Jump to content

NASA

Publishers
  • Posts

    5,736
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. Explore This Section Mars Home Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates 3 min read Persevering Through Science NASA’s Mars Perseverance rover acquired this image of its 26th collected rock sample, “Silver Mountain,” using its onboard Sample Caching System Camera (CacheCam), located inside the rover underbelly. It looks down into the top of a sample tube to take close-up pictures of the sampled material and the tube as it’s prepared for sealing and storage. This image was acquired on Jan. 28, 2025 — sol 1401, or Martian day 1,401 of the Mars 2020 mission — at the local mean solar time of 18:49:01. NASA/JPL-Caltech The Mars 2020 Perseverance rover continues to live up to its name, pushing forward in search of ancient Martian secrets. Following a brief period of system verification and remote testing, our operations team is back at full strength, and Perseverance has been hard at work uncovering new geological insights. We began our latest campaign at “Mill Brook,” a site surrounded by dusty, fine-grained paver stones. Here, we conducted an abrasion experiment at “Steve’s Trail,” allowing our remote sensing instruments to capture a before-and-after analysis of the rock surface. SuperCam (SCAM) used its LIBS and VISIR systems to investigate “Bad Weather Pond,” while Mastcam-Z (ZCAM) imaged the entire workspace. These observations provide invaluable data on the composition, texture, and potential alteration of these rocks. After wrapping up at Mill Brook — including a ZCAM multispectral scan of “Berry Hill” — Perseverance took a 140-meter drive (about 459 feet) to “Blue Hill” at “Shallow Bay,” a site of immense scientific interest. The rocks here are rich in low-calcium pyroxene (LCP), making them one of the most intriguing sample targets of the mission so far. The significance of Blue Hill extends beyond just this one location. The pyroxene-rich nature of the site suggests a potential link to a much larger rock unit visible in orbital HiRISE images. Given that this may be the only exposure of these materials within our planned traverse, our science team prioritized sampling this Noachian-aged outcrop, a rare window into Mars’ deep past. And now, we are thrilled to announce: Perseverance has successfully cored and sealed a 2.9-centimeter (1.1-inch) rock sample from Blue Hill, officially named “Silver Mountain.” This marks our first Noachian-aged outcrop sample, an important milestone in our mission to uncover the geological history of Jezero Crater. Since Shallow Bay-Shoal Brook is the only location along our planned route where this regional low-calcium pyroxene unit was identified from orbit, this sample is a one-of-a-kind treasure for future Mars Sample Return analyses. As we enter the Year of the Snake, it seems fitting that serpentine-bearing rocks have slithered into our focus! While Blue Hill remains a top priority, the tactical team has been highly responsive to the science team’s overwhelming interest in the nearby serpentine-bearing outcrops. These rocks, which may reveal critical clues about past water activity and potential habitability, are now part of our exploration strategy. Between our Noachian-aged pyroxene sample and the newfound focus on serpentine-bearing rocks, our journey through Jezero Crater has never been more exciting. Each step — each scan, each drive, each core sample — brings us closer to understanding Mars’ complex past. As Perseverance continues to, well, persevere, and as we embrace the Year of the Snake, we can’t help but marvel at the poetic alignment of science and tradition. Here’s to a year of wisdom, resilience, and groundbreaking discoveries — both on Earth and 225 million kilometers (140 million miles) away! Stay tuned as we unravel the next chapter in Mars exploration! Written by Nicolas Randazzo, Postdoctoral Scientist at University of Alberta Share Details Last Updated Feb 04, 2025 Related Terms Blogs Explore More 3 min read Sols 4441-4442: Winter is Coming Article 2 hours ago 2 min read Sols 4439-4440: A Lunar New Year on Mars Article 4 days ago 4 min read Sols 4437-4438: Coordinating our Dance Moves Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  2. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 3 min read Sols 4441-4442: Winter is Coming NASA’s Mars rover Curiosity acquired this image of its workspace, which includes some polygonal fracture features just to the left of the top center of the image, using its Left Navigation Camera on sol 4439, or Martian day 4,439 of the Mars Science Laboratory mission, on Jan. 31, 2025, at 05:43:05 UTC. NASA/JPL-Caltech Earth planning date: Friday, Jan. 31, 2025 Here in Earth’s northern hemisphere, the days are slowly getting longer, bringing with them the promise of an end to winter. While we are anticipating the return of warmer temperatures, just over 100 million kilometers (more than 62 million miles) away, Curiosity is starting to feel the bite of the colder season. One of the quirks of Mars’ orbital configuration is that aphelion (when Mars is farthest from the Sun) occurs about a month and a half before the southern winter solstice. This means that winters in the southern hemisphere (where Curiosity is located) are both longer and colder than those in the northern hemisphere. Consequently, we need to spend more of our power on keeping the rover warm, limiting the time that can be spent doing science. Today’s plan was fairly constrained by the available power, so our various instrument and science teams had to carefully coordinate their requests to ensure that we stay within the power limits that have been budgeted out over the next several plans. Our team is never one to back down from a challenge, so this plan squeezes as much science as possible out of every watt-hour of power we were given. Our drive from Wednesday’s plan completed successfully (quite an accomplishment in the current terrain!). One of our wheels ended up perched a few centimetres up on a rock, so we aren’t able to use APXS or DRT today, but we were still able to unstow the arm to take some MAHLI images. This plan kicks off with a pair of ChemCam and Mastcam coordinated activities. The first of these two focuses on some interesting polygonal fractures that we ended up parked in front of (see the image above). ChemCam will use its LIBS laser on these fractures before they are imaged by Mastcam. ChemCam will then use its RMI camera to take a mosaic of some features on the crater floor way off in the distance, which Mastcam will also image. Mastcam then goes it alone, with images of “Vivian Creek” (some sedimentary layers in today’s contact science target), “Dawn Mine” (a potential meteorite), and a trough off of the rover’s right side. The Environmental Science (ENV) team will continue their monitoring of the environment with a Mastcam tau to measure dust in the atmosphere as well as Navcam cloud and dust devil movies. After a short nap, the arm is unstopped to take a number of MAHLI images of “Coldwater Canyon,” over a range of distances between 5 and 25 centimeters away (about 2-10 inches). The second sol of this plan is largely consumed by ENV activities, including another tau and a Navcam line-of-sight observation to monitor dust. A big chunk of this sol’s plan is taken up by ChemCam passive observations (not using the LIBS laser) of the atmosphere. This “passive sky” observation allows us to measure atmospheric aerosol properties and the amount of oxygen and water in the air. Of course, ENV couldn’t have all the fun, so this sol also contains a typical ChemCam LIBS observation of “Big Dalton” with a Mastcam image afterward. After stowing the arm, we will drive off from our current location. Right before handing off to Monday’s plan, we wrap up with our typical early-morning ENV weekend science time, which includes more tau and line-of-sight dust observations and several Navcam cloud movies. RAD, REMS, and DAN also continue their monitoring of the environment throughout this plan. Written by Conor Hayes, Graduate Student at York University Share Details Last Updated Feb 04, 2025 Related Terms Blogs Explore More 2 min read Sols 4439-4440: A Lunar New Year on Mars Article 4 days ago 4 min read Sols 4437-4438: Coordinating our Dance Moves Article 6 days ago 2 min read Sols 4434-4436: Last Call for Clouds Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  3. NASA

    Combustor Facilities

    9 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Sector Combustor Studies (CE-5B-1) Combustion studies are conducted in this two-test position facility specifically in support of the NOx-reduction research for the High Speed Research program and the Advanced Subsonic Technology program. CE-5B-1 is large enough to test sector arrangements of injector elements to include interactions of the elements and single larger elements. The facility receives filtered combustion air from the 450-psig system. The air is heated in a 1,100°F non-vitiated heater at flows up to 20 lb/s, which can be valved to either test stand. The airflow passes through the test section, is water spray quenched, and is then discharged to the altitude exhaust system or the atmospheric exhaust system. The facility preheater consists of a heat exchanger fired by four J-47 burner cans using natural gas for a fuel and the 40-psig combustion air. The research hardware uses ASTM Jet-A, JP-5, or JP-8 as a fuel. CE-5B-1 Special Features In addition to inlet and exit rakes and standard instrumentation, water-cooled gas sampling rakes are in the downstream section. Particulate measurements are taken at the exit of the combustion section. Optical accessibility of the combustor section allows never-before-possible nonintrusive laser-based diagnostics of the reacting and non-reacting flowfield. These include such techniques as planar laser-induced fluorescence (PLIF) imaging, Planar Mie scattering, Phase/Doppler particle analysis (PDPA), focused Schlieren imaging, and light sheet photography. Both rigs share the gas analysis, particulate analysis, and diagnostics equipment. CE-5B Facility Capabilities (typical of both rigs) ParameterOperating ValueInlet Air Supply Pressure450 psigInlet Air Temperature100°F, preheated to 350-1,350°FInlet Airflow Stand 1 Stand 2 20 lb/s (available) 0.5 to 12.0 pps 0.5 to 5.0 ppsExhaustAtm or 20-26 in. HgRig Pressure Without Windows Stand 1 Stand 2275 psig 400 psigRig Pressure With Windows Stand 1 Stand 2250 psig 275 psigRig Fuel (JP-8) Flow7 gpm @ 400-900 psig (three legs per stand)Window Cooling GN2 (4 legs)0.125 to 0.5 pps (each leg) Cooling Water150 gpm @ 460 psig 250 gpm @ 395 psig 50 gpm @ 350 psig 15 gpm @ 55 psig CE-5B-1 System Instrumentation SystemNumber and TypeESP96 Ports of + 500 PSID Barometric RefEscort240 Channels 154 Available to the CustomerThermocouples156 Type K 24 Type B 12 Type W 524 Type RGas AnalyzersHC – 1,000 ppm 1% & 5% CO – 2,000 ppm 5% CO2 – 5%, 10%, 20% O2 – 25% NO – 100 ppm, 1,000 ppm 1% NOx –LaserPLIF, Raman Flame Tube Combustor Studies (CE-5B-2) CE-5B-2 is one of the two test stands in the CE-5B facility. It can be configured to study lean-premixed-prevaporized (LPP) and lean-direct-injection (LDI) concepts for developing a low-NOx combustor for high-speed research and advanced subsonic applications. The non-windowed combustion flame tube can use a 3-inch square cross section or a 3-inch-diameter round section and has six ports available for gas sampling probes. The windowed combustion flame tube takes advantage of the flat walls on a 3-inch square cross section to install optical windows for non-intrusive measurements. Tests are conducted with combustion air inlet pressure ranging from 10 to 15 atmospheres with preheater and exhaust conditions described for CE-5B-1. CE-5B-2 Special Features The same laser-based non-intrusive diagnostics of reacting and non-reacting flowfields described for test position CE-5B-1 are available to this test section. A typical data acquisition system is used for both test positions in CE-5B. In addition, most of the optical diagnostic instruments have their own data acquisition systems. CE-5B Facility Capabilities (typical of both rigs) ParameterOperating ValueInlet Air Supply Pressure450 psigInlet Air Temperature100°F, preheated to 350-1,350°FInlet Airflow Stand 1 Stand 2 20 lb/s (available) 0.5 to 12.0 pps 0.5 to 5.0 ppsExhaustAtm or 20-26 in. HgRig Pressure Without Windows Stand 1 Stand 2275 psig 400 psigRig Pressure With Windows Stand 1 Stand 2250 psig 275 psigRig Fuel (JP-8) Flow7 gpm @ 400-900 psig (three legs per stand)Window Cooling GN2 (4 legs)0.125 to 0.5 pps (each leg) Cooling Water150 gpm @ 460 psig 250 gpm @ 395 psig 50 gpm @ 350 psig 15 gpm @ 55 psig CE-5B-2 System Instrumentation SystemNumber and TypeESP96 Ports of + 500 PSID Barometric RefEscort240 Channels 154 Available to the CustomerThermocouples148 Type K 24 Type B 48 Type RGas AnalyzersHC – 1,000 ppm 1% & 5% CO – 2,000 ppm 5% CO2 – 5%, 10%, 20% O2 – 25% NO – 100 ppm, 1,000 ppm 1% NOx –LaserPLIF, Raman Combustion and Dynamics Facility (CE-13C) Test Cell CE-13 Combustion and Dynamics Facility (CDF) is used to investigate ways to reduce NOx and particulate emissions from air-breathing aircraft engines. This low-pressure (1-5 atm) facility is used to study fuel-air injection schemes and how they affect fluid mixing, emissions, dynamics, and flame stability. Jet-A fuel is the primary fuel, but candidate alternate jet fuels and their effects are also studied. Standard measurements consist of major species and dynamic pressures. Some optical measurements available are high-speed video, standard and time-resolved 2D PIV, planar laser induced fluorescence (PLIF), and chemiluminescence imaging. CE-13C test stand. CE-13C Special Features Research hardware is designed to flow vertically downwards. Preheated air is fed to the inlet air stream conditioner and then to the fuel injector. Fuel at room temperature is fed separately to the injector. The mixed hot air and fuel mixture moves to the combustor where combustion can be observed via customized windows. The products of combustion flow through an emission sampling ring and choke nozzle/straight outlet pipe. The fuel system consists of a 25-gallon fuel tank, a pump, and a GN2 purge. A separate laser room operates various class 3B and 4 lasers (UV, Vis, NIR) to characterize fuel injection, combustor flow, and measure combustion species. CE-13C Facility Capabilities ParameterOperating ValueInlet Air PressureAmbient to 75-psiaInlet Air TemperatureAmbient to 1,000°FInlet Airflow0.0 – 1.0 ppsJet Fuel SupplyCKT 1 6.9-140 pph @ 1,000-psig CKT 2 1 – 13.1 pph @ 1,000-psig ExhaustAtmosphericPeripheral H2O Cooling54-gpm @ 100-pisgQuench Cooling11-gpm @ 500-psig Combustion species window viewport. CE-13C System Instrumentation SystemNumber and TypeLabview64 voltage/current channels 32 temperature channels 10 voltage/current channels available to the customer 30 temperature channels available to customerOptical and LaserPLIF, Raman, PIV, droplet sizing, chemiluminescence, temperature, time-resolved imagingGas AnalyzersCO – 1,000 ppm, 5,000 ppm CO2 – 5%, 15% O2 – 25% NO – 100 ppm, 1,000 ppm NOx – 100 ppm, 1,000 ppm HC –  100 ppm, 1,000 ppm High-Pressure Gaseous Burner (SE-5) The SE-5 High-Pressure Combustion Diagnostics (HPCD) laboratory is a gas- and liquid-fueled high-pressure flame tube facility with single-element fuel injection burners and emission sampling ports for advanced diagnostics development and national standard calibrations. The facility provides large-aperture optical access to the primary reaction zone (flame holding) through four UV-grade fused silica optical windows (44-mm-thick by 85-mm clear apertures located around the periphery) enabling non-intrusive optical diagnostics such as laser Raman spectroscopy or high-speed imaging to measure chemical species and temperature. The HPCD rig can operate at sustained pressures up to 30 atm (or 60 atm with limited flow rate) with a variety of gaseous fuels, liquid jet fuels, and oxidizers, including hydrogen, methane, oxygen-argon, and pure oxygen. The innovative microtube array burner or micro-radial-entry counter-swirl (MRX) burner is mounted inside the air-cooled high-temperature liner casing within the rig. The burner was designed to provide a uniform combustion product zone downstream of the flame for calibrating the laser diagnostic system. The facility is also used for bench-mark tests of emission gas and particulate matters (PM) sampling. The data from the HPCD rig enables the validation of numerical codes such as powered by advanced CFD that simulate gas turbine combustors. All aspects of the facility operation, including startup, shutdown, and automatic safety shutdowns, are controlled and monitored via an icon-based touch-screen software system and a most-updated programmable logic controller (PLC) in conjunction with a precision DEWETRON data acquisition system. The HPCD rig can also provide a pressure vessel for prototype thermal or combustion hardware of a customer’s choice. SE-5 Special Features The facility is unique because it is the only continuous-flow, hydrogen-capable 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high pressure-ratio combustion chambers of tomorrow’s advanced aircraft engines. SE-5 Facility Capabilities ParameterOperating ValueCooling Capacity4,000,000 BTU/hrEquivalence Ratio Variance0.2 (fuel very lean) – 4 (fuel rich)Fuel Flow RateLimited by cooling capacity, e.g., 2 GPH of n-heptaneOperating Pressure30 atm nominal, 60 atm maxCooling Airflow0.25 lbm/s maxQuenching Airflow0.20 lbm/s max SE-5 System Instrumentation and Diagnostics SystemNumber and TypePressure Transducers and ThermocouplesCustomDEWETRON DAQCustomEmission Gas Sampling (Exhaust)NO, NOx, SOx, O2, CO, CO2Particulates Sampling (Exhaust)Mass (TSI), counter (TSI), In-line sensor (GRC in-house)Laser Raman Spectroscopy (In Flame)CustomIn-situ Soot DetectionExtinction measurements Particulate Aerosol Laboratory (SE-11) The Particulate Aerosol Laboratory (PAL) studies aerosols at simulated upper atmospheric conditions with altitudes up to 55,000 feet at -135°F. Altitude chamber environment and burner settings are individually controlled, creating a multitude of test parameters and a dynamic testing environment. The PAL facility is designed around a small-scale jet exhaust nozzle and altitude chamber and takes full advantage of its reduced size for screening of various alternative fuels, additives, and other combustion concepts. This makes PAL the ideal facility for validating the advancement of such research to the next phase. Combustion fuel operation capabilities include alternative fuel additive mixing in real-time mode with switching between a baseline fuel and an alternative fuel while maintaining a continuous combustion flame. Heated bypass air is available with optional external burner and associated piping heating up to 1,000°F. Additionally, PAL is enhancing its cloud simulation capability with real-time atmospheric water vapor content readings and on-demand direct liquid injector vaporizers for high purity 100% fluid vaporization. The SE-11 altitude chamber with the burner and alternate fuel HLPC pumps. SE-11 Special Features Particulate emission sample extraction taking at burner rear section. Chamber equipped with windows and fused silica lenses providing optical access for non-intrusive optical diagnostic Mie scattering and color video imaging. Particulate size and number density measurements are accomplished with absorption measurements and forward, back, and side scattering. Video capability of both burner flame and altitude chamber contrails. Optical measurement plane location relative to the chamber nozzle exit is adjustable. SE-11 Facility Capabilities ParameterOperating ValueBurner Fuel Flow Rate.2 – 9.9 ml/min various liquid fuelsBurner Air-Filtered and dried -Downstream heated or non-heated bypass air available to ≤1,000°FBurner EGT≤1,000° FParticle Sizing Range2.5-1,000 nmParticle Size Distribution Concentration Range10-107 particles/cm³Aerosol Particle Size Range.75-10 nmGas Composition AnalyzerCO – CO₂ – O₂Optic Light Source300W Xenon LampOptic Video-32-bit Color -16-bit Monochrome, -Frame rate: 15fpsOptic DetectorsSelection of Various Spectrometers and Photodiodes Using Our Facilities NASA’s Glenn Research Center in Cleveland provides ground test facilities to industry, government, and academia. If you are considering testing in one of our facilities or would like further information about a specific facility or capability, please let us know. Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  4. NASA has awarded Dynamic Aviation Group Inc. of Bridgewater, Virginia, the Commercial Aviation Services contract to support the agency’s Airborne Science Program. The program provides aircraft and technology to further science and advance the use of Earth observing satellite data, making NASA data about our home planet and innovations accessible to all. This is an indefinite-delivery/indefinite-quantity firm-fixed-price contract with a maximum potential value of $13.5 million. The period of performance began Friday, Jan. 31, and continues through Jan. 30, 2030. Under this contract, the company will provide ground and flight crews and services using modified commercial aircraft, including a Beechcraft King Air B200 and Beechcraft King Air A90. Work will include mechanical and electrical engineering services for instrument integration and de-integration, flight planning and real-time tracking, project execution, as well as technical feasibility assessments and cost estimation. Aircraft modifications may include instrumented nosecones, viewing ports, inlets, computing systems, and satellite communications capabilities. This work is essential for NASA to conduct airborne science missions, develop and validate earth system models, and support satellite payload calibration. NASA’s Ames Research Center in California’s Silicon Valley will administer the agency-wide contract on behalf of the Airborne Science Program in the Earth Science Division at NASA Headquarters in Washington. To learn more about NASA and agency programs, visit: https://www.nasa.gov -end- Rachel Hoover Ames Research Center, Silicon Valley, Calif. 650-604-4789 rachel.hoover@nasa.gov View the full article
  5. NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) sits outside a testing chamber after completing its thermal vacuum testing in the fall of 2024. Credit: NASA/JSC David DeHoyos To advance plans of securing a public/private partnership and land and operate NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) mission on the Moon in collaboration with industry the agency announced Monday it is seeking U.S. proposals. As part of the agency’s Artemis campaign, instruments on VIPER will demonstrate U.S. industry’s ability to search for ice on the lunar surface and collect science data. The Announcement for Partnership Proposal contains proposal instructions and evaluation criteria for a new Lunar Volatiles Science Partnership. Responses are due Thursday, Feb. 20. After evaluating submissions, any selections by the agency will require respondents to submit a second, more detailed, proposal. NASA is expected to make a decision on the VIPER mission this summer. “Moving forward with a VIPER partnership offers NASA a unique opportunity to engage with the private sector,” said Nicky Fox, associate administrator in the Science Mission Directorate at NASA Headquarters in Washington. “Such a partnership provides the opportunity for NASA to collect VIPER science that could tell us more about water on the Moon, while advancing commercial lunar landing capabilities and resource prospecting possibilities.” This new announcement comes after NASA issued a Request for Information on Aug. 9, 2024, to seek interest from American companies and institutions in conducting a mission using the agency’s VIPER Moon rover after the program was canceled in July 2024. Any partnership would work under a Cooperative Research and Development Agreement. This type of partnership allows both NASA and an industry partner to contribute services, technology, and hardware to the collaboration. As part of an agreement, NASA would contribute the existing VIPER rover as-is. Potential partners would need to arrange for the integration and successful landing of the rover on the Moon, conduct a science/exploration campaign, and disseminate VIPER-generated science data. The partner may not disassemble the rover and use its instruments or parts separately from the VIPER mission. NASA’s selection approach will favor proposals that enable data from the mission’s science instruments to be shared openly with anyone who wishes to use it. “Being selected for the VIPER partnership would benefit any company interested in advancing their lunar landing and surface operations capabilities,” said Joel Kearns, deputy associate administrator for exploration in the Science Mission Directorate. “This solicitation seeks proposals that clearly describe what is needed to successfully land and operate the rover, and invites industry to propose their own complementary science goals and approaches. NASA is looking forward to partnering with U.S. industry to meet the challenges of performing volatiles science in the lunar environment.” The Moon is a cornerstone for solar system science and exoplanet studies. In addition to helping inform where ice exists on the Moon for potential future astronauts, understanding our nearest neighbor helps us understand how it has evolved and what processes shaped its surface. To learn more about NASA’s lunar science, visit: https://www.nasa.gov/moon -end- Karen Fox Headquarters, Washington 202-358-1100 karen.fox@nasa.gov Share Details Last Updated Feb 03, 2025 Related TermsMissionsVIPER (Volatiles Investigating Polar Exploration Rover) View the full article
  6. Seeds survive space A close-up view of the Materials International Space Station Experiment hardware housing materials for exposure to space.NASA Researchers found that plant seeds exposed to space germinated at the same rate as those kept on the ground. This finding shows that plant seeds can remain viable during long-term space travel and plants could be used for food and other uses on future missions. Materials International Space Station Experiment-14 exposed a variety of materials to space, including 11 types of plant seeds. The work also evaluated the performance of a new sample containment canister as a method of exposing biological samples to space while protecting their vigor. Examining mechanisms of immune issues in space NASA astronaut Josh Cassada stows samples from blood collection activities inside an International Space Station science freezer.NASA Using genetic analyses, researchers identified molecular mechanisms that cause changes in mitochondrial and immune system function seen during spaceflight. The findings provide insight into how the human body adapts in space and could guide countermeasures for protecting immune function on future missions. International Space Station Medical Monitoring collects a variety of health data from crew members before, after, and at regular intervals during spaceflight. Evaluations fall into broad categories of medical, occupational, physical fitness, nutrition, and psychological or behavioral and include blood tests. Mitochondria are cell organelles that produce energy. Reducing vision changes in space JAXA (Japan Aerospace Exploration Agency) astronaut Norishige Kanai installs the Mouse Habitat Unit on the space station.JAXA/Norishige Kanai Microgravity can cause changes in eye structure and function. Researchers found that artificial gravity may reduce these changes and could serve as a countermeasure to protect the vision of crew members on future missions. Previous studies provide evidence that artificial gravity may protect against or mitigate negative effects of microgravity. An investigation from JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA’s Human Research and Space Biology Programs, Mouse Habitat Unit-8 looked at the long-term effects of spaceflight on gene expression patterns in mammals. More research is needed to identify the effects of other spaceflight stressors and determine what level and duration of gravitational force is needed to prevent or reduce damage to the retina or optic nerve. View the full article
  7. NASA

    Stacking Artemis II

    NASA/Frank Michaux NASA’s iconic “worm” insignia stands out in this photo taken on Jan. 24, 2025, as engineers and technicians prepared to lift the left center center booster segment for the agency’s SLS (Space Launch System) rocket. The boosters will help support the remaining rocket components and the Orion spacecraft during final assembly of the Artemis II Moon rocket and provide more than 75 percent of the total SLS thrust during liftoff from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. Get more Artemis II news. Image credit: NASA/Frank Michaux View the full article
  8. 3 Min Read How Does the Sun Behave? (Grades K-4) This article is for students grades K-4. The Sun is a star. It is the biggest object in our solar system. The Sun is about 93 million miles away from Earth and about 4.5 billion years old. The Sun affects Earth’s weather, seasons, climate, and more. Let’s learn about how the Sun behaves. Why is the Sun warm and bright? The Sun is a giant ball made of hydrogen and helium gases. Deep in the center of the Sun, hydrogen atoms are pressed together. This forms helium. When this happens, energy is released. That energy is the heat and light we feel and see all the way here on Earth. Hydrogen atoms are pressed together to form helium. This releases energy in the form of heat and light. Does the Sun ever change? Sometimes, the Sun is very active. It gives off a lot of energy. Other times, it is quieter. It gives off less energy. This pattern is called the solar cycle. One solar cycle lasts about 11 years. Scientists call the time when the Sun is active “solar maximum.” During this time, we see darker, cooler spots on the Sun’s surface. These are called sunspots. When the Sun is less active, scientists call that “solar minimum.” Scientists call the time when the Sun is active “solar maximum.” When the Sun is less active, scientists call that “solar minimum.” Does the Sun have a north pole? Yes! Just like Earth, the Sun has north and south magnetic poles. But every 11 years, the Sun’s poles flip. North becomes south and south becomes north. Every 11 years, the Sun’s poles flip. North becomes south and south becomes north. What is space weather? Space weather includes things like solar wind, solar storms, and solar flares. When the Sun is active, these things can have an impact on Earth and in space. Let’s learn more about space weather and how it affects our planet. What is solar wind? The solar wind is a constant wave of particles flowing out into space from the Sun’s surface. It travels deep into space. When the solar wind reaches Earth, its particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles. These are called auroras or the northern and southern lights. When the solar wind from the Sun reaches Earth, its particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles. What are solar storms and solar flares? The Sun’s magnetic fields are always moving. They twist and stretch. Sometimes they snap and reconnect. When this happens, it releases a burst of energy. This can cause a solar storm. Solar storms can include solar flares. A solar flare is a blast of light and energy from the Sun’s surface. They usually erupt near sunspots. Solar flares happen more often during solar maximum and less often during solar minimum. A solar flare is a blast of light and energy from the Sun’s surface. How does space weather affect Earth? Earth is protected from most space weather. Our atmosphere and magnetic field act like a shield. But strong solar storms can still cause problems. Areas might lose electricity. Radios might not work. Satellites can be damaged. NASA keeps an eye on space weather. If strong storms are predicted, teams work to protect spacecraft and astronauts in space. How are we learning more about the Sun? A space probe is a robot that explores space. They often visit other planets, moons, or asteroids and comets that also orbit the Sun. NASA’s Parker Solar Probe launched to the Sun in 2018. The Parker Solar Probe is on a special mission. It flies very close to the Sun to collect information. This will help scientists learn new things about the Sun and how it affects life on Earth. Visit these websites to read more about the Sun: https://science.nasa.gov/sun/facts/ https://spaceplace.nasa.gov/menu/sun/ https://www.nasa.gov/stem-content/our-very-own-star-the-sun/ Read NASA Knows: How Does the Sun Behave? (Grades 5-8). Explore More for Students Grades K-4 View the full article
  9. The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Michael Flynn, Ross Beyer, and Matt Johnson. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond Space Biosciences Star: Michael Flynn Michael Flynn, a senior scientist and engineer in the Space Biosciences Branch, has over 35 years of groundbreaking contributions to life support systems and space technologies, including over 120 peer-reviewed publications and multiple prestigious awards. He is being recognized for his leadership in advancing water recycling technologies and his dedication to fostering innovation and mentorship within his team. Space Science and Astrobiology Star: Ross Beyer Ross Beyer is a planetary scientist in the Planetary Systems Branch for the Search for Extraterrestrial Intelligence (SETI) Institute, with scientific expertise in geomorphology, surface processes, and remote sensing of the solid bodies in our Solar System. He is recognized for exemplifying leadership and teamwork through his latest selected 5-year proposal to support the Ames Stereo Pipeline, implementing open science processes, and serving as a Co-Investigator on several flight missions. Earth Science Star: Matthew Johnson Matthew Johnson is a research scientist in the Biospheric Science Branch (code SGE). Matt is recognized for his exemplary productivity in publishing in high-impact journals and success at leading and co-developing competitive proposals, while serving as a mentor and leader. Matt recently expanded his leadership skills by assuming the position of Assistant Branch Chief of SGE and as an invited lead co-author of the December 2024 PANGEA white paper, which could lead to a new NASA HQ Terrestrial Ecology campaign. View the full article
  10. 6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Captured by the HiRISE camera on NASA’s Mars Reconnaissance Orbiter on March 4, 2021, this impact crater was found in Cerberus Fossae, a seismically active region of the Red Planet. Scien-tists matched its appearance on the surface with a quake detected by NASA’s InSight lander. With help from AI, scientists discovered a fresh crater made by an impact that shook material as deep as the Red Planet’s mantle. Meteoroids striking Mars produce seismic signals that can reach deeper into the planet than previously known. That’s the finding of a pair of new papers comparing marsquake data collected by NASA’s InSight lander with impact craters spotted by the agency’s Mars Reconnaissance Orbiter (MRO). The papers, published on Monday, Feb. 3, in Geophysical Research Letters (GRL), highlight how scientists continue to learn from InSight, which NASA retired in 2022 after a successful extended mission. InSight set the first seismometer on Mars, detecting more than 1,300 marsquakes, which are produced by shaking deep inside the planet (caused by rocks cracking under heat and pressure) and by space rocks striking the surface. By observing how seismic waves from those quakes change as they travel through the planet’s crust, mantle, and core, scientists get a glimpse into Mars’ interior, as well as a better understanding of how all rocky worlds form, including Earth and its Moon. A camera on the robotic arm of NASA’s InSight captured the lander setting down its Wind and Thermal Shield on Feb. 2, 2019. The shield covered InSight’s seismometer, which captured data from more than 1,300 marsquakes over the lander’s four-year mission. Researchers have in the past taken images of new impact craters and found seismic data that matches the date and location of the craters’ formation. But the two new studies represent the first time a fresh impact has been correlated with shaking detected in Cerberus Fossae, an especially quake-prone region of Mars that is 1,019 miles (1,640 kilometers) from InSight. The impact crater is 71 feet (21.5 meters) in diameter and much farther from InSight than scientists expected, based on the quake’s seismic energy. The Martian crust has unique properties thought to dampen seismic waves produced by impacts, and researchers’ analysis of the Cerberus Fossae impact led them to conclude that the waves it produced took a more direct route through the planet’s mantle. InSight’s team will now have to reassess their models of the composition and structure of Mars’ interior to explain how impact-generated seismic signals can go that deep. “We used to think the energy detected from the vast majority of seismic events was stuck traveling within the Martian crust,” said InSight team member Constantinos Charalambous of Imperial College London. “This finding shows a deeper, faster path — call it a seismic highway — through the mantle, allowing quakes to reach more distant regions of the planet.” Spotting Mars Craters With MRO A machine learning algorithm developed at NASA’s Jet Propulsion Laboratory in Southern California to detect meteoroid impacts on Mars played a key role in discovering the Cerberus Fossae crater. In a matter of hours, the artificial intelligence tool can sift through tens of thousands of black-and-white images captured by MRO’s Context Camera, detecting the blast zones around craters. The tool selects candidate images for examination by scientists practiced at telling which subtle colorations on Mars deserve more detailed imaging by MRO’s High-Resolution Imaging Science Experiment (HiRISE) camera. “Done manually, this would be years of work,” said InSight team member Valentin Bickel of the University of Bern in Switzerland. “Using this tool, we went from tens of thousands of images to just a handful in a matter of days. It’s not quite as good as a human, but it’s super fast.” Bickel and his colleagues searched for craters within roughly 1,864 miles (3,000 kilometers) of InSight’s location, hoping to find some that formed while the lander’s seismometer was recording. By comparing before-and-after images from the Context Camera over a range of time, they found 123 fresh craters to cross-reference with InSight’s data; 49 of those were potential matches with quakes detected by the lander’s seismometer. Charalambous and other seismologists filtered that pool further to identify the 71-foot Cerberus Fossae impact crater. Deciphering More, Faster The more scientists study InSight’s data, the better they become at distinguishing signals originating inside the planet from those caused by meteoroid strikes. The impact found in Cerberus Fossae will help them further refine how they tell these signals apart. “We thought Cerberus Fossae produced lots of high-frequency seismic signals associated with internally generated quakes, but this suggests some of the activity does not originate there and could actually be from impacts instead,” Charalambous said. The findings also highlight how researchers are harnessing AI to improve planetary science by making better use of all the data gathered by NASA and ESA (European Space Agency) missions. In addition to studying Martian craters, Bickel has used AI to search for landslides, dust devils, and seasonal dark features that appear on steep slopes, called slope streaks or recurring slope linae. AI tools have been used to find craters and landslides on Earth’s Moon as well. “Now we have so many images from the Moon and Mars that the struggle is to process and analyze the data,” Bickel said. “We’ve finally arrived in the big data era of planetary science.” More About InSight JPL managed InSight for the agency’s Science Mission Directorate. InSight was part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supported spacecraft operations for the mission. A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), supported the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors. A division of Caltech in Pasadena, California, JPL manages the Mars Reconnaissance Orbiter Project for NASA’s Science Mission Directorate, Washington. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems in Boulder, Colorado. The Context Camera was built by, and is operated by, Malin Space Science Systems in San Diego. For more about Insight, visit: https://science.nasa.gov/mission/insight/ For more about MRO, visit: https://science.nasa.gov/mission/mars-reconnaissance-orbiter/ News Media Contacts Andrew Good Jet Propulsion Laboratory, Pasadena, Calif. 818-393-2433 andrew.c.good@jpl.nasa.gov Karen Fox / Molly Wasser NASA Headquarters, Washington 202-358-1600 |karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 2025-013 Share Details Last Updated Feb 03, 2025 Related TermsInSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport)Jet Propulsion LaboratoryMarsMars Reconnaissance Orbiter (MRO) Explore More 5 min read 6 Things to Know About SPHEREx, NASA’s Newest Space Telescope Article 3 days ago 5 min read NASA Juno Mission Spots Most Powerful Volcanic Activity on Io to Date Article 6 days ago 5 min read NASA JPL Prepping for Full Year of Launches, Mission Milestones Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  11. The first shuttle mission of 1995, STS-63 included several historic firsts. As part of Phase 1 of the International Space Station program, space shuttle Discovery’s 20th flight conducted the first shuttle rendezvous with the Mir space station, in preparation for future dockings. The six-person crew included Commander James Wetherbee, Pilot Eileen Collins – the first woman to pilot a space shuttle mission – Payload Commander Bernard Harris, and Mission Specialists Michael Foale, Janice Voss, and Vladimir Titov. The spacewalk conducted during the mission included the first African American and the first British born astronauts to walk in space. The crew conducted 20 science and technology experiments aboard the third flight of the Spacehab module. The astronauts deployed and retrieved the SPARTAN-204 satellite that during its two-day free flight carried out observations of galactic objects using an ultraviolet instrument. The STS-63 crew patch. The STS-63 crew of Janice Voss, front row left, Eileen Collins, James Wetherbee, and Vladimir Titov; Bernard Harris, back row left, and Michael Foale. The Shuttle-Mir program patch. NASA announced the six-person STS-63 crew in September 1993 for a mission then expected to fly in May 1994. Wetherbee, selected by NASA in 1984, had already flown twice in space, as pilot on STS-32 and commander of STS-52. For Collins, selected in the class of 1990 as the first woman shuttle pilot, STS-63 marked her first spaceflight. Also selected in 1990, Harris had flown previously on STS-55 and Voss on STS-57. Foale, selected as an astronaut in 1987, had flown previously on STS-45 and STS-56. Titov, selected as a cosmonaut in 1976, had flown two previous spaceflights – a two-day aborted docking mission to Salyut-7 and the first year-long mission to Mir – and survived a launch pad abort. He served as backup to Sergei Krikalev on STS-60, who now served as Titov’s backup. Space shuttle Discovery rolls out to Launch Pad 39B. The STS-63 crew during the Terminal Countdown Demonstration Test in the White Room of Launch Pad 39B. The STS-63 astronauts walk out of crew quarters for the van ride out to the launch pad. Space shuttle Discovery arrived back at NASA’s Kennedy Space Center in Florida on Sept. 27, 1994, after a ferry flight from California following its previous mission, STS-64. Workers towed it to the Orbiter Processing Facility the next day. Following installation of the Spacehab, SPARTAN, and other payloads, on Jan. 5, 1995, workers rolled Discovery from the processing facility to the Vehicle Assembly Building for mating with an external tank and twin solid rocket boosters. Rollout to Launch Pad 39B took place on Jan. 10. On Jan. 17-18, teams conducted the Terminal Countdown Demonstration Test, a dress rehearsal for the countdown to launch planned for Feb. 2, with the astronaut crew participating in the final few hours as they would on launch day. They returned to Kennedy on Jan. 29 for final pre-launch preparations. On Feb. 2, launch teams called a 24-hour scrub to allow time to replace a failed inertial measurement unit aboard Discovery. Launch of space shuttle Discovery on mission STS-63. STS-63 Commander James Wetherbee on Discovery’s flight deck. STS-63 Pilot Eileen Collins on Discovery’s flight deck. On Feb. 3, Discovery and its six-person crew lifted off from Launch Pad 39B at 12:22 a.m. EST, the time dictated by orbital mechanics – Discovery had to launch into the plane of Mir’s orbit. Within 8.5 minutes, Discovery had reached orbit, for the first time in shuttle history at an inclination of 51.6 degrees, again to match Mir’s trajectory. Early in the mission, one of Discovery’s 44 attitude control thrusters failed and two others developed minor but persistent leaks, threatening the Mir rendezvous. View of the Spacehab module in Discovery’s payload bay. The SPARTAN-204 satellite attached to the remote manipulator system or robotic arm during the flight day two operations. On the mission’s first day in space, Harris and Titov activated the Spacehab module and several of its experiments. Wetherbee and Collins performed the first of five maneuvers to bring Discovery within 46 miles of Mir for the final rendezvous on flight day four. Teams on the ground worked with the astronauts to resolve the troublesome thruster problems to ensure a safe approach to the planned 33 feet. On flight day 2, as those activities continued, Titov grappled the SPARTAN satellite with the shuttle’s robotic arm and lifted it out of the payload bay. Scientists used the ultraviolet instrument aboard SPARTAN to investigate the ultraviolet glow around the orbiter and the aftereffects of thruster firings. The tests complete, Titov placed SPARTAN back in the payload bay. The Mir space station as seen from Discovery during the rendezvous. Space shuttle Discovery as seen from Mir during the rendezvous. Mir during Discovery’s flyaround. On flight day three, the astronauts continued working on science experiments while Wetherbee and Collins completed several more burns for the rendezvous on flight day four, the thruster issues resolved to allow the close approach to 33 feet. Flying Discovery manually from the aft flight deck, and assisted by his crew mates, Wetherbee slowly brought the shuttle to within 33 feet of the Kristall module of the space station. The STS-63 crew communicated with the Mir-17 crew of Aleksandr Viktorenko, Elena Kondakova, and Valeri Polyakov via VHF radio, and the crews could see each other through their respective spacecraft windows. After station-keeping for about 10 minutes, Wetherbee slowly backed Discovery away from Mir to a distance of 450 feet. He flew a complete circle around Mir before conducting a final separation maneuver. The SPARTAN-204 satellite as it begins its free flight on flight day five. STS-63 crew member Vladimir Titov works on an experiment in the Spacehab module. On the mission’s fifth day, Titov once again grappled SPARTAN with the robotic arm, but this time after raising it above the payload bay, he released the satellite to begin its two-day free flight. Wetherbee steered Discovery away from the departing satellite. During its free flight, the far ultraviolet imaging spectrograph aboard SPARTAN recorded about 40 hours of observations of galactic dust clouds. During this time, the astronauts aboard the shuttle continued work on the 20 experiments in Spacehab and prepared for the upcoming spacewalk. STS-63 crew member Janice Voss operates the remote manipulator system during the retrieval of the SPARTAN-204 satellite. STS-63 astronauts Bernard Harris, left, and Michael Foale at the start of their spacewalk. Wetherbee and the crew flew the second rendezvous of the mission on flight day seven to retrieve SPARTAN. Voss operated the robotic arm to capture and stow the satellite in the payload bay following its 43-hour free flight. Meanwhile, Foale and Harris suited up in the shuttle’s airlock and spent four hours breathing pure oxygen to rid their bodies of nitrogen to prevent decompression sickness, also known as the bends, when they reduced their spacesuit pressures for the spacewalk. Astronauts Bernard Harris, left, and Michael Foale during the spacesuit thermal testing part of their spacewalk. Foale, left, and Harris during the mass handling part of their spacewalk. Foale and Harris exited the airlock minutes after Voss safely stowed SPARTAN. With Titov operating the robotic arm, Harris and Foale climbed aboard its foot restraint to begin the first phase of the spacewalk, testing modifications to the spacesuits for their thermal characteristics. Titov lifted them well above the payload bay and the two spacewalkers stopped moving for about 15 minutes, until their hands and feet got cold. The spacewalk then continued into its second portion, the mass handling activity. Titov steered Foale above the SPARTAN where he lifted the satellite up and handed it off to Harris anchored in the payload bay. Harris then moved it around in different directions to characterize handling of the 2,600-pound satellite. Foale and Harris returned to the airlock after a spacewalk lasting 4 hours 39 minutes. The STS-63 astronauts pose for their inflight crew photo. Discovery makes a successful landing at NASA’s Kennedy Space Center in Florida. The day following the spacewalk, the STS-63 crew finished the science experiments, closed down the Spacehab module, and held a news conference with reporters on the ground. Wetherbee and Collins tested Discovery’s thrusters and aerodynamic surfaces in preparation for the following day’s reentry and landing. The next day, on Feb. 11, they closed Discovery’s payload bay doors and put on their launch and entry suits. Wetherbee guided Discovery to a smooth landing on Kennedy’s Shuttle Landing Facility, ending the historic mission after eight days, six hours, and 28 minutes. They orbited the Earth 129 times. The mission paved the way for nine shuttle dockings with Mir beginning with STS-71, and 37 with the International Space Station. Workers at Kennedy towed Discovery to the processing facility to prepare it for its next mission, STS-70 in July 1995. Over the next three years, Wetherbee, Collins, Foale, and Titov all returned to Mir during visiting shuttle flights, with Foale staying aboard as the NASA-5 long-duration crew member. Between 2001 and 2005, Wetherbee, Collins, and Foale also visited the International Space Station. Wetherbee commanded two assembly flights, Collins commanded the return to flight mission after the Columbia accident, and Foale commanded Expedition 8. Enjoy the crew narrate a video about their STS-63 mission. Explore More 9 min read 30 Years Ago: STS-60, the First Shuttle-Mir Mission Article 1 year ago 7 min read Space Station 20th: STS-71, First Shuttle-Mir Docking Article 5 years ago 11 min read Space Station 20th: Launch of Mir 18 Crew Article 5 years ago View the full article
  12. 3 Min Read Lagniappe for February 2025 Explore the February 2025 issue, highlighting historic snow at NASA Stennis and more! Explore Lagniappe for February 2025 featuring: NASA Stennis Becomes Winter Wonderland Gator Speaks Gator SpeaksNASA/Stennis Welcome to February, folks! The shortest month of the year is here, but do not let its number of days fool you. The month is full of energy and is welcomed with great enthusiasm. We have dusted ourselves off from a historic snowfall in January. The Super Bowl will be played in nearby New Orleans this month. Mardi Gras season is here, which means King Cake for all! What is not to love about that? The same kind of enthusiasm welcoming February is like the energy Gator felt when reading this month’s NASA Stennis employee feature story. I invite you to read it as well. It is a reminder that bringing energy into what you do is all about genuine passion and commitment. The “get-it-done attitude” at NASA Stennis is that kind of energy. The NASA Stennis culture of meeting any challenge head-on is what has helped power space dreams for six decades and counting in Mississippi. It helps fuel the NASA Stennis federal city, where skilled people daily support the space agency and various commercial test customers that conduct work onsite. When people come together, whether it is for the Super Bowl, Mardi Gras, or to power space dreams at NASA Stennis, something extraordinary can happen. When you combine a “get-it-done attitude” and a skilled workforce like the one at NASA Stennis, it leads to being a part of something great. Enjoy the month of February, and if, in the small chance you have an extra slice, pass this Gator some King Cake! > Back to Top NASA Stennis Top News NASA Stennis Becomes Winter Wonderland A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis A series of cell phone and stationary camera images record recent snowfall at NASA’s Stennis Space Center, on Jan. 21. NASA Stennis near Bay St. Louis, Mississippi, the nation’s largest propulsion test site, is known for its “shake, rattle, and roar” rocket stage and engine hot fires that have helped power the nation’s space dreams since the first humans stepped foot on the Moon. However, like much of the Deep South, NASA Stennis turned into a winter wonderland Jan. 21 when it received a historic amount of snow across the unique federal city. Hancock County, where NASA Stennis is located, received five to seven inches of snow, according to the National Weather Service. It marked the most snow the county has received in 61 years. A December 31, 1963, weather event holds the record at 10 inches of snow for Bay St. Louis, Mississippi. NASA/Stennis > Back to Top Center Activities NASA Stennis Attends SpaceCom NASA Stennis Deputy Director Christine Powell participates in a NASA discussion panel session entitled, “Doing What We’ve Never Done to Do What We’ve Never Done” during SpaceCom in Orlando, Florida, on Jan. 30. The conference and exposition focused on advancing the commercial space industry, produced in partnership with the 51st Space Congress. NASA/Troy Frisbie NASA Stennis Deputy Director Christine Powell participates in a NASA discussion panel session entitled, “Doing What We’ve Never Done to Do What We’ve Never Done” during SpaceCom in Orlando, Florida, on Jan. 30. The conference and exposition focused on advancing the commercial space industry, produced in partnership with the 51st Space Congress. NASA/Troy Frisbie NASA Stennis Deputy Director Christine Powell participates in a NASA discussion panel session entitled, “Doing What We’ve Never Done to Do What We’ve Never Done” during SpaceCom in Orlando, Florida, on Jan. 30. The conference and exposition focused on advancing the commercial space industry, produced in partnership with the 51st Space Congress. NASA/Troy Frisbie NASA Stennis Deputy Director Christine Powell participates in a NASA discussion panel session entitled, “Doing What We’ve Never Done to Do What We’ve Never Done” during SpaceCom in Orlando, Florida, on Jan. 30. The conference and exposition focused on advancing the commercial space industry, produced in partnership with the 51st Space Congress. NASA/Troy Frisbie NASA Attends FAN EXPO New Orleans NASA reached out to inspire members of the Artemis Generation on Jan. 10-12, joining one of the largest comic con producers in the world to host an outreach booth at the 2025 FAN EXPO in New Orleans. Read More About the Experience NASA ASTRO CAMP® Hosts FIRST Robotics Kickoff Event The NASA ASTRO CAMP® Community Partners (ACCP) program hosted a FIRST® Robotics Competition 2025 season kickoff event Jan. 4 at INFINITY Science Center, the official visitor center of NASA’s Stennis Space Center. NASA representatives welcomed competition teams as the event revealed the challenge for the new season. Teams will use engineering skills during the REEFSCAPE℠ challenge to strengthen one of the ocean’s most diverse habitats to build a better world. The third annual FIRST (For the Inspiration and Recognition of Science and Technology) Robotics Magnolia Regional, a NASA-sponsored event, is scheduled for March 13-15 in Laurel, Mississippi, at the South Mississippi Fairgrounds. The regional competition will serve as a championship-qualifying event for teams to compete in Houston in the world championship event in April. FIRST Robotics is described as the ultimate sport of the mind as teams concentrate and share in the excitement of success.NASA ASTRO CAMP The NASA ASTRO CAMP® Community Partners (ACCP) program hosted a FIRST® Robotics Competition 2025 season kickoff event Jan. 4 at INFINITY Science Center, the official visitor center of NASA’s Stennis Space Center. NASA representatives welcomed competition teams as the event revealed the challenge for the new season. Teams will use engineering skills during the REEFSCAPE℠ challenge to strengthen one of the ocean’s most diverse habitats to build a better world. The third annual FIRST (For the Inspiration and Recognition of Science and Technology) Robotics Magnolia Regional, a NASA-sponsored event, is scheduled for March 13-15 in Laurel, Mississippi, at the South Mississippi Fairgrounds. The regional competition will serve as a championship-qualifying event for teams to compete in Houston in the world championship event in April. FIRST Robotics is described as the ultimate sport of the mind as teams concentrate and share in the excitement of success. NASA ASTRO CAMP The NASA ASTRO CAMP® Community Partners (ACCP) program hosted a FIRST® Robotics Competition 2025 season kickoff event Jan. 4 at INFINITY Science Center, the official visitor center of NASA’s Stennis Space Center. NASA representatives welcomed competition teams as the event revealed the challenge for the new season. Teams will use engineering skills during the REEFSCAPE℠ challenge to strengthen one of the ocean’s most diverse habitats to build a better world. The third annual FIRST (For the Inspiration and Recognition of Science and Technology) Robotics Magnolia Regional, a NASA-sponsored event, is scheduled for March 13-15 in Laurel, Mississippi, at the South Mississippi Fairgrounds. The regional competition will serve as a championship-qualifying event for teams to compete in Houston in the world championship event in April. FIRST Robotics is described as the ultimate sport of the mind as teams concentrate and share in the excitement of success. NASA ASTRO CAMP The NASA ASTRO CAMP® Community Partners (ACCP) program hosted a FIRST® Robotics Competition 2025 season kickoff event Jan. 4 at INFINITY Science Center, the official visitor center of NASA’s Stennis Space Center. NASA representatives welcomed competition teams as the event revealed the challenge for the new season. Teams will use engineering skills during the REEFSCAPE℠ challenge to strengthen one of the ocean’s most diverse habitats to build a better world. The third annual FIRST (For the Inspiration and Recognition of Science and Technology) Robotics Magnolia Regional, a NASA-sponsored event, is scheduled for March 13-15 in Laurel, Mississippi, at the South Mississippi Fairgrounds. The regional competition will serve as a championship-qualifying event for teams to compete in Houston in the world championship event in April. FIRST Robotics is described as the ultimate sport of the mind as teams concentrate and share in the excitement of success. NASA ASTRO CAMP NASA Stennis Employee Receives Service Leadership Award NASA’s Stennis Space Center employee Tim Pierce received the Roy S. Estess Service Leadership Award on Jan. 8 during a retirement ceremony honoring his NASA career. Pierce retired Jan. 11. The award, established and named in memory of the NASA Stennis director who led the center from 1989 to 2002, recognizes NASA civil servants whose career achievements demonstrate business and/or technical leadership leading to significant advancement of NASA’s mission and whose record of volunteerism reflects a profound commitment to surrounding communities. Pierce received the award for more than 25 years of sustained business and technical leadership supporting the NASA Stennis mission and a record of volunteerism supporting the city of Long Beach, Mississippi. Pierce served in multiple NASA Stennis positions, including as a senior accountant, budget integration lead, lead of the center’s facility planning and utilization efforts, and chief of the Planning and Development Division for the NASA Stennis Center Operations Directorate. He provided strategic leadership in such areas as tenant agreements, financial planning, sitewide master planning, and strategic federal city development, providing innovative and ongoing contributions to the future of the center. Within the community, Pierce served in school board and city public service roles for more than 20 years, gaining a reputation as a leader, collaborator, and innovator.NASA/Stennis > Back to Top NASA in the News Artemis II Stacking Operations Update – NASA NASA Invests in Artemis Studies to Support Long-Term Lunar Exploration – NASA NASA Space Tech’s Favorite Place to Travel in 2025: The Moon! – NASA NASA to Explore Two Landing Options for Returning Samples from Mars – NASA How to Fly NASA’s Orion Spacecraft – NASA > Back to Top Employee Profile: Tim Stiglets Tim Stiglets’ work at NASA’s Stennis Space Center gives him a front-row seat to the growth and opportunity potential of NASA Stennis. His work ranges from managing data for how a test stand is configured to tracking the configuration of NASA Stennis buildings and utilities systems that make up the infrastructure for America’s largest rocket propulsion test site.NASA/Danny Nowlin Two words come to Tim Stiglets’ mind when he thinks about NASA’s Stennis Space Center near Bay St. Louis, Mississippi – growth and opportunity. Read More About Tim Stiglets > Back to Top Looking Back A 1977 photo shows a space shuttle fuel tank arriving at the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center, then known as National Space Technology Laboratories, as NASA prepared to test its space shuttle main propulsion test article (MPTA). The MPTA testing involved installing a shuttle fuel tank, a mockup of the shuttle orbiter, and the vehicle’s three-engine configuration on the stand, then firing all three engines simultaneously, as would be done during an actual launch. NASA/Stennis > Back to Top Additional Resources Good Things with Rebecca Turner – SuperTalk Mississippi (interview with NASA Stennis Director John Bailey) Subscription Info Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail). The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin. To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address. Explore More 6 min read Lagniappe for November 2024 Article 3 months ago 4 min read Lagniappe for December 2024 Article 2 months ago 4 min read Lagniappe for January 2025 Article 1 month ago View the full article
  13. NASA Stennis representative Dawn Davis, left, interacts with people at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA reached out to inspire members of the Artemis Generation on Jan. 10-12, joining one of the largest comic con producers in the world to host an outreach booth at the 2025 FAN EXPO in New Orleans. Thousands of fans celebrating the best in pop culture such as movies, comics, and video gaming learned about NASA’s Stennis Space Center near Bay St. Louis, Mississippi, and its role to power space dreams. NASA Stennis representatives Patricia White, left, and Robert Smith are visited by a functional mock-up of R5-D4, a droid character from the Star Wars film series, during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representative Dawn Davis, left, interacts with people at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representative Troy Frisbie, left, is pictured with Colleen Cooper, daughter of L. Gordon Cooper Jr., one of the original Mercury Seven astronauts, during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12. Cooper Jr., selected as a Mercury astronaut in 1959, piloted the “Faith 7” spacecraft in 1963, which concluded the operational phase of Project Mercury. NASA/Patricia White NASA Stennis representative Matt Sappington engages with a comic con fan at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representatives Patricia White, left, and Robert Smith have a conversation with NASA booth visitors during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie A comic con attendee experiences being on the International Space Station with the immersive virtual reality headset at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie Fans of all ages learn about NASA during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie Attendees learn about the ways people come together in various career fields to achieve mission success at NASA during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie The south Mississippi NASA center operates as NASA’s primary, and America’s largest, rocket propulsion test site. NASA Stennis serves the nation and commercial aerospace sector with its unique capabilities and expertise. In addition to testing rocket engines and stages to power future Artemis missions to the Moon and beyond, NASA Stennis provides a unique location and specialized assets to support the individual missions and work of about 50 federal, state, academic, commercial, and technology-based companies, and organizations. In addition to testing rocket engines and stages to power future Artemis missions to the Moon and beyond, NASA Stennis provides a unique location and specialized assets to support the individual missions and work of about 50 federal, state, academic, commercial, and technology-based companies, and organizations. View the full article
  14. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Tim Stiglets’ work at NASA’s Stennis Space Center gives him a front-row seat to the growth and opportunity potential of NASA Stennis. His work ranges from managing data for how a test stand is configured to tracking the configuration of NASA Stennis buildings and utilities systems that make up the infrastructure for America’s largest rocket propulsion test site.NASA/Danny Nowlin Two words come to Tim Stiglets’ mind when he thinks about NASA’s Stennis Space Center near Bay St. Louis, Mississippi – growth and opportunity. The Waveland, Mississippi, resident has experienced both in his career at the south Mississippi NASA center. He started as a summer intern onsite with Lockheed Martin in 2002. When The University of Southern Mississippi graduate joined the NASA team in 2019, he really started to understand how much activity happens at the unique federal city. NASA Stennis is home to more than 50 companies and organizations sharing in site operating costs. As a management and program analyst in the NASA Stennis Engineering and Test Directorate, Stiglets serves as the manager of the Product Lifecycle Management (PLM) Program. He describes the program as a one-stop shop for engineering data. Product lifecycle management (PLM) consists of technology, people, processes, and tools to track a product throughout its lifecycle. Think of it in terms of building a LEGO set. From the time one gets the idea of building the set, to when it is finished, played with, and taken apart, there is a lot to track. Stiglets’ work involves much bigger pieces, ranging from managing data for how a test stand is configured to tracking the configuration of NASA Stennis buildings and utilities systems that make up the infrastructure for America’s largest rocket propulsion test site. NASA Stennis facilities are valued at more than $2 billion. His work gives him a front-row seat to the growth and opportunity potential of NASA Stennis. “The cool thing about PLM is I get to be involved, in some small way, with NASA’s Artemis work, commercial test customers and all the Center Operations projects that support the federal city,” he said. The center tests rocket engines and stages to power future Artemis missions to the Moon and beyond. NASA Stennis also works with such commercial test customers as Relativity Space, Blue Origin, Rolls-Royce, Evolution Space, and Vast (formerly Launcher Space). “PLM is a center capability that we have evolved, so it does not matter if it is a water system, a test stand or building that is involved. It all kind of relies on, and ultimately somewhere down the line, hits the PLM system that has the drawings and engineering data needed for the project. That is probably the coolest thing about my work. I get to see a lot of different things that are going on in different areas.” Stiglets said it feels like every time he turns around, there is someone leasing a new building or joining the NASA Stennis federal city. The center has lease agreements for use of land and infrastructure with Relativity Space, Rocket Lab, and Evolution Space. “We have a get-it-done kind of attitude,” Stiglets said. “We are going to do whatever it takes to get the job done. If it is testing engines or anything else, we are going to get it done. From a propulsion testing standpoint, commercial companies that lease areas onsite can come in and have access to contract support and to the NASA folks who have decades worth of knowledge. The companies can leverage all of that expertise and tap into the knowledge.” The Long Beach, Mississippi, native speaks with enthusiasm when describing his time at NASA Stennis, where growth and opportunity continue forward. “How cool is it to work for NASA, even coming in as a contractor,” Stiglets said. “You get to be involved with something bigger and much beyond south Mississippi. The excitement of being involved with NASA so many years ago was very cool for me, especially being a college student. I still have that same excitement. Many years have passed, and day-to-day work changes, but ultimately, you are still looking to achieve big goals.” View the full article
  15. For astronauts aboard the International Space Station, staying connected to loved ones and maintaining a sense of normalcy is critical. That is where Tandra Gill Spain, a computer resources senior project manager in NASA’s Avionics and Software Office, comes in. Spain leads the integration of applications on Apple devices and the hardware integration on the Joint Station Local Area Network, which connects the systems from various space agencies on the International Space Station. She also provides technical lead support to the Systems Engineering and Space Operations Computing teams and certifies hardware for use on the orbiting laboratory. Spain shares about her career with NASA and more. Read on to learn about her story, her favorite project, and the advice she has for the next generation of explorers. Tandra Spain’s official NASA portrait. NASA Where are you from? I am from Milwaukee, Wisconsin. Tell us about your role at NASA. I am the Apple subsystem manager where I lead the integration of applications on Apple devices as well as the hardware integration on the Joint Station Local Area Network. We use a variety of different software but I work specifically with our Apple products. I also provide technical lead support to the Systems Engineering and Space Operations Computing teams. In addition, I select and oversee the certification of hardware for use on the International Space Station, and I research commonly used technology and assess applicability to space operations. How would you describe your job to family or friends who may not be familiar with NASA? I normalize living and working in space by providing the comforts and conveniences of living on Earth. Tandra spain Computer Resources Senior Project Manager I get the opportunity to provide the iPads and associated applications that give astronauts the resources to access the internet. Having access to the internet affords them the opportunity to stay as connected as they desire with what is going on back home on Earth (e.g., stream media content, stay in touch with family and friends, and even pay bills). I also provide hardware such as Bluetooth speakers, AirPods, video projectors, and screens. How long have you been working for NASA? I have been with the agency for 30 years, including 22 years as a contractor. What advice would you give to young individuals aspiring to work in the space industry or at NASA? I have found that there is a place for just about everyone at NASA, therefore, follow your passion. Although many of us are, you don’t have to be a scientist or engineer to work at NASA. Yearn to learn. Pause and listen to those around you. You don’t know what you don’t know, and you will be amazed what gems you’ll learn in the most unexpected situations. Additionally, be flexible and find gratitude in every experience. Many of the roles that I’ve had over the years didn’t come from a well-crafted, laid-out plan that I executed, but came from taking advantage of the opportunities that presented themselves and doing them to the best of my ability. Tandra Spain and her husband, Ivan, with NASA astronaut and Flight Director TJ Creamer when she was awarded the Silver Snoopy Award. What was your path to NASA? I moved to Houston to work at NASA’s Johnson Space Center immediately upon graduating from college. Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you? I spent over half of my career in the Astronaut Office, and I’ve been influenced in different ways by different people, so it wouldn’t be fair to pick just one! What is your favorite NASA memory? I’ve worked on so many meaningful projects, but there are two recent projects that stand out. Humans were not created to be alone, and connection is extremely important. I was able to provide a telehealth platform for astronauts to autonomously video conference with friends and family whenever an internet connection is available. Prior to having this capability, crew were limited to one scheduled video conference a week. It makes me emotional to think that we have moms and dads orbiting the Earth on the space station and they can see their babies before they go to bed, when they wake up in the morning, or even in the middle of the night if needed. In addition, since iPads are used for work as well as personal activities on station, it is important for my team to be able to efficiently keep the applications and security patches up to date. We completed the software integration and are in the process of wrapping up the certification of the Mac Mini to provide this capability. This will allow us to keep up with all software updates that Apple releases on a regular basis and minimize the amount of crew and flight controller team time associated with the task by approximately 85%. Tandra Spain, her mother, Marva Herndon, and her daughter, Sasha, at her daughter’s high school graduation in 2024. What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth? When I speak to the public about the space station, I like to compare our everyday lives on Earth to life on the station and highlight the use of technology to maintain the connection to those on Earth. For example, most people have a phone. Besides making a phone call, what do you use your phone for? It is amazing to know that the same capabilities exist on station, such as using apps, participating in parent teacher conferences, and more. If you could have dinner with any astronaut, past or present, who would it be? I would have dinner with NASA astronaut Ron McNair. He graduated from the same university as I did, and I’ve heard great stories about him. Do you have a favorite space-related memory or moment that stands out to you? As I mentioned previously, human connection is extremely important. As an engineer in the Astronaut Office, I worked on a project that provided more frequent email updates when Ku-Band communication was available. Previously, email was synced two to three times a day, and less on the weekend. When the capability went active, I sent the first email exchange. What are some of the key projects you’ve worked on during your time at NASA? What have been your favorite? There have been so many projects over the past 30 years that I don’t think I could select just one. There is something however, that I’ve done on many occasions that has brought me pure joy, which is attending outreach events as Johnson’s “Cosmo” mascot, especially Houston Astros games. Tandra Spain representing NASA as “Cosmo” the astronaut mascot at a Houston Astros baseball game. What are your hobbies/things you enjoy outside of work? I enjoy crafting, traveling, mentoring students in Pearland Independent School District, spending time with family, and my Rooted Together community. Day launch or night launch? Night launch! Favorite space movie? Star Wars (the original version) NASA “worm” or “meatball” logo? Meatball Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies. Sign up for our weekly email newsletter to get the updates delivered directly to you. Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram. View the full article
  16. As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Intuitive Machines’ second delivery to the Moon will carry NASA technology demonstrations and science investigations on their Nova-C class lunar lander. Credit: Intuitive Machines NASA will host a media teleconference at 1 p.m. EST Friday, Feb. 7, to discuss the agency’s science and technology flying aboard Intuitive Machines’ second flight to the Moon. The mission is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence. Audio of the call will stream on the agency’s website at: https://www.nasa.gov/live Briefing participants include: Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Niki Werkheiser, director, technology maturation, Space Technology Mission Directorate, NASA Headquarters Trent Martin, senior vice president, space systems, Intuitive Machines To participate by telephone, media must RSVP no later than two hours before the briefing to: ksc-newsroom@mail.nasa.gov. NASA’s media accreditation policy is available online. Intuitive Machines’ lunar lander, Athena, will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The four-day launch window opens no earlier than Wednesday, Feb. 26. Among the items on Intuitive Machines’ lander, the IM-2 mission will be one of the first on site, or in-situ, demonstrations of resource utilization on the Moon. A drill and mass spectrometer will measure the potential presence of volatiles or gases from lunar soil in Mons Mouton, a lunar plateau near the Moon’s South Pole. In addition, a passive Laser Retroreflector Array on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone that can hop across the lunar surface. Launching as a rideshare with the IM-2 delivery, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon. Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA is one of many customers for these flights. For updates, follow on: https://blogs.nasa.gov/artemis -end- Alise Fisher / Jasmine Hopkins Headquarters, Washington 202-358-2546 alise.m.fisher@nasa.gov / jasmine.s.hopkins@nasa.gov Natalia Riusech / Nilufar Ramji Johnson Space Center, Houston 281-483-5111 nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov Antonia Jaramillo Kennedy Space Center, Florida 321-867-2468 antonia.jaramillobotero@nasa.gov Share Details Last Updated Jan 31, 2025 LocationNASA Headquarters Related TermsCommercial Lunar Payload Services (CLPS)ArtemisMissionsScience Mission DirectorateSpace Technology Mission Directorate View the full article
  17. Skywatching Skywatching Home What’s Up Eclipses Explore the Night Sky Night Sky Network More Tips and Guides FAQ A Month of Bright Planets Venus blazes at its brightest for the year after sunset, then Mars and Jupiter to rule the night amid the menagerie of bright winter stars. Skywatching Highlights All Month – Planet Visibility: Mercury: Pops up just above the horizon in late February, looking relatively bright as sunset fades Venus: Looking brilliant in the west after sunset all month Mars: Bright and amber-orange colored, high in the east each evening. It’s the last planet to set in the west a couple of hours before sunrise Jupiter: Find the giant planet high overhead in the evening, looking very bright Saturn: Somewhat faint, but visible low in the west for the first hour after sunset; increasingly lower as the month goes on Daily Highlights: February 1 – Venus & Moon: The crescent Moon cozies up to brilliant Venus tonight in the west after sunset. Saturn hangs below them. February 5 – Moon & Pleiades: Look for the Moon only a finger’s width west of the Pleiades at nightfall, then crossing in front of the star cluster before setting February 6 – Moon & Jupiter: The Moon is high overhead at nightfall, forming a line with bright Jupiter and reddish star Aldebaran in Taurus February 9 – Moon & Mars: Find the nearly full Moon in the east tonight after dark, about three finger widths below reddish Mars. Bright stars Pollux and Castor in Gemini are just to its north. February 12 – Full Moon Transcript What’s Up for February? The Moon’s many engagements, what’s the right term for a planetary rendezvous, and the goddess of love draws near. Moon & Planets Starting with the Moon’s journey across the sky this month, you’ll find the slim crescent of Earth’s natural satellite cozied up to the planet Venus on the 1st. It then visits the Pleiades on the 5th, and hops over Jupiter on the 6th, looking increasingly fuller, before arriving right next to Mars on February 9th. Sky chart showing Jupiter and Mars high overhead after nightfall in February 2025. Jupiter and Mars rule the sky on February nights. You’ll find them high overhead in the evening, together with the winter constellations of Orion, Taurus, and Gemini. Appulses Astronomers sometimes get picky about their terminology. For instance, the apparent close approaches of objects on the sky, like two planets, or the Moon and a planet, are commonly called “conjunctions,” and we often use that term in this video series. However, most of the time, the technically correct term is an “appulse.” Conjunctions technically occur when two objects have the same right ascension, and they don’t have to appear close together in the sky. (Right ascension is a way of indicating where an object is along the sky from east to west, similar to how we measure longitude on Earth’s surface.) Appulses are simply the times when two objects appear at their closest in the sky, regardless of whether they have to have the same “space coordinates.” The term comes from a Latin word meaning “brought near” or “driven toward.” And now that you know the distinction, you can choose to keep it casual or impress others with some next-level astronomy knowledge. Either way, it’s all about enjoying the view. Venus Draws Near February is a month for love, so what better time to spotlight Venus, which is associated with the Roman goddess of love? This month, Venus shines at its brightest for the year. It’ll remain dazzling through the start of March as it slowly descends from its late-January high point in the sky. By mid-March, it will disappear into the glare of sunset, only to reappear as a morning object in April. Through a telescope, Venus becomes larger as it comes closer to Earth in its orbit. It also becomes a slimmer crescent. Nonetheless, this is when the planet is at its brightest in our skies. NASA/JPL-Caltech Now, you may have heard that Venus goes through phases, just like the Moon. You can see these phases with a modest telescope. But there’s a surprising twist: unlike the Moon, Venus isn’t at its brightest when it’s “full.” Instead, it shines most brilliantly in our skies when it’s a thinner crescent! It all comes down to distance. See, Venus only appears fuller when it’s on the far side of the Sun, and much farther from Earth. As it comes closer to us, its phase becomes a crescent, but the planet also looks much larger in the sky. Even as a crescent, the light from its closer position more than makes up for the smaller phase. So, remember this Valentine’s proverb: “The goddess of love is at her most radiant when nearby!” Moon Phases Sky chart showing Jupiter and Mars high overhead after nightfall in February. NASA/JPL-Caltech Above are the phases of the Moon for February. Stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month. Keep Exploring Discover More Topics From NASA Skywatching Planets Solar System Exploration Moons View the full article
  18. NASA’s UAVSAR airborne radar instrument captured data in fall 2024 showing the mo-tion of landslides on the Palos Verdes Peninsula following record-breaking rainfall in Southern California in 2023 and another heavy-precipitation winter in 2024. Darker red indicates faster motion.NASA Earth Observatory Analysis of data from NASA radar aboard an airplane shows that the decades-old active landslide area on the Palos Verdes Peninsula has expanded. Researchers at NASA’s Jet Propulsion Laboratory in Southern California used data from an airborne radar to measure the movement of the slow-moving landslides on the Palos Verdes Peninsula in Los Angeles County. The analysis determined that, during a four-week period in the fall of 2024, land in the residential area slid toward the ocean by as much as 4 inches (10 centimeters) per week. Portions of the peninsula, which juts into the Pacific Ocean just south of the city of Los Angeles, are part of an ancient complex of landslides and has been moving for at least the past six decades, affecting hundreds of buildings in local communities. The motion accelerated, and the active area expanded following record-breaking rainfall in Southern California in 2023 and heavy precipitation in early 2024. To create this visualization, the Advanced Rapid Imaging and Analysis (ARIA) team used data from four flights of NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) that took place between Sept. 18 and Oct. 17. The UAVSAR instrument was mounted to a Gulfstream III jet flown out of NASA’s Armstrong Flight Research Center in Edwards, California, and the four flights were planned to estimate the speed and direction of the landslides in three dimensions. In the image above, colors indicate how fast parts of the landslide complex were moving in late September and October, with the darkest reds indicating the highest speeds. The arrows represent the direction of horizontal motion. The white solid lines are the boundaries of the active landslide area as defined in 2007 by the California Geological Survey. “In effect, we’re seeing that the footprint of land experiencing significant impacts has expanded, and the speed is more than enough to put human life and infrastructure at risk,” said Alexander Handwerger, the JPL landslide scientist who performed the analysis. The insights from the UAVSAR flights were part of a package of analyses by the ARIA team that also used data from ESA’s (the European Space Agency’s) Copernicus Sentinel-1A/B satellites. The analyses were provided to California officials to support the state’s response to the landslides and made available to the public at NASA’s Disaster Mapping Portal. Handwerger is also the principal investigator for NASA’s upcoming Landslide Climate Change Experiment, which will use airborne radar to study how extreme wet or dry precipitation patterns influence landslides. The investigation will include flights over coastal slopes spanning the California coastline. More About ARIA, UAVSAR The ARIA mission is a collaboration between JPL and Caltech, which manages JPL for NASA, to leverage radar and optical remote-sensing, GPS, and seismic observations for science as well as to aid in disaster response. The project investigates the processes and impacts of earthquakes, volcanoes, landslides, fires, subsurface fluid movement, and other natural hazards. UAVSAR has flown thousands of radar missions around the world since 2007, studying phenomena such as glaciers and ice sheets, vegetation in ecosystems, and natural hazards like earthquakes, volcanoes, and landslides. News Media Contacts Andrew Wang / Jane J. Lee Jet Propulsion Laboratory, Pasadena, Calif. 626-379-6874 / 818-354-0307 andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov 2025-012 Share Details Last Updated Jan 31, 2025 Related TermsEarth ScienceAirborne ScienceArmstrong Flight Research CenterEarthEarth Science Division Explore More 3 min read NASA Tests Air Traffic Surveillance Technology Using Its Pilatus PC-12 Aircraft Article 1 week ago 5 min read How New NASA, India Earth Satellite NISAR Will See Earth Article 1 week ago 6 min read NASA International Space Apps Challenge Announces 2024 Global Winners Article 2 weeks ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  19. An FVR90 unmanned aerial vehicle (UAV) lifts off from the Monterey Bay Academy Airport near Watsonville, California, during the Advanced Capabilities for Emergency Response Operations (ACERO) Shakedown Test in November 2024.NASA/Don Richey NASA is collaborating with the wildfire community to provide tools for some of the most challenging aspects of firefighting – particularly aerial nighttime operations. In the future, agencies could more efficiently use drones, both remotely piloted and fully autonomous, to help fight wildfires. NASA recently tested technologies with teams across the country that will enable aircraft – including small drones and helicopters outfitted with autonomous technology for remote piloting – to monitor and fight wildfires 24 hours a day, even during low-visibility conditions. Current aerial firefighting operations are limited to times when aircraft have clear visibility – otherwise, pilots run the risk of flying into terrain or colliding with other aircraft. NASA-developed airspace management technology will enable drones and remotely piloted aircraft to operate at night, expanding the window of time responders have to aerially suppress fires. “We’re aiming to provide new tools – including airspace management technologies – for 24-hour drone operations for wildfire response,” said Min Xue, project manager of the Advanced Capabilities for Emergency Response Operations (ACERO) project within NASA’s Aeronautics Research Mission Directorate. “This testing will provide valuable data to inform how we mature this technology for eventual use in the field.” Over the past year, ACERO researchers developed a portable airspace management system (PAMS) drone pilots can use to safely send aircraft into wildfire response operations when operating drones from remote control systems or ground control stations. Each PAMS, roughly the size of a carry-on suitcase, is outfitted with a computer for airspace management, a radio for sharing information among PAMS units, and an Automatic Dependent Surveillance-Broadcast receiver for picking up nearby air traffic – all encased in a durable and portable container. NASA software on the PAMS allows drone pilots to avoid airborne collisions while remotely operating aircraft by monitoring and sharing flight plans with other aircraft in the network. The system also provides basic fire location and weather information. A drone equipped with a communication device acts as an airborne communication relay for the ground-based PAMS units, enabling them to communicate with each other without relying on the internet. Engineers fly a drone at NASA’s Langley Research Center in Hampton, Virginia, to test aerial coordination capabilities.NASA/Mark Knopp To test the PAMS units’ ability to share and display vital information, NASA researchers placed three units in different locations outside each other’s line of sight at a hangar at NASA’s Ames Research Center in California’s Silicon Valley. Researchers stationed at each unit entered a flight plan into their system and observed that each unit successfully shared flight plans with the others through a mesh radio network. Next, researchers worked with team members in Virginia to test an aerial communications radio relay capability. Researchers outfitted a long-range vertical takeoff and landing aircraft with a camera, computer, a mesh radio, and an Automatic Dependent Surveillance-Broadcast receiver for air traffic information. The team flew the aircraft and two smaller drones at NASA’s Langley Research Center in Hampton, Virginia, purposely operating them outside each other’s line of sight. The mesh radio network aboard the larger drone successfully connected with the small drones and multiple radio units on the ground. Yasmin Arbab front-right frame, Alexey Munishkin, Shawn Wolfe, with Sarah Mitchell, standing behind, works with the Advanced Capabilities for Emergency Response Operations (ACERO) Portable Airspace Management System (PAMS) case at the Monterey Bay Academy Airport near Watsonville, California.NASA/Don Richey NASA researchers then tested the PAMS units’ ability to coordinate through an aerial communications relay to simulate what it could be like in the field. At Monterey Bay Academy Airport in Watsonville, California, engineers flew a winged drone with vertical takeoff and landing capability by Overwatch Aero, establishing a communications relay to three different PAMS units. Next, the team flew two smaller drones nearby. Researchers tested the PAMS units’ ability to receive communications from the Overwatch aircraft and share information with other PAMS units. Pilots purposely submitted flight plans that would conflict with each other and intentionally flew the drones outside preapproved flight plans. The PAMS units successfully alerted pilots to conflicting flight plans and operations outside preapproved zones. They also shared aircraft location with each other and displayed weather updates and simulated fire location data. The test demonstrated the potential for using PAM units in wildfire operations. “This testing is a significant step towards improving aerial coordination during a wildfire,” Xue said. “These technologies will improve wildfire operations, reduce the impacts of large wildfires, and save more lives,” Xue said. This year, the team will perform a flight evaluation to further mature these wildfire technologies. Ultimately, the project aims to transfer this technology to the firefighting community community. This work is led by the ACERO project under NASA’s Aeronautics Research Mission Directorate and supports the agency’s Advanced Air Mobility mission. View the full article
  20. NASA

    Building an Antenna

    NASA/JPL-Caltech A crane lowers the 112-foot-wide (34-meter-wide) steel framework for the Deep Space Station 23 (DSS-23) reflector dish into position on Dec. 18, 2024, at the Deep Space Network’s (DSN) Goldstone Space Communications Complex near Barstow, California. Once online in 2026, DSS-23 will be the fifth of six new beam waveguide antennas to be added to the network; DSS-23 will boost the DSN’s capacity and enhance NASA’s deep space communications capabilities for decades to come. The DSN allows missions to track, send commands to, and receive scientific data from faraway spacecraft. More than 100 NASA and non-NASA missions rely on the DSN and Near Space Network, including supporting astronauts aboard the International Space Station and future Artemis missions, supporting lunar exploration, and uncovering the solar system and beyond. Watch a time-lapse video of construction activities on Dec. 18. Image credit: NASA/JPL-Caltech View the full article
  21. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s SPHEREx observatory undergoes testing at BAE Systems in Boulder, Colorado, in August 2024. Launching no earlier than Feb. 27, 2025, the mission will make the first all-sky spectroscopic survey in the near-infrared, helping to answer some of the biggest questions in astrophysics. BAE Systems/NASA/JPL-Caltech Shaped like a megaphone, the upcoming mission will map the entire sky in infrared light to answer big questions about the universe. Expected to launch no earlier than Thursday, Feb. 27, from Vandenberg Space Force Base in California, NASA’s SPHEREx space observatory will provide astronomers with a big-picture view of the cosmos like none before. Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx will map the entire celestial sky in 102 infrared colors, illuminating the origins of our universe, galaxies within it, and life’s key ingredients in our own galaxy. Here are six things to know about the mission. 1. The SPHEREx space telescope will shed light on a cosmic phenomenon called inflation. In the first billionth of a trillionth of a trillionth of a second after the big bang, the universe increased in size by a trillion-trillionfold. Called inflation, this nearly instantaneous event took place almost 14 billion years ago, and its effects can be found today in the large-scale distribution of matter in the universe. By mapping the distribution of more than 450 million galaxies, SPHEREx will help scientists improve our understanding of the physics behind this extreme cosmic event. Go behind the scenes with the team working on NASA’s SPHEREx space telescope as they talk through their rigorous testing process. NASA/JPL-Caltech/BAE Systems 2. The observatory will measure the collective glow from galaxies near and far. Scientists have tried to estimate the total light output from all galaxies throughout cosmic history by observing individual galaxies and extrapolating to the trillions of galaxies in the universe. The SPHEREx space telescope will take a different approach and measure the total glow from all galaxies, including galaxies too small, too diffuse, or too distant for other telescopes to easily detect. Combining the measurement of this overall glow with other telescopes’ studies of individual galaxies will give scientists a more complete picture of all the major sources of light in the universe. 3. The mission will search the Milky Way galaxy for essential building blocks of life. Life as we know it wouldn’t exist without basic ingredients such as water and carbon dioxide. The SPHEREx observatory is designed to find these molecules frozen in interstellar clouds of gas and dust, where stars and planets form. The mission will pinpoint the location and abundance of these icy compounds in our galaxy, giving researchers a better sense of their availability in the raw materials for newly forming planets. Molecular clouds like this one, called Rho Ophiuchi, are collections of cold gas and dust in space where stars and planets can form. SPHEREx will survey such regions through-out the Milky Way galaxy to measure the abundance of water ice and other frozen mole-cules. NASA/JPL-Caltech 4. It adds unique strengths to NASA’s fleet of space telescopes. Space telescopes like NASA’s Hubble and Webb have zoomed in on many corners of the universe to show us planets, stars, and galaxies in high resolution. But some questions — like how much light do all the galaxies in the universe collectively emit? — can be answered only by looking at the big picture. To that end, the SPHEREx observatory will provide maps that encompass the entire sky. Objects of scientific interest identified by SPHEREx can then be studied in more detail by targeted telescopes like Hubble and Webb. 5. The SPHEREx observatory will make the most colorful all-sky map ever. The SPHEREx observatory “sees” infrared light. Undetectable to the human eye, this range of wavelengths is ideal for studying stars and galaxies. Using a technique called spectroscopy, the telescope can split the light into its component colors (individual wavelengths), like a prism creates a rainbow from sunlight, in order to measure the distance to cosmic objects and learn about their composition. With SPHEREx’s spectroscopic map in hand, scientists will be able to detect evidence of chemical compounds, like water ice, in our galaxy. They’ll not only measure the total amount of light emitted by galaxies in our universe, but also discern how bright that total glow was at different points in cosmic history. And they’ll chart the 3D locations of hundreds of millions of galaxies to study how inflation influenced the large-scale structure of the universe today. 6. The spacecraft’s cone-shaped design helps it stay cold and see faint objects. The mission’s infrared telescope and detectors need to operate at around minus 350 degrees Fahrenheit (about minus 210 degrees Celsius). This is partly to prevent them from generating their own infrared glow, which might overwhelm the faint light from cosmic sources. To keep things cold while also simplifying the spacecraft’s design and operational needs, SPHEREx relies on an entirely passive cooling system — no electricity or coolants are used during normal operations. Key to making this feat possible are three cone-shaped photon shields that protect the telescope from the heat of Earth and the Sun, as well as a mirrored structure beneath the shields to direct heat from the instrument out into space. Those photon shields give the spacecraft its distinctive outline. More About SPHEREx SPHEREx is managed by NASA’s Jet Propulsion Laboratory for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA/IPAC Infrared Science Archive. For more information about the SPHEREx mission visit: https://www.jpl.nasa.gov/missions/spherex News Media Contact Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e.cofield@jpl.nasa.gov 2025-011 Share Details Last Updated Jan 31, 2025 Related TermsSPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer)ExoplanetsGalaxiesJet Propulsion LaboratoryStarsThe Universe Explore More 2 min read Hubble Spots a Supernova The subject of this NASA/ESA Hubble Space Telescope image is a supernova-hosting galaxy located about… Article 5 hours ago 5 min read NASA Juno Mission Spots Most Powerful Volcanic Activity on Io to Date Article 3 days ago 3 min read NICER Status Update Article 1 week ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  22. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) With more than 17 years of experience at NASA, Lindsai Bland has been an integral part of the agency, contributing to multiple Earth observing system missions at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Now, Bland ensures the agency’s communications and navigation resources meet overall needs and requirements as the Mission Operations Interface Lead for NASA’s SCaN (Space Communications and Navigation) program. This sunset photo shows Deep Space Station 14 (DSS-14), the 230-foot-wide (70-meter) antenna at the Goldstone Deep Space Communications Complex near Barstow, California, part of NASA’s Deep Space Network. The network’s three complexes around the globe support communications with dozens of deep space missions. DSS-14 is also the agency’s Goldstone Solar System Radar, which is used to observe asteroids that come close to Earth. The program, managed through the agency’s Space Operations Mission Directorate, is responsible for all of NASA’s space communications operations, including the Near Space Network and Deep Space Network, which have enabled the success of more than 100 NASA and non-NASA missions. Astronauts aboard the International Space Station, missions monitoring Earth’s weather and effects of climate change, and spacecraft exploring the Moon and beyond all depend on NASA’s Near Space and Deep Space Networks to provide robust communications services. As interface lead, Bland works with teams to guarantee that critical data is transmitted between spacecraft and desired control center. “Working with the SCaN program gives me the opportunity to be a part of a variety of mission types with endless science objectives,” said Bland. “Joining this team has been a highlight of my career, and tackling new challenges has been incredibly rewarding.” Looking ahead, Bland envisions that NASA will persevere in expanding the boundaries of space exploration, especially as the agency partners with international and U.S. industry in support of commercially owned and operated low Earth orbit destinations. Lindsai Bland, Mission Operations Interface Lead for the Space Communications and Navigation Division “I think NASA will continue to push the boundaries of the aerospace industry and physical science studies,” she says. “NASA will take risks in exploration, bringing along industries and businesses to help further our goals.” Outside of her work at NASA, Bland is passionate about the arts. She was an avid dancer from a young age, training in ballet, modern, and jazz. Bland also enjoys making her own cosmetics. She believes strongly in giving back to her community and dedicates some of her personal time to community services effort around Montgomery County, Maryland. Bland’s career at NASA is a testament to her dedication, expertise, and passion for science and space exploration. Bland will continue to NASA’s mission in expand our understanding and study of our solar system and universe in captivating new ways. NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the heart of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support. To learn more about NASA’s Space Operation Mission Directorate, visit: https://www.nasa.gov/directorates/space-operations View the full article
  23. Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read Hubble Spots a Supernova This NASA/ESA Hubble Space Telescope image features a supernova in the constellation Gemini. ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz) The subject of this NASA/ESA Hubble Space Telescope image is a supernova-hosting galaxy located about 600 million light-years away in the constellation Gemini. Hubble captured this image roughly two months after a supernova named SN 2022aajn was discovered. The supernova is visible as a blue dot at the center of the image, brightening the hazy body of the galaxy. Other than the announcement of its discovery in November 2022, SN 2022aajn has never been the subject of published research. Why then would Hubble observe this supernova? SN 2022aajn is what’s known as a Type Ia supernova, which results from the explosion of the core of a dead star. Supernovae of this type help astronomers measure the distance to faraway galaxies. This is possible because Type Ia supernovae have the same intrinsic luminosity — no matter how bright they seem from Earth, they put out the same amount of light as other Type Ia supernovae. By comparing the observed brightness to the known intrinsic brightness, researchers can calculate the distance to the supernova and its host galaxy. This seemingly simple way of measuring distances is complicated by cosmic dust. The farther away a supernova is, the fainter and redder it will appear — but intergalactic dust can make a supernova appear fainter and redder as well. To understand this complication, researchers will use Hubble to survey a total of 100 Type Ia supernovae in seven wavelength bands from ultraviolet to near-infrared. This image combines data taken at four infrared wavelengths. Infrared light passes through dust more easily than visible or ultraviolet light. By comparing the brightness of the sampled supernovae across different wavelengths, researchers can disentangle the effects of dust and distance, helping to improve measurements of galaxies billions of light-years away. Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More The Death Throes of Stars Homing in on Cosmic Explosions Media Contact: Claire Andreoli (claire.andreoli@nasa.gov) NASA’s Goddard Space Flight Center, Greenbelt, MD Share Details Last Updated Jan 30, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Stars Supernovae Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble’s Night Sky Challenge Reshaping Our Cosmic View: Hubble Science Highlights Hubble’s 35th Anniversary View the full article
  24. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read Sols 4439-4440: A Lunar New Year on Mars NASA’s Mars rover Curiosity captured this image, which includes the prominent wedge-shaped block in the foreground, the imaging target dubbed “Vasquez Rocks” — named after a site in Southern California that’s been a popular filming location for movies and television, including several episodes of “Star Trek.” Curiosity acquired this image using its Left Navigation Camera on sol 4437 — Martian day 4,437 of the Mars Science Laboratory mission — on Jan. 29, 2025, at 04:25:25 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Jan. 29, 2025 We’re planning sols 4439 and 4440 on the first day of the Lunar New Year here on Earth, and I’m the Geology/Mineralogy Science Theme Lead for today. The new year is a time for all kinds of abundance and good luck, and we are certainly lucky to be celebrating another new year on Mars with the Curiosity rover! The rover’s current position is on the north side of the “Texoli” butte west of the “Rustic Canyon” crater, and we are on our way southwest through the layered sulfate unit toward a possible boxwork structure that we hope to study later this year. Today’s workspace included a couple of representative bedrock blocks with contrasting textures, so we planned an APXS elemental chemistry measurement on one (“Deer Springs”) and a LIBS elemental measurement on another (“Taco Peak”). For imaging, there were quite a few targets in view making it possible to advance a variety of science goals. The ChemCam remote imager was used for a mosaic on “Wilkerson Butte” to observe the pattern of resistant and recessive layering. Mastcam mosaics explored some distant landforms (“Sandstone Peak,” “Wella’s Peak”) as well as fractures, block shapes and textures, and aeolian ripples closer to the rover (“Tahquitz Peak,” “Mount Islip,” “Vasquez Rocks,” “Dawson Saddle”). Our regular environmental science measurements were made as well, to track atmospheric opacity and dust activity. So our planning sols include an abundance of targets indeed. Fun fact: Today’s name “Vasquez Rocks” comes from a site on Earth in Southern California that has been a popular spot for science fiction filming, appearing in several episodes of “Star Trek” going back to the original series! Written by Lucy Lim, Participating Scientist at Goddard Space Flight Center Share Details Last Updated Jan 31, 2025 Related Terms Blogs Explore More 4 min read Sols 4437-4438: Coordinating our Dance Moves Article 2 days ago 2 min read Sols 4434-4436: Last Call for Clouds Article 3 days ago 3 min read What ‘Perseverance’ Means on Mars and for Our NASA Family Article 7 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  25. Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx will create a map of the cosmos like no other. Using a technique called spectroscopy to image the entire sky in 102 wavelengths of infrared light, SPHEREx will gather information about the composition of and distance to millions of galaxies and stars. With this map, scientists will study what happened in the first fraction of a second after the big bang, how galaxies formed and evolved, and the origins of water in planetary systems in our galaxy.NASA/JPL-Caltech/BAE Systems NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) observatory rests horizontally in this April 2024 image taken at BAE Systems in Boulder, Colorado. This orientation shows the observatory’s three layers of photon shields – the metallic concentric cones. Over a two-year planned mission, the SPHEREx Observatory will collect data on more than 450 million galaxies along with more than 100 million stars in the Milky Way in order to explore the origins of the universe. Tune in at 12 p.m. EST Jan. 31, 2025, to hear agency experts preview the mission. SPHEREx is targeted to launch no earlier than Feb. 27, 2025. Image credit: NASA/JPL-Caltech/BAE Systems View the full article
×
×
  • Create New...