathways that increase access and opportunities in STEM for underrepresented and underserved groups,” said Keya Briscoe, MUREP manager. “NASA continues to invest in initiatives that are critical in driving innovation, fostering inclusion, and providing access to the STEM ecosystem for everyone.” The awardees and their project titles are as follows: Alabama A&M University Pathways to NASA: Empowering Underrepresented STEM Talent through Strategic Partnerships and Innovative Learning Morgan State University – Baltimore Developing NASA Pathways to Broadening Participation in Space Exploration Technology North Carolina Agricultural and Technical State University Strengthening Opportunities in Aerospace Research and Education University of Central Florida Hy-POWERED: Hydrogen-POWered Engineering Research and Education for Diversity University of Colorado, Denver Seed, Support, and Cultivate: Innovative Strategies for Underrepresented Minorities in STEM Education University of Houston Partnership for Inclusivity in Engineering Education and Research for Space NASA administers the grants through its Office of STEM Engagement. These investments enhance the research, academic and technology capabilities of minority-serving institutions through multiyear cooperative agreements, while advancing NASA’s vision for a diverse and inclusive workforce. To learn more about NASA STEM Engagement Funding Opportunities, visit: https://go.nasa.gov/3AZedZ8 -end- Abbey Donaldson Headquarters, Washington 202-269-1600 Abbey.a.donaldson@nasa.gov View the full article
  17. X-ray: NASA/CXC/Xiamen Univ./C. Ge; Optical: DESI collaboration; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers using NASA’s Chandra X-ray Observatory have found a galaxy cluster has two streams of superheated gas crossing one another. This result shows that crossing the streams may lead to the creation of new structure. Researchers have discovered an enormous, comet-like tail of hot gas — spanning over 1.6 million light-years long — trailing behind a galaxy within the galaxy cluster called Zwicky 8338 (Z8338 for short). This tail, spawned as the galaxy had some of its gas stripped off by the hot gas it is hurtling through, has split into two streams. This is the second pair of tails trailing behind a galaxy in this system. Previously, astronomers discovered a shorter pair of tails from a different galaxy near this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays. Researchers have discovered a second pair of tails trailing behind a galaxy in this cluster. Previously, astronomers discovered a shorter pair of tails from a different galaxy close to this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays that have been shown in the optical data. These tails span for over a million light-years and help determine the evolution of the galaxy cluster.X-ray: NASA/CXC/Xiamen Univ./C. Ge; Optical: DESI collaboration; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers now have evidence that these streams trailing behind the speeding galaxies have crossed one another. Z8338 is a chaotic landscape of galaxies, superheated gas, and shock waves (akin to sonic booms created by supersonic jets) in one relatively small region of space. These galaxies are in motion because they were part of two galaxy clusters that collided with each other to create Z8338. This new composite image shows this spectacle. X-rays from Chandra (represented in purple) outline the multimillion-degree gas that outweighs all of the galaxies in the cluster. The Chandra data also shows where this gas has been jettisoned behind the moving galaxies. Meanwhile an optical image from the Dark Energy Survey from the Cerro Tololo Inter-American Observatory in Chile shows the individual galaxies peppered throughout the same field of view. The original gas tail discovered in Z8338 is about 800,000 light-years long and is seen as vertical in this image (see the labeled version). The researchers think the gas in this tail is being stripped away from a large galaxy as it travels through the galaxy cluster. The head of the tail is a cloud of relatively cool gas about 100,000 light-years away from the galaxy it was stripped from. This tail is also separated into two parts. The team proposes that the detachment of the tail from the large galaxy may have been caused by the passage of the other, longer tail. Under this scenario, the tail detached from the galaxy because of the crossing of the streams. The results give useful information about the detachment and destruction of clouds of cooler gas like those seen in the head of the detached tail. This work shows that the cloud can survive for at least 30 million years after it is detached. During that time, a new generation of stars and planets may form within it. The Z8338 galaxy cluster and its jumble of galactic streams are located about 670 million light-years from Earth. A paper describing these results appeared in the Aug. 8, 2023, issue of the Monthly Notices of the Royal Astronomical Society and is available online at: https://academic.oup.com/mnras/article/525/1/1365/7239302. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. Learn more about the Chandra X-ray Observatory and its mission here: https://www.nasa.gov/chandra https://chandra.si.edu Visual Description: This release features a composite image of two pairs of hot gas tails found inside a single galaxy cluster. The image is presented both labeled and unlabeled, with color-coded ovals encircling the hot gas tails. In both the labeled and unlabeled versions of the image, mottled purple gas speckles a region of space dotted with distant flecks of red and white. Also present in this region of space are several glowing golden dots. These dots are individual galaxies that together form the cluster Zwicky 8338. To our right of center is a glowing golden galaxy with a mottled V shaped cloud of purple above it. Yellow labels identify the two arms of the V as tails trailing behind the hurtling galaxy below. To our left of center is another golden galaxy, this one surrounded by purple gas. Behind it, opening toward our right in the shape of a widening V lying on its side, are two more mottled purple clouds. Labeled in white, these newly-discovered gas tails are even larger than the previously discovered tails labeled in yellow. These tails, which overlap with the galaxy on our right, are over 1.6 million light-years long. News Media Contact Megan Watzke Chandra X-ray Center Cambridge, Mass. 617-496-7998 Lane Figueroa Marshall Space Flight Center, Huntsville, Alabama 256-544-0034 lane.e.figueroa@nasa.gov View the full article
  18. Hidden Figures Way | NASA’s Vision of Equality
  19. As RS-25’s operations integrator, Chris Pereira is responsible for ensuring that the many pieces of the program – from tracking on-time procurement of supplies and labor loads to coordinating priorities on various in-demand machine centers – come together to deliver a quality product. Chris Pereira can personally attest to the immense gravitational attraction of black holes. He’s been in love with space ever since he saw a video on the topic in a high school science class. But it wasn’t just any science class. It was one specially designed for English learners. “I was born and raised in Guatemala,” Pereira said. “I came here at 14 unable to speak any English.” Pereira did not know how to navigate the U.S. educational system either, but after that class, he was certain he wanted a career in space. Thus began a journey that ultimately landed him at L3Harris Technologies, where he works in the Aerojet Rocketdyne segment as an engineer and operations integrator on the RS-25 engine – used to power the core stage of NASA’s SLS (Space Launch System) rocket that will launch astronauts to the Moon under NASA’s Artemis campaign. Pereira’s first step was to stay after class and ask to borrow a copy of the video on black holes. His teacher not only obliged but took him across the street to the local library to get his first library card. Pereira quickly recognized that the pathway to his desired career in space was through higher education. It was equally clear, however, that he was not yet on that pathway. English as a Second Language classes, including that science class, did not count toward college admissions. His guidance counselor, meanwhile, was nudging him toward the trades. But with the help of teachers and a new guidance counselor, he got himself on the college-bound track. “I came to understand there were multiple career pathways to explore my interest in space,” Pereira said “One was engineering.” There was a lot of catching up to do, so Pereira took eight classes per day, including honors courses. He also worked every day after school cleaning a gymnasium from 6 to 11 p.m. to help his family make ends meet. Pereira earned his mechanical engineering degree at California State University at Los Angeles while also working as a senior educator at the California Science Center to cover the cost of his college tuition and living expenses. Pereira’s first career experience was as an intern in manufacturing engineering at Aerojet Rocketdyne. “I learned that making 100% mission-success engines requires a strong culture of attention to detail, teamwork and solid work ethics.” Pereira said. His first full-fledged engineering job was with Honeywell Aerospace working on aircraft programs. Eventually, space came calling — literally. “My mentor at Aerojet Rocketdyne called me up and said, ‘Chris, I have a job for you,’” Pereira said. He began his new job working on rocket engine programs including the AR1 and RS-68 but shifted to the RS-25 after NASA awarded Aerojet Rocketdyne a contract for newly manufactured versions of the engine. Initial versions of the SLS are using refurbished engines from the Space Shuttle Program. Evolved versions of the RS-25 recently concluded a critical test series and will debut with the fifth Artemis flight. As RS-25’s operations integrator, Pereira is responsible for ensuring that the many pieces of the program – from tracking on-time procurement of supplies and labor loads to coordinating priorities on various in-demand machine centers – come together to deliver a quality product. Playing a key role in the nation’s effort to return astronauts to the Moon feels a bit like coming home again, Pereira said. “You develop your first love, work really hard, take different pathways and encounter new passions,” he said. “It’s almost funny how the world and life work out – it’s like I’ve taken a big circle back to my first love.” NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. Read other I am Artemis features. View the full article
  20. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Sols 4309–4310: Leaning Back, Driving Back NASA’s Mars rover Curiosity captured this image of a large fractured slab of bedrock, taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4307 — Martian day 4,307 of the Mars Science Laboratory Mission — on Sept. 17, 2024 at 15:50:36 UTC. Earth planning date: Wednesday, Sept. 18, 2024 The lengthy drive planned on Monday executed as expected, and we came in today to find our rover parked at a jaunty angle on a sloped ridge. There were some worries that the slope might limit our ability to use the arm for contact science in this plan (we don’t want to do anything that might cause the rover to slide down the slope!), but after some careful consideration, we received the good news that all six of our wheels are holding on firmly to the ground, so there was no risk of slipping. On Monday, two different options for today’s plan were laid out. The first option, a “full contact science” plan where we don’t drive, was to be executed if Monday’s drive put us exactly where we hoped. The second, a “touch-and-go” plan where we do some light contact science before driving away, was to be executed if the drive didn’t put us where we wanted to be. As it happened, the rover was a little too enthusiastic about driving, and actually put our desired workspace under its body rather than in front where the arm could reach it. There’s always a little uncertainty in the final position after such a long drive! So, we decided to stick with a touch-and-go plan that includes a tiny backwards drive of less than a metre to reposition our desired target in front of the rover. Although we need to re-position, we aren’t slowing down on science for even a second. We are parked in front of a large fractured slab of bedrock, which can be seen in the above image. This slab became the contact science target for this plan with DRT and APXS activities on “The Minster.” Mastcam is getting a workout today as well, with large mosaics of “North Channel,” “Buckeye Ridge,” “Quinn,” and “Island Pass.” These mosaics are all documenting various aspects of the ridge we’re sat on and the edge of the Gediz Vallis Channel, including sedimentary rocks, white sulphate materials, and gravels and fine-grained materials. ChemCam is also taking a turn on the bedrock slab with a LIBS activity on “Grand Sentinel” and a mosaic of some exposed white stones off in the distance. The second sol of the plan, after our short drive, is largely taken over by environmental science activities, though there is our usual post-drive ChemCam AEGIS. These activities include a Mastcam tau and Navcam line-of-sight to measure the amount of dust in the atmosphere around and above us, as well as a dust devil movie, suprahorizon cloud movie, and some Navcam deck monitoring to see if our driving or the wind is moving around any of the sand and dust on the rover deck. The team is also taking the usual set of REMS, RAD, and DAN observations. Written by Conor Hayes, Graduate Student at York University Share Details Last Updated Sep 19, 2024 Related Terms Blogs Explore More 2 min read Sols 4307-4308: Bright Rocks Catch Our Eyes Article 2 days ago 2 min read Reaching New Heights to Unravel Deep Martian History! Article 3 days ago 5 min read Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots! Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  21. Artists Concept of the WASP-77 A b system. A planet swings in front of its star, dimming the starlight we see. Events like these, called transits, provide us with bounties of information about exoplanets–planets around stars other than the Sun. But predicting when these special events occur can be challenging…unless you have help from volunteers. Luckily, a collaboration of multiple teams of amateur planet-chasers, led by researcher Federico R. Noguer from Arizona State University and researchers from NASA’s Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC), has taken up the challenge. This collaboration has published the most precise physical and orbital parameters to date for an important exoplanet called WASP-77 A b. These precise parameters help us predict future transit events and are crucial for planning spacecraft observations and accurate atmospheric modeling. “As a retired dentist and now citizen scientist for Exoplanet Watch, research opportunities like this give me a way to learn and contribute to this amazingly exciting field of astrophysics,” said Anthony Norris, a citizen scientist working on the NASA-funded Exoplanet Watch project. The study combined amateur astronomy/citizen science data from the Exoplanet Watch and ExoClock projects, as well as the Exoplanet Transit Database. It also incorporated data from NASA’s Spitzer Space Telescope, the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), and La Silla Observatory. Exoplanet Watch invites volunteers to participate in groundbreaking exoplanet research, using their own telescopes to observe exoplanets or by analyzing data others have gathered. You may have read another recent article about how the Exoplanet Watch team helped validate a new exoplanet candidate. WASP-77 A b is a gas giant exoplanet that orbits a Sun-like star. It’s only about 20% larger than Jupiter. But that’s where the similarities to our solar system end. This blazing hot gas ball orbits right next to its star–more than 200 times closer to its star than our Jupiter! Want a piece of the action? Join the Exoplanet Watch project and help contribute to cutting-edge exoplanet science! Anyone can participate–participation does not require citizenship in any particular country. Facebook logo @DoNASAScience @DoNASAScience Share Details Last Updated Sep 19, 2024 Related Terms Astrophysics Citizen Science Exoplanet Science Explore More 4 min read NASA’s Webb Provides Another Look Into Galactic Collisions Article 1 day ago 4 min read NASA’s Hubble Finds More Black Holes than Expected in the Early Universe Article 2 days ago 2 min read Hubble Examines a Spiral Star Factory Article 6 days ago View the full article
  22. 3 min read NASA Develops Process to Create Very Accurate Eclipse Maps New NASA research reveals a process to generate extremely accurate eclipse maps, which plot the predicted path of the Moon’s shadow as it crosses the face of Earth. Traditionally, eclipse calculations assume that all observers are at sea level on Earth and that the Moon is a smooth sphere that is perfectly symmetrical around its center of mass. As such, these calculations do not take into account different elevations on Earth or the Moon’s cratered, uneven surface. For slightly more accurate maps, people can employ elevation tables and plots of the lunar limb — the edge of the visible surface of the Moon as seen from Earth. However, now eclipse calculations have gained even greater accuracy by incorporating lunar topography data from NASA’s LRO (Lunar Reconnaissance Orbiter) observations. Using LRO elevation maps, NASA visualizer Ernie Wright at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, created a continuously varying lunar limb profile as the Moon’s shadow passes over the Earth. The mountains and valleys along the edge of the Moon’s disk affect the timing and duration of totality by several seconds. Wright also used several NASA data sets to provide an elevation map of Earth so that eclipse observer locations were depicted at their true altitude. The resulting visualizations show something never seen before: the true, time-varying shape of the Moon’s shadow, with the effects of both an accurate lunar limb and the Earth’s terrain. “Beginning with the 2017 total solar eclipse, we’ve been publishing maps and movies of eclipses that show the true shape of the Moon’s central shadow — the umbra,” said Wright. A map showing the umbra (the Moon’s central shadow) as it passes over Cleveland at 3:15 p.m. local time during the April 8, 2024, total solar eclipse. NASA SVS/Ernie Wright and Michaela Garrison “And people ask, why does it look like a potato instead of a smooth oval? The short answer is that the Moon isn’t a perfectly smooth sphere.” The mountains and valleys around the edge of the Moon change the shape of the shadow. The valleys are also responsible for Baily’s beads and the diamond ring, the last bits of the Sun visible just before and the first just after totality. A computer simulation of Baily’s beads during a total solar eclipse. Data from Lunar Reconnaissance Orbiter makes it possible to map the lunar valleys that create the bead effect. NASA SVS/Ernie Wright Wright is lead author of a paper published September 19 in The Astronomical Journal that reveals for the first time exactly how the Moon’s terrain creates the umbra shape. The valleys on the edge of the Moon act like pinholes projecting images of the Sun onto the Earth’s surface. A visualization of Sun images being projected from lunar valleys that are acting like pinhole projectors. Light rays from the Sun converge on each valley, then spread out again on their way to the Earth. NASA SVS/Ernie Wright The umbra is the small hole in the middle of these projected Sun images, the place where none of the Sun images reach. Viewed from behind the Moon, the Sun images projected by lunar valleys on the Moon’s edge fall on the Earth’s surface in a flower-like pattern with a hole in the middle, forming the umbra shape. NASA SVS/Ernie Wright The edges of the umbra are made up of small arcs from the edges of the projected Sun images. This is just one of several surprising results that have emerged from the new eclipse mapping method described in the paper. Unlike the traditional method invented 200 years ago, the new way renders eclipse maps one pixel at a time, the same way 3D animation software creates images. It’s also similar to the way other complex phenomena, like weather, are modeled in the computer by breaking the problem into millions of tiny pieces, something computers are really good at, and something that was inconceivable 200 years ago. For more about eclipses, refer to: https://science.nasa.gov/eclipses By Ernie Wright and Susannah Darling NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Nancy Neal-Jones NASA’s Goddard Space Flight Center, Greenbelt, Md. 301-286-0039 nancy.n.jones@nasa.gov Share Details Last Updated Sep 19, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms Lunar Reconnaissance Orbiter (LRO) Solar Eclipses Uncategorized Explore More 3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night Article 3 weeks ago 14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece Article 4 weeks ago 4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes To better understand Mars, NASA’s Goddard Instrument Field Team hiked deep into the backcountry of… Article 4 weeks ago View the full article
  23. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) SpaceX Crew-9 members (from left) Mission Specialist Aleksandr Gorbunov from Roscosmos and Commander Nick Hague from NASA pose for an official crew portrait at NASA’s Johnson Space Center in Houston, Texas.NASA/Josh Valcarel NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are preparing to launch on the agency’s SpaceX Crew-9 mission to the International Space Station. The flight is the ninth crew rotation mission with SpaceX to the station under NASA’s Commercial Crew Program. The duo will lift off aboard the SpaceX Dragon spacecraft, which previously flew NASA’s SpaceX Crew-4, Axiom Mission 2 and Axiom Mission 3, from Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Once aboard the space station, Hague and Gorbunov will become members of the Expedition 72 crew and perform research, technology demonstrations, and maintenance activities. The pair will join NASA astronauts Don Petitt, Butch Wilmore, Suni Williams, as well as Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. Wilmore and Williams, who launched aboard the Starliner spacecraft in June, will fly home with Hague and Gorbunov in February 2025. Launch preparations are underway, and teams are working to integrate the spacecraft and the SpaceX Falcon 9 rocket, including checkouts of a second flight rocket booster for the mission. The integrated spacecraft and rocket will then be rolled to the pad and raised to the vertical position for a dry dress rehearsal with the crew and an integrated static fire test prior to launch. The Crew Nick Hague will serve as crew commander for Crew-9, making this his third launch and second mission to the space station. During his first launch in October 2018, Hague and his crewmate, Roscosmos’ Alexey Ovchinin, experienced a rocket booster failure, resulting in an in-flight, post-launch abort, ballistic re-entry, and safe landing in their Soyuz MS-10 spacecraft. Five months later, Hague launched aboard Soyuz MS-12 and served as a flight engineer aboard the space station during Expeditions 59 and 60. Hague has spent 203 days in space and conducted three spacewalks to upgrade space station power systems and install a docking adapter for commercial spacecraft. Born in Belleville, Kansas, Hague earned a bachelor’s degree in Astronautical Engineering from the United States Air Force Academy and a master’s degree in Aeronautical and Astronautical Engineering from the Massachusetts Institute of Technology in Cambridge, Massachusetts. Hague was selected as an astronaut by NASA in 2013. An active-duty colonel in the U.S. Space Force, Hague completed a developmental rotation at the Defense Department and served as the Space Force’s director of test and evaluation from 2020 to 2022. In August 2022, Hague resumed duties at NASA, working on the Boeing Starliner Program until this flight assignment. Follow @astrohague on X and Instagram. Roscosmos cosmonaut Aleksandr Gorbunov will embark on his first trip to the space station as a mission specialist for Crew-9. Born in Zheleznogorsk, Kursk region, Russia, he studied engineering with qualifications in spacecraft and upper stages from the Moscow Aviation Institute. Gorbunov graduated from the military department with a specialty in operating and repairing aircraft, helicopters, and aircraft engines. Before his selection as a cosmonaut in 2018, he worked as an engineer for Rocket Space Corp. Energia and supported cargo spacecraft launches from the Baikonur Cosmodrome. Gorbunov will serve as a flight engineer during Expedition 71/72 aboard the space station. Mission Overview After liftoff, Dragon will accelerate to approximately 17,500 mph to dock with the space station. Once in orbit, flight control teams from NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston and the SpaceX mission control in Hawthorne, California, will monitor a series of automatic maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually if necessary. After docking, Expedition 71 will welcome Hague and Gorbunov inside the station and conduct several days of handover activities with the departing astronauts of NASA’s SpaceX Crew-8 mission. After a handover period, NASA astronauts Matthew Dominick, Michael Barratt, Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin of Crew-8 will undock from the space station and splash down off the coast of Florida. Crew-9 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. Experiments include the impact of flame behavior on Earth, studying cells and platelets during long-duration spaceflight, and a B vitamin that could reduce Spaceflight-Associated Neuro-ocular Syndrome. They’ll also work on experiments that benefit life on Earth, like studying the physics of supernova explosions and monitoring the effects of different moister treatments on plants grown aboard the station. These are just a few of over 200 scientific experiments and technology demonstrations taking place during their mission. While aboard the orbiting laboratory, Crew-9 will welcome two Dragon spacecraft, including NASA’s SpaceX’s 31st commercial resupply services mission and NASA’s SpaceX Crew-10, and two Roscosmos-led cargo deliveries on Progress 90 and 91. In February, Hague, Gorbunov, Wilmore, and Williams will climb aboard Dragon and autonomously undock, depart the space station, and re-enter Earth’s atmosphere. After splashdown off Florida’s coast, a SpaceX recovery vessel will pick up the spacecraft and crew, who then will be helicoptered back to shore. Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 23 years testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station provides benefits for people on Earth and paves the way for future long-duration trips to the Moon and beyond through NASA’s Artemis missions. Get breaking news, images, and features from the space station on Instagram, Facebook, and X. Learn more about the space station, its research, and crew, at https://www.nasa.gov/station. Share Details Last Updated Sep 19, 2024 Related TermsCommercial CrewInternational Space Station (ISS) Explore More 4 min read NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station Article 1 day ago 3 min read Station Science Top News: September 13, 2024 Article 3 days ago 4 min read NASA’s SpaceX Crew-9 to Conduct Space Station Research Article 7 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  24. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) During Aviation Day at NASA’s Glenn Research Center, researcher Will Banks, right, assists a student with the installation of his test article into a demonstration wind tunnel to gain a drag force measurement. Credit: NASA/Sara Lowthian-Hanna For students considering careers in STEM, the field of aviation offers diverse and abundant opportunities they may never have realized. During Aviation Day on Aug. 27, NASA Glenn Research Center’s Office of STEM Engagement welcomed middle and high school students to the research center in Cleveland. The one-day event enabled students to learn more about the field of aviation and advancements in technology related to the aviation industry. Test engineer Cecila Otero, left, explains factors to consider when testing inside the 1×1 Supersonic Wind Tunnel facility at NASA’s Glenn Research Center.  Credit: NASA/Sara Lowthian-Hanna An aerodynamic drag challenge, virtual reality cockpit, and tours of icing and wind tunnel facilities were among the activities that connected students with NASA scientists and engineers working in aeronautics. Return to Newsletter Explore More 1 min read Ohio State Fairgoers Learn About NASA Technologies Article 4 mins ago 1 min read Dr. Kenyon Makes Calls, On and Off the Field Article 4 mins ago 1 min read NASA Glenn Attends Air Shows in Cleveland and Michigan Article 4 mins ago View the full article
  25. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA Glenn Research Center’s Chris Hartenstine explains the differences in tires designed for Moon and Mars terrains and testing performed at NASA Glenn. Credit: NASA/Jan Wittry NASA Glenn Research Center’s Office of STEM Engagement (OSTEM) and Office of Communications staff traveled to the Ohio State Fair in Columbus, Ohio, this summer. OSTEM participated in a ribbon-cutting ceremony to open the fair with Ohio Gov. Mike DeWine. Both teams hosted tables to share information about the key roles NASA Glenn plays in developing technologies for future missions to the lunar surface through hands-on activities. A focus on NASA Glenn’s Simulated Lunar Operations Lab (SLOPE) included sample rover wheels, shape memory alloys, and a virtual 360 tour of the SLOPE facility. NASA Glenn Research Center’s Jan Wittry talks with fair visitors as they watch a virtual tour of NASA Glenn’s Simulated Lunar Operations Laboratory. Credit: NASA/Chris Hartenstine Return to Newsletter Explore More 1 min read Students Soar at NASA Glenn’s Aviation Day Article 3 mins ago 1 min read Dr. Kenyon Makes Calls, On and Off the Field Article 4 mins ago 1 min read NASA Glenn Attends Air Shows in Cleveland and Michigan Article 4 mins ago View the full article
×
×
  • Create New...