Jump to content

NASA

Publishers
  • Posts

    4,764
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. NASA’s Solar Dynamics Observatory captured this image of an X9.0 solar flare – as seen in the bright flash in the center – on Oct. 3, 2024. This is the largest flare of Solar Cycle 25 to date.Credit: NASA NASA and the National Oceanic and Atmospheric Administration (NOAA) will discuss the Sun’s activity and the progression of Solar Cycle 25 during a media teleconference at 2 p.m. EDT, Tuesday, Oct. 15. Tracking the solar cycle is a key part of better understanding the Sun and mitigating its impacts on technology and infrastructure as humanity explores farther into space. During the teleconference, experts from NASA, NOAA, and the international Solar Cycle 25 Prediction Panel, which is co-sponsored by both agencies, will discuss recent solar cycle progress and the forecast for the rest of this cycle. Audio of the teleconference will stream live on the agency’s website at: https://www.nasa.gov/live Participants include: Jamie Favors, director, NASA’s Space Weather Program Kelly Korreck, program scientist, NASA’s Heliophysics Division Elsayed Talaat, director, Office of Space Weather Observations, NOAA Bill Murtagh, program coordinator, NOAA’s Space Weather Prediction Center Lisa Upton, co-chair, Solar Cycle 25 Prediction Panel To participate in the media teleconference, media must RSVP no later than 12 p.m. on Oct. 15, to Abbey Interrante at: abbey.a.interrante@nasa.gov. The Sun goes through regular cycles of activity lasting approximately 11 years. During the most active part of the cycle, known as solar maximum, the Sun can unleash immense explosions of light, energy, and solar radiation, all of which create conditions known as space weather. Space weather can affect satellites and astronauts in space, as well as communications systems such as radio and GPS — and power grids on Earth. When the Sun is most active, space weather events become more frequent. Solar activity, such as the storm in May 2024, has sparked displays of aurora and led to impacts on satellites and infrastructure in recent months. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth. The NOAA Space Weather Prediction Center is the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. For more information on how NASA studies the Sun and space weather, visit: https://www.nasa.gov/sun -end- Karen Fox Headquarters, Washington 202-358-1600 karen.fox@nasa.gov Sarah Frazier Goddard Space Flight Center, Greenbelt, Md. 202-853-7191 sarah.frazier@nasa.gov Erica Grow Cei NOAA’s National Weather Service, College Park, Md. 202-853-6088 erica.grow.cei@noaa.gov Share Details Last Updated Oct 08, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsThe SunHeliophysicsSpace Weather View the full article
  2. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This low-angle self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called “Buckskin” on lower Mount Sharp. When NASA conducts research beyond our world, scientists on Earth prepare as much as possible before sending instruments on extraterrestrial journeys. One way to prepare for these exploration missions is by using machine learning techniques to develop algorithms with data from commercial instruments or from flight instruments on planetary missions. For example, NASA uses mass spectrometer instruments on Mars missions to analyze surface samples and identify organic molecules. Developing machine learning algorithms before missions can help make the process of analyzing planetary data faster and more efficient during time-limited space operations. In 2022, Victoria Da Poian, a data scientist supporting machine learning research at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, collaborated with NASA’s Center of Excellence for Collaborative Innovation to run two machine learning-based open science challenges, which sought ideas and solutions from the public. Solvers worldwide were invited to analyze chemical data sampled from commercial instruments located at NASA centers and data from the Sample Analysis at Mars (SAM) testbed, which is a replica of the instrument suite onboard the Curiosity rover. The challenges encouraged participants to be creative in their approaches and to provide detailed descriptions of their method and code. Da Poian said her team decided to use public competitions for this project to gain new perspectives: “We were really interested in hearing from people who aren’t in our field and weren’t biased by the data’s meaning or our scientific rules.” As a result, more than 1150 unique participants from all over the world participated in the competitions, and more than 600 solutions contributing models to analyze rock and soil samples relevant to planetary science were submitted. The challenges served as proof-of-concept projects to analyze the feasibility of combining data from multiple sources in a single machine learning application. In addition to benefitting from the variety of perspectives offered by challenge participants, Da Poian says the challenges were both time- and cost-efficient methods for discovering solutions. At the same time, the challenges invited the global community to participate in NASA research in support of future space exploration missions, and winners received $60,000 in total prizes across the two opportunities. Da Poian used lessons learned to develop a new challenge with Frontier Development Lab , an international research collaboration that brings together researchers and domain experts to tackle complex problems using machine learning technologies. The competition, titled “Stay Curious: Leveraging Machine Learning to Analyze & Interpret the Measurements of Mars Planetary Instruments,” ran from June to August 2024. Results included cleaning SAM data collected on Mars, processing data for a consistent, machine learning-ready dataset combining commercial and flight instrument data, investigating data augmentation techniques to increase the limited data volume available for the challenge, and exploring machine learning techniques to help predict the chemical composition of Martian terrain. “The machine learning challenges opened the door to how we can use laboratory data to train algorithms and then use that to train flight data,” said Da Poian. “Being able to use laboratory data that we’ve collected for many years is a huge opportunity for us, and the results so far are extremely encouraging.” Find more opportunities: https://www.nasa.gov/get-involved/ View the full article
  3. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A major component of NASA’s Nancy Grace Roman Space Telescope just took a spin on the centrifuge at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Called the Outer Barrel Assembly, this piece of the observatory is designed to keep the telescope at a stable temperature and shield it from stray light. This structure, called the Outer Barrel Assembly, will surround and protect NASA’s Nancy Grace Roman Space Telescope from stray light that could interfere with its observations. In this photo, engineers prepare the assembly for testing.NASA/Chris Gunn The two-part spin test took place in a large, round test chamber. Stretching across the room, a 600,000-pound (272,000-kilogram) steel arm extends from a giant rotating bearing in the center of the floor. The test itself is like a sophisticated version of a popular carnival attraction, designed to apply centrifugal force to the rider — in this case, the outer covering for Roman’s telescope. It spun up to 18.4 rotations per minute. That may not sound like much, but it generated force equivalent to just over seven times Earth’s gravity, or 7 g, and sent the assembly whipping around at 80 miles per hour. “We couldn’t test the entire Outer Barrel Assembly in the centrifuge in one piece because it’s too large to fit in the room,” said Jay Parker, product design lead for the assembly at Goddard. The structure stands about 17 feet (5 meters) tall and is about 13.5 feet (4 meters) wide. “It’s designed a bit like a house on stilts, so we tested the ‘house’ and ‘stilts’ separately.” The “stilts” went first. Technically referred to as the elephant stand because of its similarity to structures used in circuses, this part of the assembly is designed to surround Roman’s Wide Field Instrument and Coronagraph Instrument like scaffolding. It connects the upper portion of the Outer Barrel Assembly to the spacecraft bus, which will maneuver the observatory to its place in space and support it while there. The elephant stand was tested with weights attached to it to simulate the rest of the assembly’s mass. This photo shows a view from inside the Outer Barrel Assembly for NASA’s Nancy Grace Roman Space Telescope. The inner rings, called baffles, will help protect the observatory’s primary mirror from stray light.NASA/Chris Gunn Next, the team tested the “house” — the shell and a connecting ring that surround the telescope. These parts of the assembly will ultimately be fitted with heaters to help ensure the telescope’s mirrors won’t experience wide temperature swings, which make materials expand and contract. To further protect against temperature fluctuations, the Outer Barrel Assembly is mainly made of two types of carbon fibers mixed with reinforced plastic and connected with titanium end fittings. These materials are both stiff (so they won’t warp or flex during temperature swings) and lightweight (reducing launch demands). If you could peel back the side of the upper portion –– the house’s “siding” –– you’d see another weight-reducing measure. Between inner and outer panels, the material is structured like honeycomb. This pattern is very strong and lowers weight by hollowing out portions of the interior. Designed at Goddard and built by Applied Composites in Los Alamitos, California, Roman’s Outer Barrel Assembly was delivered in pieces and then put together in a series of crane lifts in Goddard’s largest clean room. It was partially disassembled for centrifuge testing, but will now be put back together and integrated with Roman’s solar panels and Deployable Aperture Cover at the end of the year. In 2025, these freshly integrated components will go through thermal vacuum testing together to ensure they will withstand the temperature and pressure environment of space. Then they’ll move to a shake test to make sure they will hold up against the vibrations they’ll experience during launch. Toward the end of next year, they will be integrated with rest of the observatory. To virtually tour an interactive version of the telescope, visit: https://roman.gsfc.nasa.gov/interactive The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California. By Ashley Balzer NASA’s Goddard Space Flight Center, Greenbelt, Md. ​​Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center 301-286-1940 Share Details Last Updated Oct 08, 2024 EditorJamie AdkinsContactClaire Andreoli Related TermsNancy Grace Roman Space TelescopeGoddard Space Flight CenterScience-enabling TechnologyTechnology Explore More 2 min read Tech Today: Spraying for Food Safety Article 19 hours ago 5 min read NASA: New Insights into How Mars Became Uninhabitable NASA’s Curiosity rover, currently exploring Gale crater on Mars, is providing new details about how… Article 20 hours ago 2 min read Hubble Observes a Peculiar Galaxy Shape This NASA/ESA Hubble Space Telescope image reveals the galaxy, NGC 4694. Most galaxies fall into… Article 4 days ago View the full article
  4. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA project manager Patricia Ortiz stands in front of the X-1E research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California.NASA Lee esta historia en Español aquí. Patricia Ortiz is proud to be a first-generation Salvadoran American. Her mother, born and raised in El Salvador, came to the United States for a better opportunity despite not knowing anyone or the English language. As a project manager for Space Projects and Partnerships at NASA’s Armstrong Flight Research Center in Edwards, California, Ortiz manages various space and aeronautics projects for new technologies that begin from the early stages to the execution. This involves meeting with partners, working with leadership and managing the project for performance and mission success. While reflecting on her journey to NASA, Ortiz honors her mother for her resiliency and the impact she had on her. “My mom faced a lot of hardship in coming to this country, but she came to this country so that I could do this.” This brave decision to move to an unfamiliar place was what opened the door for Ortiz to eventually work for NASA. Ortiz enjoys staying connected to her Salvadoran roots and one way she does this is through food. Her favorite dish: the pupusa. “My mom makes the best pupusas with chicharrón [pork], cheese, and curtido [cabbage slaw]. It’s so delicious!” NASA is celebrating Hispanic Heritage Month by sharing the rich histories, cultures and passions of employees who contribute to advancing the agency’s mission and success for the benefit of all humanity. This month-long, annual celebration honors and recognizes the Hispanic and Latino Americans who have positively influenced and enriched our nation and society. Share Details Last Updated Oct 07, 2024 EditorDede DiniusContactElena Aguirreelena.aguirre@nasa.govLocationArmstrong Flight Research Center Related TermsArmstrong Flight Research CenterHispanic Heritage MonthPeople of ArmstrongPeople of NASAWomen at NASA Explore More 2 min read Una gerente de proyectos de la NASA rinde homenaje a la influencia de su madre Article 21 mins ago 5 min read 2 NASA Employees Awarded Space and Satellite Professionals 20 under 35 of 2024 Article 4 days ago 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’ Article 6 days ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Armstrong People Hispanic Heritage Month Women at NASA View the full article
  5. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) La gerente de proyectos de la NASA Patricia Ortiz se muestra delante del avión de investigación X-1E en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California.NASA Read this story in English here. Patricia Ortiz está orgullosa de ser una salvadoreña americana de primera generación. Su madre, nacida y criada en El Salvador, vino a Estados Unidos por una oportunidad mejor sin conocer a nadie ni el idioma inglés. En su función de gerente de proyectos y asociaciones espaciales en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, Ortiz dirige diversos proyectos espaciales y aeronáuticos de nuevas tecnologías que van desde las primeras fases hasta su ejecución. Esto implica reunirse con los socios, trabajar con directivos y dirigir el proyecto para lograr el rendimiento y el éxito de la misión. Al reflexionar sobre su trayectoria hacia la NASA, Ortiz rinde honores a su madre por su tenacidad y por el impacto que tuvo en ella. “Mi madre se enfrentó a muchos obstáculos al venir a este país, pero vino a este país para que yo pudiera hacer esto”. Su valiente decisión de desplazarse a un lugar desconocido fue lo que le abrió las puertas a Ortiz para acabar trabajando en la NASA. A Ortiz le gusta mantenerse unida a sus raíces salvadoreñas y una forma de hacerlo es a través de la comida. Su plato favorito: la pupusa. “Mi madre hace las mejores pupusas con chicharrón, queso y curtido. ¡Están deliciosas!” La NASA celebra el Mes de la Herencia Hispana compartiendo las ricas historias, culturas y pasiones de los empleados que contribuyen al avance de la misión y el éxito de la agencia en beneficio de toda la humanidad. Esta celebración anual, que dura un mes, honra y reconoce a los hispanos y latinos estadounidenses que han influido positivamente y enriquecido nuestra nación y nuestra sociedad. Share Details Last Updated Oct 07, 2024 EditorDede DiniusContactElena Aguirreelena.aguirre@nasa.govLocationArmstrong Flight Research Center Related TermsNASA en españolArmstrong Flight Research CenterHispanic Heritage Month Explore More 2 min read NASA Project Manager Honors Mother’s Impact Article 20 mins ago 3 min read Meet Hector Chavez: Leading Johnson’s Giant Leap into Low Earth Orbit Article 2 weeks ago 5 min read La NASA invita a los medios al lanzamiento de Europa Clipper Article 1 month ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Armstrong People Hispanic Heritage Month Women at NASA View the full article
  6. Credit: NASA The Dominican Republic is the latest nation to sign the Artemis Accords and joins 43 other countries in a commitment to advancing principles for the safe, transparent, and responsible exploration of the Moon, Mars and beyond with NASA. “NASA is proud to welcome the Dominican Republic signing of the Artemis Accords as we expand the peaceful exploration of space to all nations,” said NASA Administrator Bill Nelson. “The Dominican Republic has made important strides toward a shared future in space and is now helping guide space exploration for the Artemis Generation.” Sonia Guzmán, ambassador of the Dominican Republic to the United States, signed the Artemis Accords on behalf of the country on Oct. 4. The country also will confirm its participation in a high-level meeting of Artemis Accords signatories taking place Monday, Oct. 14, during the International Astronautical Congress in Milan, where furthering implementation of the principles will be discussed. “This marks a historic step in our commitment to international collaboration in space exploration,” said Guzmán. “This is not just a scientific or technological milestone – it represents a future where the Dominican Republic contributes to the shared goals of peace, sustainability, and innovation beyond our planet. By joining the global effort to explore the Moon, Mars, and beyond, we are also expanding the opportunities particularly for our young Dominicans in science, education, and economic development.” In 2020, the United States and seven other nations were the first to sign the Artemis Accords, which identified an early set of principles promoting the beneficial use of space for humanity. The accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space. More countries are expected to sign in the coming weeks and months. For more information about NASA’s programs, visit: https://www.nasa.gov -end- Meira Bernstein / Elizabeth Shaw Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov Share Details Last Updated Oct 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsArtemis AccordsOffice of International and Interagency Relations (OIIR) View the full article
  7. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Sols 4325-4326: (Not Quite) Dipping Our Toes in the Sand NASA’s Mars rover Curiosity captured this image using its Left Navigation Camera on Sol 4323 — Martian day 4,323 of the Mars Science Laboratory mission — on Oct. 4, 2024, at 00:29:40 UTC. NASA/JPL-Caltech Earth planning date: Friday, Oct. 4, 2024 If you read this blog very often, you know that nearly every time the rover stops for science, MAHLI and APXS focus on interesting (and accessible!) rocks as targets. The rover science team is, after all, built with a lot of geologists. But geology is not all rocks, all the time — sand is former rock that if buried and pressurized long enough will become rock again. Today was time for sand to shine, as the workspace was cut by troughs of sand of different colors and brightnesses, and it had been nearly 500 sols since we acquired our last dedicated sand measurement with APXS and MAHLI. The “Pumice Flat” target was one of the brighter sand patches while “Kidney Lake” was one of the darker sand patches. APXS uses a special placement mode over sand targets so the instrument gets close, but not too close, to the loose material which could foul up the instrument. Not-rock was also the purview of our environmental observations. Navcam is scheduled for imaging seeking out clouds and dust devils, and changes in the sand and dust on top of the rover deck. Both Navcam and Mastcam will make observations to measure the amount of dust in the atmosphere. REMS will keep track of our weather with regular measurements, RAD will monitor our radiation environment, and DAN will look through rock for signs of water beneath our drive path. Unsurprisingly, the rest of the rover could not ignore bedrock. We managed to squeeze in DRT cleaning of a nice bedrock slab, “Ribbon Fall,” for MAHLI-only imaging. In places, the bedrock slabs were cut by thin veins of darker gray material, similar to dark gray materials we saw in the bedrock on the other side of Gediz Vallis. ChemCam targeted one of these dark gray examples at “Black Divide,” and also rastered across some of the prominent layers visible in the vertical faces in the workspace at the aptly named “Profile View.” Our imaging efforts could be roughly divided between looking back at our path through Gediz Vallis from our new and higher perspective, and looking ahead to what awaits us. ChemCam planned RMI mosaics back toward a field of the white stones we spent time studying in Gediz Vallis and toward a part of the edge of Gediz Vallis that we did not explore previously. Mastcam looked back at the part of the edge of Gediz Vallis we just traversed, “Pilot Peak,” for clues as to why it sits higher than the bedrock farther from the channel edge. They also targeted “Clyde Spires,” which was a gravel ridge in Gediz Vallis of interest as we drove by it initially. Looking ahead, Mastcam imaged a puzzling gray rock sitting atop the bedrock slabs south of us at target “Buena Vista Grove,” and further south still, they planned a large mosaic covering a very big rock — the spectacular “Texoli” butte that has loomed and will continue to loom over our path for months to come. Written by Michelle Minitti, Planetary Geologist at Framework Share Details Last Updated Oct 07, 2024 Related Terms Blogs Explore More 2 min read Perseverance Matters It is an important and exciting juncture in Mars exploration and astrobiology. This year, the… Article 5 hours ago 2 min read Sols 4323-4324: Surfin’ Our Way out of the Channel Article 4 days ago 2 min read Sols 4321-4322: Sailing Out of Gediz Vallis Article 5 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  8. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Astronaut Kayla Barron looks at chile peppers growing in the Advanced Plant Habitat aboard the International Space Station. Determining the best ways to water plants in space resulted in the development of a new electrostatic spray nozzle, now licensed to industry.Credit: NASA Whether protecting crops from diseases and pests or sanitizing contaminated surfaces, the ability to spray protective chemicals over important resources is key to several industries. Electrostatic Spraying Systems Inc. (ESS) of Watkinsville, Georgia, manufactures electrostatic sprayers and equipment that make this possible. By licensing NASA electrostatic technology, originally made to water plants in space, ESS’s improved spray nozzles efficiently use basic laws of electricity to achieve complete coverage on targeted surfaces. ESS traces its origins to research done at the University of Georgia in the 1970s and ’80s. An electrostatic sprayer works by inducing an electric charge onto atomized droplets. Much like an inflated balloon sticking to a wall when it’s gained a charge of static electricity, the droplets then stick to targeted surfaces. NASA’s interest in this technology originated with astronauts’ need for an easy way to support plant-growth experiments in space. On the International Space Station, watering plants without the help of gravity isn’t as easy as using a garden hose on Earth. In the future, using a system like an electrostatic sprayer on the space station or other orbiting destination could help the water droplets stick to the plants with uniform coverage. However, most spraying systems require large sources of water and air to properly aerosolize fluids. An ESS mister nozzle undergoes testing at Kennedy Space Center. The design was improved through collaboration between the company and NASA.Credit: NASA As both air and water are precious resources in space, NASA needed an easier way to make these incredibly small droplets. Charles Buhler and Jerry Wang of NASA’s Kennedy Space Center in Florida led the efforts to develop this capability, with Edward Law of the University of Georgia as a consulting expert. Eventually, the NASA team developed a new design by learning from existing technology called a mister nozzle. The benefit of a mister is that even though the interior volume of the nozzle is small, the pressure inside never builds up, which makes it perfect for enclosed small spaces like the space station. As the sprayer industry is a tight-knit group, technology transfer professionals at NASA reached out to the companies that could use a nozzle like this on Earth. Electrostatic Spraying Systems responded and later licensed the sprayer design from the agency and incorporated it into the company’s Maxcharge product lines. Read More Share Details Last Updated Oct 07, 2024 Related TermsTechnology Transfer & SpinoffsSpinoffsTechnology Transfer Explore More 2 min read The Science of the Perfect Cup for Coffee Material research is behind the design of a temperature-regulating mug Article 1 week ago 3 min read Measuring Moon Dust to Fight Air Pollution Article 3 weeks ago 2 min read Printed Engines Propel the Next Industrial Revolution Efforts to 3D print engines produce significant savings in rocketry and beyond Article 4 weeks ago Keep Exploring Discover Related Topics Technology Transfer & Spinoffs Advanced Plant Habitat Conducting plant bioscience research aboard the International Space Station The Advanced Plant Habitat (APH) is the largest, fully automated plant… Climate Change Space Technology Mission Directorate View the full article
  9. The 13th flight of the space shuttle program and the sixth of Challenger, STS-41G holds many distinctions. As the first mission focused almost entirely on studying the Earth, it deployed a satellite, employed multiple instruments, cameras, and crew observations to accomplish those goals. The STS-41G crew set several firsts, most notably as the first seven-member space crew. Other milestones included the first astronaut to make a fourth shuttle flight, the first and only astronaut to fly on Challenger three times and on back-to-back missions on any orbiter, the first crew to include two women, the first American woman to make two spaceflights, the first American woman to conduct a spacewalk, and the first Canadian and the first Australian-born American to make spaceflights. Left: The STS-41G crew patch. Right: The STS-41G crew of Jon A. McBride, front row left, Sally K. Ride, Kathryn D. Sullivan, and David C. Leestma; Paul D. Scully-Power, back row left, Robert L. Crippen, and Marc Garneau of Canada. In November 1983, NASA named the five-person crew for STS-41G, formerly known as STS-17, then planned as a 10-day mission aboard Columbia in August 1984. When assigned to STS-41G, Commander Robert L. Crippen had already completed two missions, STS-1 and STS-7, and planned to command STS-41C in April 1984. On STS-41G, he made a record-setting fourth flight on a space shuttle, and as it turned out the first and only person to fly aboard Challenger three times, including back-to-back missions. Pilot Jon A. McBride, and mission specialists Kathryn D. Sullivan from the Class of 1978 and, David C. Leestma from the Class of 1980, made their first flights into space. Mission specialist Sally K. Ride made her second flight, and holds the distinction as the first American woman to return to space, having flown with Crippen on STS-7. The flight marked the first time that two women, Ride and Sullivan, flew in space at the same time. In addition, Sullivan holds the honor as the first American woman to conduct a spacewalk and made her second flight and holds the distinction as the first American woman to return to space, having flown with Crippen on STS-7. The flight marked the first time that two women, Ride and Sullivan, flew in space at the same time. In addition, Sullivan holds the honor as the first American woman to conduct a spacewalk, and Leestma as the first of the astronaut Class of 1980 to make a spaceflight. Columbia’s refurbishment following STS-9 ran behind schedule and could not meet the August launch date, so NASA switched STS-41G to the roomier and lighter weight Challenger. This enabled adding crew members to the flight. In February 1984, NASA and the Canadian government agreed to fly a Canadian on an upcoming mission in recognition for that country’s major contribution to the shuttle program, the Remote Manipulator System (RMS), or robotic arm. In March, Canada named Marc Garneau as the prime crewmember with Robert B. Thirsk as his backup. NASA first assigned Garneau to STS-51A, but with the switch to Challenger transferred him to the STS-41G crew. On June 1, NASA added Australian-born and naturalized U.S. citizen Paul D. Scully-Power, an oceanographer with the Naval Research Laboratory who had trained shuttle crews in recognizing ocean phenomena from space, to the mission rounding out the seven-person crew, the largest flown to that time. Scully-Power has the distinction as the first person to launch into space sporting a beard. Left: Space shuttle Challenger returns to NASA’s Kennedy Space Center (KSC) in Florida atop a Shuttle Carrier Aircraft following the STS-41C mission. Middle: The Earth Resources Budget Satellite during processing at KSC for STS-41G. Right: Technicians at KSC process the Shuttle Imaging Radar-B for the STS-41G mission. The STS 41G mission carried a suite of instruments to study the Earth. The Earth Radiation Budget Satellite (ERBS), managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, contained three instruments, including the Stratospheric Aerosol and Gas Experiment-2 (SAGE-2), to measure solar and thermal radiation of the Earth to better understand global climate changes. NASA’s Office of Space and Terrestrial Applications sponsored a cargo bay-mounted payload (OSTA-3) consisting of four instruments. The Shuttle Imaging Radar-B (SIR-B), managed by NASA’s Jet Propulsion Laboratory in Pasadena, California, and an updated version of SIR-A flown on STS-2, used synthetic aperture radar to support investigations in diverse disciplines such as archaeology, geology, cartography, oceanography, and vegetation studies. Making its first flight into space, the 900-pound Large Format Camera (LFC) took images of selected Earth targets on 9-by-18-inch film with 70-foot resolution. The Measurement of Air Pollution from Satellites (MAPS) experiment provided information about industrial pollutants in the atmosphere. The Feature Identification and Location Experiment (FILE) contained two television cameras to improve the efficiency of future remote sensing equipment. In an orbit inclined 57 degrees to the Equator, the instruments aboard Challenger could observe more than 75% of the Earth’s surface. The Orbital Refueling System (ORS), managed by NASA’s Johnson Space Center in Houston, while not directly an Earth observation payload, assessed the feasibility of on-orbit refueling of the Landsat-4 remote sensing satellite, then under consideration as a mission in 1987, as well as Department of Defense satellites not designed for on-orbit refueling. In the demonstration, the astronauts remotely controlled the transfer of hydrazine, a highly toxic fuel, between two tanks mounted in the payload bay. During a spacewalk, two crew members simulated connecting the refueling system to a satellite and later tested the connection with another remotely controlled fuel transfer. Rounding out the payload activities, the large format IMAX camera made its third trip into space, with footage used to produce the film “The Dream is Alive.” Four views of the rollout of space shuttle Challenger for STS-41G. Left: From inside the Vehicle Assembly Building (VAB). Middle left: From Firing Room 2 of the Launch Control Center (LCC). Middle right: From the crawlerway, with the LCC and the VAB in the background. Right: From atop the VAB. Left: The STS-41G astronauts answer reporters’ questions at Launch Pad 39A during the Terminal Countdown Demonstration Test. Right: The STS-41G crew leaves crew quarters and prepares to board the Astrovan for the ride to Launch Pad 39A for liftoff. Following the STS-41C mission, Challenger returned to KSC from Edwards Air Force Base in California on April 18. Workers in KSC’s Orbiter Processing Facility refurbished the orbiter and changed out its payloads. Rollover to the Vehicle Assembly Building (VAB) took place on Sept. 8 and after workers stacked Challenger with its External Tank and Solid Rocket Boosters, they rolled it out of the VAB to Launch Pad 39A on Sept. 13. Just two days later, engineers completed the Terminal Countdown Demonstration Test, a final dress rehearsal before the actual countdown and launch, with the astronaut crew participating as on launch day. They returned to KSC on Oct. 2 to prepare for the launch three days later. Left: Liftoff of space shuttle Challenger on the STS-41G mission. Middle: Distant view of Challenger as it rises through the predawn skies. Right: The Earth Resources Budget Satellite just before the Remote Manipulator System released it. Space shuttle Challenger roared off Launch Pad 39A at 7:03 a.m. EDT, 15 minutes before sunrise, on Oct. 5, 1984, to begin the STS-41G mission. The launch took place just 30 days after the landing of the previous mission, STS-41D. That record-breaking turnaround time between shuttle flights did not last long, as the launch of Discovery on STS-51A just 26 days after Challenger’s landing set a new record on Nov. 8. Eight and a half minutes after liftoff, Challenger and its seven-member crew reached space and shortly thereafter settled into a 218-mile-high orbit, ideal for the deployment of the 5,087-pound ERBS. The crew noted that a 40-inch strip of Flexible Reusable Surface Insulation (FRSI) had come loose from Challenger’s right-hand Orbiter Maneuvering System (OMS) pod, presumably lost during launch. Mission Control determined that this would not have any impact during reentry. Ride grappled the ERBS with the shuttle’s RMS but when she commanded the satellite to deploy its solar arrays, nothing happened. Mission Control surmised that the hinges on the arrays had frozen, and after Ride oriented the satellite into direct sunlight and shook it slightly on the end of the arm, the panels deployed. She released ERBS about two and a half hours late and McBride fired Challenger’s steering jets to pull away from the satellite. Its onboard thrusters boosted ERBS into its operational 380-mile-high orbit. With an expected two-year lifetime, it actually operated until October 14, 2005, returning data about how the Earth’s atmosphere absorbs and re-radiates the Sun’s energy, contributing significant information about global climate change. Left: The SIR-B panel opens in Challenger’s payload bay. Right: Jon A. McBride with the IMAX large format camera in the middeck. Near the end of their first day in space, the astronauts opened the panels of the SIR-B antenna and activated it, also deploying the Ku-band antenna that Challenger used to communicate with the Tracking and Data Relay System (TDRS) satellite. The SIR-B required a working Ku-band antenna to downlink the large volume of data it collected, although it could store a limited amount on onboard tape recorders. But after about two minutes, the data stream to the ground stopped. One of the two motors that steered the Ku antenna failed and it could no longer point to the TDRS satellite. Mission Control devised a workaround to fix the Ku antenna in one position and steer the orbiter to point it to the TDRS satellite and downlink the stored data to the ground. Challenger carried sufficient fuel for all the maneuvering, but the extra time for the attitude changes resulted in achieving only about 40% of the planned data takes. The discovery of the 3,000-year-old lost city of Udar in the desert of Oman resulted from SIR-B data, one of many interesting findings from the mission. Left: The shuttle’s Canadian-built Remote Manipulator System or robotic arm closes the SIR-B panel. Middle: The patch for Canadian astronaut Marc Garneau’s mission. Right: Spiral eddies in the eastern Mediterranean Sea. During the second mission day, the astronauts lowered Challenger’s orbit to an intermediate altitude of 151 miles. Flight rules required that the SIR-B antenna be stowed for such maneuvers but the latches to clamp the antenna closed failed to activate. Ride used the RMS to nudge the antenna panel closed. From the orbiter’s flight deck, Leestma successfully completed the first ORS remote-controlled hydrazine fuel transfer. Garneau began working on his ten CANEX investigations related to medical, atmospheric, climatic, materials and robotic sciences while Scully-Power initiated his oceanographic observations. Despite greater than expected global cloud cover, he successfully photographed spiral eddies in the world’s oceans, particularly notable in the eastern Mediterranean Sea. Left: Mission Specialists Kathryn D. Sullivan, left, and Sally K. Ride on Challenger’s flight deck. Right: Payload Specialists Marc Garneau and Paul D. Scully-Power working on a Canadian experiment in Challenger’s middeck. The third day saw the crew lower Challenger’s orbit to 140 miles, the optimal altitude for SIR-B and the other Earth observing instruments. For the next few days, all the experiments continued recording their data, including Garneau’s CANEX and Scully-Power’s oceanography studies. Leestma completed several scheduled ORS fuel transfers prior to the spacewalk. Preparations for that activity began on flight day 6 with the crew lowering the cabin pressure inside Challenger from the normal sea level 14.7 pounds per square inch (psi) to 10.2 psi. The lower pressure prevented the buildup of nitrogen bubbles in the bloodstreams of the two spacewalkers, Leestma and Sullivan, that could result in the development of the bends. The two verified the readiness of their spacesuits. Left: David C. Leestma, left with red stripes on his suit, and Kathryn D. Sullivan during their spacewalk. Middle: Leestma, left, and Sullivan working on the Orbital Refueling System during the spacewalk. Right: Sullivan, left, and Leestma peer into Challenger’s flight deck during the spacewalk. On flight day 7, Leestma and Sullivan, assisted by McBride, donned their spacesuits and began their spacewalk. After gathering their tools, the two translated down to the rear of the cargo bay to the ORS station. With Sullivan documenting and assisting with the activity, Leestma installed the valve assembly into the simulated Landsat propulsion plumbing. After completing the ORS objectives, Leestma and Sullivan proceeded back toward the airlock, stopping first at the Ku antenna where Sullivan secured it in place. They returned inside after a spacewalk that lasted 3 hours and 29 minutes, and the crew brought Challenger’s cabin pressure back up to 14.7 psi. STS-41G crew Earth observation photographs. Left: Hurricane Josephine in the Atlantic Ocean. Middle: The Strait of Gibraltar. Right: Karachi, Pakistan, and the mouth of the Indus River. False color image of Montreal generated from SIR-B data. Left: Traditional inflight photo of the STS-41G crew on Challenger’s flight deck. Right: Robert L. Crippen with the orange glow generated outside Challenger during reentry. Left: Kathryn D. Sullivan photograph of NASA’s Kennedy Space Center (KSC) in Florida during Challenger’s approach, minutes before touchdown. Middle: Space shuttle Challenger moments before touchdown at N KSC at the end of the STS-41G mission. Right: The crew of STS-41G descends from Challenger after completing a highly successful mission. During their final full day in space, Challenger’s crew tidied the cabin for reentry and completed the final SIR-B and other Earth observations. On Oct. 13, the astronauts closed the payload bay doors and fired the OMS engines over Australia to begin the descent back to Earth. Because of the mission’s 57-degree inclination, the reentry path took Challenger and its crew over the eastern United States, another Shuttle first. Crippen guided the orbiter to a smooth landing at KSC, completing a flight of 8 days, 5 hours, and 24 minutes, the longest mission of Challenger’s short career. The crew had traveled nearly 3.3 million miles and completed 133 orbits around the Earth. Left: Missing insulation from Challenger’s right hand Orbiter Maneuvering System pod as seen after landing. Middle: Missing tile from the underside of Challenger’s left wing. Right: Damage to tiles on Challenger’s left wing. As noted above, on the mission’s first day in space the crew described a missing strip of FRSI from the right-hand OMS pod. Engineers noted additional damage to Challenger’s Thermal Protection System (TPS) after the landing, including several tiles on the underside the vehicle’s left wing damaged and one tile missing entirely, presumably lost during reentry. Engineers determined that the water proofing used throughout the TPS that allowed debonding of the tiles as the culprit for the missing tile. To correct the problem, workers removed and replaced over 4,000 tiles, adding a new water proofing agent to preclude the recurrence of the problem on future missions. Read recollections of the STS-41G mission by Crippen, McBride, Sullivan, Ride, and Leestma in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-41G mission. Explore More 12 min read 30 Years Ago: STS-68 The Second Space Radar Lab Mission Article 1 week ago 15 min read 55 Years Ago: Celebrations for Apollo 11 Continue as Apollo 12 Prepares to Revisit the Moon Article 3 weeks ago 8 min read 65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane Article 3 weeks ago View the full article
  10. 5 min read NASA: New Insights into How Mars Became Uninhabitable NASA’s Curiosity rover, currently exploring Gale crater on Mars, is providing new details about how the ancient Martian climate went from potentially suitable for life – with evidence for widespread liquid water on the surface – to a surface that is inhospitable to terrestrial life as we know it. This is an artist’s concept of an early Mars with liquid water (blue areas) on its surface. Ancient regions on Mars bear signs of abundant water – such as features resembling valleys and deltas, and minerals that only form in the presence of liquid water. Scientists think that billions of years ago, the atmosphere of Mars was much denser and warm enough to form rivers, lakes, and perhaps even oceans of water. As the planet cooled and lost its global magnetic field, the solar wind and solar storms eroded away to space a significant amount of the planet’s atmosphere, turning Mars into the cold, arid desert we see today. NASA/MAVEN/The Lunar and Planetary Institute Although the surface of Mars is frigid and hostile to life today, NASA’s robotic explorers at Mars are searching for clues as to whether it could have supported life in the distant past. Researchers used instruments on board Curiosity to measure the isotopic composition of carbon-rich minerals (carbonates) found in Gale crater and discovered new insights into how the Red Planet’s ancient climate transformed. “The isotope values of these carbonates point toward extreme amounts of evaporation, suggesting that these carbonates likely formed in a climate that could only support transient liquid water,” said David Burtt of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of a paper describing this research published October 7 in the Proceedings of the National Academy of Sciences. “Our samples are not consistent with an ancient environment with life (biosphere) on the surface of Mars, although this does not rule out the possibility of an underground biosphere or a surface biosphere that began and ended before these carbonates formed.” Isotopes are versions of an element with different masses. As water evaporated, light versions of carbon and oxygen were more likely to escape into the atmosphere, while the heavy versions were left behind more often, accumulating into higher abundances and, in this case, eventually being incorporated into the carbonate rocks. Scientists are interested in carbonates because of their proven ability to act as climate records. These minerals can retain signatures of the environments in which they formed, including the temperature and acidity of the water, and the composition of the water and the atmosphere. The paper proposes two formation mechanisms for carbonates found at Gale. In the first scenario, carbonates are formed through a series of wet-dry cycles within Gale crater. In the second, carbonates are formed in very salty water under cold, ice-forming (cryogenic) conditions in Gale crater. “These formation mechanisms represent two different climate regimes that may present different habitability scenarios,” said Jennifer Stern of NASA Goddard, a co-author of the paper. “Wet-dry cycling would indicate alternation between more-habitable and less-habitable environments, while cryogenic temperatures in the mid-latitudes of Mars would indicate a less-habitable environment where most water is locked up in ice and not available for chemistry or biology, and what is there is extremely salty and unpleasant for life.” These climate scenarios for ancient Mars have been proposed before, based on the presence of certain minerals, global-scale modeling, and the identification of rock formations. This result is the first to add isotopic evidence from rock samples in support of the scenarios. The heavy isotope values in the Martian carbonates are significantly higher than what’s seen on Earth for carbonate minerals and are the heaviest carbon and oxygen isotope values recorded for any Mars materials. In fact, according to the team, both the wet-dry and the cold-salty climates are required to form carbonates that are so enriched in heavy carbon and oxygen. “The fact that these carbon and oxygen isotope values are higher than anything else measured on Earth or Mars points towards a process (or processes) being taken to an extreme,” said Burtt. “While evaporation can cause significant oxygen isotope changes on Earth, the changes measured in this study were two to three times larger. This means two things: 1) there was an extreme degree of evaporation driving these isotope values to be so heavy, and 2) these heavier values were preserved so any processes that would create lighter isotope values must have been significantly smaller in magnitude.” This discovery was made using the Sample Analysis at Mars (SAM) and Tunable Laser Spectrometer (TLS) instruments aboard the Curiosity rover. SAM heats samples up to nearly 1,652 degrees Fahrenheit (almost 900°C) and then the TLS is used to analyze the gases that are produced during that heating phase. Funding for this work came from NASA’s Mars Exploration Program through the Mars Science Laboratory project. Curiosity was built by NASA’s Jet Propulsion Laboratory (JPL), which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington. NASA Goddard built the SAM instrument, which is a miniaturized scientific laboratory that includes three different instruments for analyzing chemistry, including the TLS, plus mechanisms for handling and processing samples. By William Steigerwald NASA’s Goddard Space Flight Center, Greenbelt, Maryland Media contacts: Nancy Neal-Jones/Andrew Good NASA’s Goddard Space Flight Center, Greenbelt, Md./Jet Propulsion Laboratory, Pasadena, Calif. 301-286-0039/818-393-2433 nancy.n.jones@nasa.gov / andrew.c.good@jpl.nasa.gov Karen Fox / Molly Wasser Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov Share Details Last Updated Oct 07, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms Astrobiology Mars Uncategorized Explore More 3 min read 2024 ASGSR Art Competition! Article 5 days ago 6 min read Celebrating 10 Years at Mars with NASA’s MAVEN Mission A decade ago, on Sept. 21, 2014, NASA’s MAVEN (Mars Atmospheric and Volatile EvolutioN) spacecraft… Article 2 weeks ago 6 min read NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water Article 1 month ago View the full article
  11. NASA/JPL-Caltech The golden records placed aboard Voyager 1 and 2 each have a cover with special etchings, seen here in this photo from Sept. 4, 1977. These drawings show how the record should be used to receive a message from Earth. For example, the drawing in the bottom right corner is of the phonograph record and the stylus carried with it; the stylus is in the correct position for the record to be played from the beginning. The lines around the record mark the time of one rotation of the record, 3.6 seconds, in binary arithmetic. The drawing also indicates that the record should be played from the outside in. The Golden Record itself contains 115 images and a variety of natural sounds, such as those made by surf, wind and thunder, birds, whales, and other animals, as well as musical selections from different cultures and eras, spoken greetings from Earth-people in fifty-five languages, and printed messages from President Carter and U.N. Secretary General Waldheim. The contents of the record were selected for NASA by a committee chaired by Carl Sagan. Discover what the other drawings on the Golden Record cover reveal. Image Credit: NASA/JPL-Caltech View the full article
  12. Learn Home GLOBE Eclipse and Civil Air… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration The Civil Air Patrol (CAP) is a volunteer organization that serves as the official civilian auxiliary of the United States Air Force. The organization has an award-winning aerospace education program that promotes Science, Technology Engineering, & Mathematics (STEM)-related careers and activities. The total solar eclipse on 8 April 2024 was a unique opportunity to design a mission for cadets, senior members, and educators to collect atmospheric data in contribution the Global Learning and Observations to Benefit the Environment (GLOBE) Program’s GLOBE Eclipse protocol, for which a temporary tool in the GLOBE Observer app made it possible for volunteer observers to document and submit air temperature and cloud data during the eclipse. For the first time ever, the CAP had cadets and senior members participating in a mission from every wing (US state), in addition to two US territories and 2 Canadian provinces. Over 400 teams with over 3,000 cadets and over 1,000 senior members collected air temperature, clouds, wind, and precipitation for a total of 4 hours before, during, and after the eclipse. This work was led by Capt. Shannon Babb who organized the mission with the aerospace education team led from the Rocky Mountain Region. The collaboration between GLOBE Eclipse and CAP gave cadets the opportunity to do real, hands-on Earth science and be part of a mission alongside senior members. It also brought in over 40,000 students and more than 600 educators through the Civil Air Patrol’s education sites involving K-12 formal and informal educators at schools, youth organizations, museums and libraries. This unique collaboration was so successful, the CAP wants to continue doing missions alongside citizen science programs at NASA and the GLOBE Program. A 2025 mission is being formulated, focused on contrail formation using the strengths of the CAP in aeronautics and unique cloud observations made using the GLOBE Observer app. Results and announcements of 2025 mission plans were presented at the Civil Air Patrol National Conference on 16-17 August 2024 in San Antonio, Texas, USA. GLOBE Observer is part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn https://www.gocivilairpatrol.com/programs/aerospace-education/curriculum/2024-solar-eclipse Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Share Details Last Updated Oct 07, 2024 Editor NASA Science Editorial Team Related Terms 2024 Solar Eclipse Earth Science Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Science Activation Explore More 5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute Article 3 days ago 2 min read Culturally Inclusive Planetary Engagement in Colorado Article 4 days ago 40 min read GPM Celebrates Ten Years of Observing Precipitation for Science and Society Article 4 days ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  13. NASA Administrator Bill Nelson, left, and Kirk Johnson, Sant director, the Smithsonian’s National Museum of Natural History, preview NASA’s new Earth Information Center at the museum in Washington on Oct. 7, 2024. The exhibit includes a video wall displaying Earth science data visualizations and videos, an interpretive panel showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet.Credit: NASA/Bill Ingalls NASA Administrator Bill Nelson joined the director of the Smithsonian’s National Museum of Natural History in Washington and agency leadership to unveil the new Earth Information Center exhibit during an early preview on Monday. “NASA has studied Earth and our changing climate for more than 60 years. The Earth Information Center at the Smithsonian Museum of Natural History will expand access to NASA’s data and our decades of Earth observation to even more people,” said Nelson. “Together with the Smithsonian, we are providing detailed, usable, and scalable information to enable the public to better understand the climate crisis and take action in their community.” The exhibit includes a 32-foot-long, 12-foot-high video wall displaying Earth science data visualizations and videos, interpretive panels showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet. It opens to the public Tuesday, Oct. 8. “The new Earth Information Center at the National Museum of Natural History will bring Smithsonian and NASA data on the Earth’s environment and climate to thousands of museum visitors every year,” said Kirk Johnson, the museum’s Sant director. “It is an honor to partner with NASA to bring this dynamic view of Earth to museumgoers and connect people more deeply with their home planet.” Visitors also can explore Earth observing missions, changes in Earth’s landscape over time, and how climate is expected to change regionally through multiple interactive experiences. The exhibit will remain on display through 2028. “The Earth Information Center allows people to see our planet as we at NASA see it – an awe-inspiring and complex system of oceans, land, ice, atmosphere, and the life they support,” said Karen St. Germain, division director, Earth Sciences Division at NASA Headquarters in Washington. “We are thrilled that this collaboration puts NASA’s Earth science at the fingertips of Smithsonian visitors for the benefit of all.” With more than two dozen missions in orbit, NASA observes our planet’s oceans, land, ice, and atmosphere, and measure how a change in one drives change in others. NASA develops new ways to build long-term data records of how our planet evolves. The agency freely shares this unique knowledge and works with institutions around the world. As part of NASA’s ongoing mission to better understand our home planet, NASA created the Earth Information Center which draws insights from across all NASA centers and its federal partners – the National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Department of Agriculture, U.S. Agency for International Development, Environmental Protection Agency, and Federal Emergency Management Administration. It allows viewers to see how our home planet is changing and gives decision makers information to develop the tools they need to mitigate, adapt, and respond to those changes. NASA’s Earth Information Center is a virtual and physical space designed to aid people to make informed decisions on Earth’s environment and climate. It provides easily accessible Earth information, enabling global understanding of our changing planet. The expansion of the physical Earth Information Center at the Smithsonian National Museum of Natural History makes it the second location in the Washington area. The first is located at NASA Headquarters in Washington at 300 E St., SW. To learn more about the Earth Information Center, visit: https://earth.gov -end- Meira Bernstein / Elizabeth Vlock Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / elizabeth.a.vlock@nasa.gov Share Details Last Updated Oct 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsEarthClimate Change View the full article
  14. NASA

    Perseverance Matters

    Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read Perseverance Matters Close-up view of Cheyava Falls natural surface on Mars where chunks of olivine (pale green) in the straight veins and leopard spots in the center are seen. NASA/JPL-Caltech/MSSS In January 2024, the SHERLOC instrument aboard NASA’s Mars 2020 Perseverance rover encountered a significant issue. A fault in the instrument’s motor caused the dust cover and autofocus mechanism to become inoperative, putting the rover’s SHERLOC Raman spectroscopy capability at risk. Although Mars had posed an unexpected challenge, members of the SHERLOC operations team working together with the rover engineers refused to give up. Fortunately, a motion of the arm on Sol 1077, almost exactly two months after the original issue occurred, resulted in the dust cover moving to a nearly fully open position. As a result, the team began to look for ways to focus the optics and operate SHERLOC with the dust cover in this open position. These efforts involved many trials and errors, several rounds of diagnostic examinations, analyses, and troubleshooting around the clock. And as they say, “It does not matter how slowly you go so long as you do not stop”. After much hard work and persistence, the team successfully brought the SHERLOC instrument back online in June 2024 with a successful observation of the rock target Walhalla Glades. It was just the start of an exciting summer for SHERLOC. In July 2024, SHERLOC’s Raman capability, whose destiny was uncertain a month ago, performed multiple calibrations, scans, and observations on a rock named “Cheyava Falls” and the team was thrilled to discover the mission’s most compelling evidence for organics in the Jezero crater. Organic compounds can be formed through biological or non-biological processes and the organics that SHERLOC observed in Cheyava Falls would need to be studied in laboratories here on Earth for their origin to be determined. Regardless of how they formed, the Cheyava Falls organics could tell us a great deal about the Red Planet’s past and present carbon inventory, a possible early carbon cycle, and the precursor conditions to life as we know it. It is an important and exciting juncture in Mars exploration and astrobiology. This year, the SHERLOC instrument beat the odds and made one of the most exciting discoveries of the Mars 2020 mission. As the mission encounters and overcomes problems like that experienced by SHERLOC, we find that exploring Mars can also lead to discovering the team’s persistence and Perseverance. Written by Anushree Srivastava, Postdoctoral Fellow at Carnegie Institution. Member of Mars 2020 SHERLOC Science and Operations Team Share Details Last Updated Oct 07, 2024 Related Terms Blogs Explore More 2 min read Sols 4323-4324: Surfin’ Our Way out of the Channel Article 4 days ago 2 min read Sols 4321-4322: Sailing Out of Gediz Vallis Article 5 days ago 2 min read Sols 4318-4320: One Last Weekend in the Channel Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  15. With over 34 years of experience in human spaceflight, Mark Sonoda has witnessed some of NASA’s most pivotal moments, from the startup of the International Space Station to the retirement of the space shuttle. As the acting associate program manager for the Commercial Low Earth Orbit Development Program (CLDP), he is set to help guide NASA through another monumental period: the commercialization of space. Official portrait of Mark Sonoda. NASA/Bill Stafford Sonoda’s new role grants extraordinary opportunities to shape the future of human spaceflight. While NASA has maintained a leading presence in low Earth orbit since 1961, Sonoda shared how CLDP is “working to establish commercial low Earth orbit destinations owned and operated by private companies, where NASA is just one of many customers. This shift will open doors to even more advancements and benefits for humanity.” Sonoda plans to leverage his decades of experience to support the growth of CLDP as it moves from early planning stages into a more operational phase. Specifically, he will apply his expertise in systems engineering and leadership to helping certify commercial destinations in low Earth orbit. One of his priorities is ensuring that the program team is set up for success with the right personnel, infrastructure, and resources to be successful as it grows. Mark Sonoda visits the Lincoln Memorial during a trip to Washington, DC. Sonoda’s NASA experience has offered him many valuable lessons, the most important of which is the power of teamwork. He recalls a time when, as a station training lead, he realized that even the most well-prepared plans benefit from team collaboration. “A good team will always be stronger than an individual,” he shared, noting that the strength of NASA lies in its collective effort. Looking ahead, Sonoda anticipates exciting opportunities to foster commercial partnerships. He is particularly optimistic that increased access to space for private companies and individuals will cultivate new innovations and public interest in space exploration. At the same time, he acknowledges that NASA must adapt to its new role in low Earth orbit, transitioning from being the primary driver of exploration to becoming one of many customers in a thriving commercial ecosystem. Mark Sonoda is with his family. For the Artemis Generation, Sonoda hopes to pass on a legacy of inspiration and resilience. “I hope to leave behind a future where challenges are seen not as barriers, but as opportunities to make the world a better place.” View the full article
  16. An astronaut aboard the International Space Station shot this photo of large meanders of the Alabama River while orbiting over the southern United States. The river’s smooth water surface reflects sunlight back toward the astronaut’s camera, producing an optical phenomenon known as sunglint.NASA/Woody Hoburg In this June 26, 2023, photo taken from the International Space Station, sunlight shines off the smooth waters of the Alabama River in a phenomenon known as sunglint. When photographing Earth, astronauts often take advantage of sunglint’s tendency to increase the contrast between water surfaces and surrounding land surfaces. In the 1960s, the Alabama River was dammed, creating Dannelly Reservoir (the large shining area at center left). Construction of the dam also raised water levels upriver. This resulted in flooding at several points along the river. These flooded zones are typical of floodplains—the low, flat areas immediately next to larger rivers. In this image, flooded zones appear as irregular, bright shapes extending away from the river, like at Gee’s Bend (center bottom). Text Credit: Justin Wilkinson Image Credit: NASA/Woody Hoburg View the full article
  17. Learn Home Science Activation’s PLACES… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute The NASA Science Activation program’s Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES) project supports middle and high school educators to engage students in data-rich Earth science learning through the integration of NASA data sets, images, classroom lessons, and other assets. This project draws on a place-based approach as a means to increase “data fluency” — the ability and confidence to make sense of and use data. This means knowing when, how, and why to use data for a specific purpose, such as solving problems and communicating ideas grounded in evidence. As part of this effort, PLACES facilitated its third Professional Learning (PL) Summer Institute (SI) for 22 educators at the Gulf of Maine Research Institute (GMRI) in Portland, Maine the week of August 12th, 2024. This is the third PL Summer Institute the PLACES team has facilitated, each focusing on engaging educators in place-based, data-rich teaching and learning with NASA data and resources. The GMRI PL development and facilitation was a collaborative co-design effort between two NASA Science Activation projects (PLACES led by WestEd and the Learning Ecosystems Northeast project led by GMRI) and colleagues from the Concord Consortium and NASA Langley Research Center. During this PL, teachers took part in community science projects developed by GMRI to incorporate youth in ongoing research projects, including a mix of field- and classroom-based experiences that explored the phenomena of Hemlock Woolly Adelgid (HWA) and the changes to intertidal crab populations – two invasive species that are proliferating as a result of climate change. During two field-based experiences, teachers gathered primary data using protocols from GMRI’s Ecosystem Investigation Network and the NASA-sponsored program, GLOBE (Global Learning and Observations to Benefit the Environment). Teachers then explored these primary data using Concord Consortium’s Common Online Data Analysis Platform (CODAP) to better understand the geographic and temporal spread of these species. To connect their local experiences to global happenings, teachers then explored secondary data sets, including those sourced from the My NASA Data (MND – also supported by NASA Science Activation as part of the GLOBE Mission Earth project) Earth System Explorer (e.g., Normalized Difference Vegetation Index, salinity, sea surface temperature). The facilitation team also used the MND Data Literacy Cubes to encourage teachers to consider a multitude of diverse questions about place, data, and the phenomena. The GLOBE protocols supplemented existing GMRI data collection protocols, presenting new opportunities for teachers already experienced with HWA and Green Crabs. The MND data and Data Literacy Cubes moved teachers from questions they generated as part of their primary data collection towards new knowledge. Daily feedback from teachers highlighted their appreciation for the responsiveness of the facilitation team, as well as a growing curiosity and desire for using NASA resources such as protocols from GLOBE and data from MND’s Earth System Explorer. This is exciting to see as the teachers transition from the Summer Institute into a virtual Community of Practice during the school year. The Community of Practice engages them in peer-to-peer collaboration and dialogue as they develop, test, and give feedback on their own place-based, data-rich experiences using NASA data and resources. So far, teachers are planning to tackle a variety of topics ranging from ocean chemistry to human connections to the environment. Teachers indicated their interest in “making place-based experiences meaningful to our unique populations of students and having cultural representation in the classroom,” and focusing on “cross-school collaboration.” Preliminary evaluation data indicated that 76% of teachers thought their experiences with NASA resources during the SI helped them identify ways to bring data into their classroom. 85% of teachers indicated they feel a greater connection to NASA and knowledge of NASA resources for enhancing student understanding and engagement in science. Moving into the fall, teachers will take part in a Community of Practice, where they will work to implement a place-based, data-rich moment in their individual classrooms. In the summer of 2025, teachers will take part in a second summer institute where they will continue to learn more about implementing place-based, data-rich instruction. The PLACES GMRI Summer Institute was made possible by a large co-design, collaborative effort across our partner organizations. This included: Facilitation Team: Catherine Bursk (GMRI), Meggie Harvey (GMRI), Sara Salisbury (GMRI), Daniel Damelin (Concord Consortium) In-person Facilitation Support Team: Leigh Peake (GMRI), Karen Lionberger (WestEd), Kristin Hunter-Thomson (Dataspire), Angela Rizzi (NASA Langley) In-Person Team Member Participants: Janet Struble and Kevin Czaikowski (GLOBE, University of Toledo), Svetlana Darche (WestEd) Virtual Observers: Kirsten Daehler, Nicole Wong, Leticia Perez (WestEd), Tracy Ostrom (GLOBE, UC Berkeley), Lori Rubino-Hare (NAU) Additional support: Frieda Reichsman (Concord Consortium), Barbie Buckner and Jessia Taylor (NASA Langley), Sean Ryan (NAU), Lauren Shollenberger (NAU) PLACES is supported by NASA under cooperative agreement award number 80NSSC22M0005 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn Teachers at the GMRI summer institute review NDVI data ranging from 2002 to 2022 and identify patterns and trends. Share Details Last Updated Oct 04, 2024 Editor NASA Science Editorial Team Location NASA Langley Research Center Related Terms Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Opportunities For Educators to Get Involved Science Activation Explore More 2 min read Culturally Inclusive Planetary Engagement in Colorado Article 21 hours ago 40 min read GPM Celebrates Ten Years of Observing Precipitation for Science and Society Article 1 day ago 2 min read New NASA eClips VALUE Bundles for Learners with Varied Needs Article 2 days ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  18. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Students celebrate after a successful performance in the 2024 Student Launch competition at Bragg Farms in Toney, Alabama.NASA NASA has selected 71 teams from across the U.S. to participate in its 25th annual Student Launch Challenge, one of the agency’s Artemis Student Challenges. The competition is aimed at inspiring Artemis Generation students to explore science, technology, engineering, and math (STEM) for the benefit of humanity. As part of the challenge, teams will design, build, and fly a high-powered amateur rocket and scientific payload. They also must meet documentation milestones and undergo detailed reviews throughout the school year. The nine-month-long challenge will culminate with on-site events starting on April 30, 2025. Final launches are scheduled for May 3, at Bragg Farms in Toney, Alabama, just minutes north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. Teams are not required to travel for their final launch, having the option to launch from a qualified site. Details are outlined in the Student Launch Handbook. Each year, NASA updates the university payload challenge to reflect current scientific and exploration missions. For the 2025 season, the payload challenge will again take inspiration from the Artemis missions, which seek to land the first woman and first person of color on the Moon, and pave the way for future human exploration of Mars. As Student Launch celebrates its 25th anniversary, the payload challenge will include reports from STEMnauts, non-living objects representing astronauts. The STEMnaut crew must relay real-time data to the student team’s mission control via radio frequency, simulating the communication that will be required when the Artemis crew achieves its lunar landing. University and college teams are required to meet the 2025 payload requirements set by NASA, but middle and high school teams have the option to tackle the same challenge or design their own payload experiment. Student teams will undergo detailed reviews by NASA personnel to ensure the safety and feasibility of their rocket and payload designs. The team closest to their target will win the Altitude Award, one of multiple awards presented to teams at the end of the competition. Other awards include overall winner, vehicle design, experiment design, and social media presence. In addition to the engineering and science objectives of the challenge, students must also participate in outreach efforts such as engaging with local schools and maintaining active social media accounts. Student Launch is an all-encompassing challenge and aims to prepare the next generation for the professional world of space exploration. The Student Launch Challenge is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies. For more information about Student Launch, visit: Student Launch Website Taylor Goodwin Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 taylor.goodwin@nasa.gov Facebook logo @StudentLaunch @StudentLaunch Share Details Last Updated Oct 04, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related TermsMarshall Space Flight Center Explore More 2 min read NASA Announces Teams to Compete in International Rover Challenge Article 1 hour ago 20 min read The Marshall Star for October 2, 2024 Article 2 days ago 29 min read The Marshall Star for September 25, 2024 Article 1 week ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  19. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA MSFC HERC is the annual engineering competition – one of NASA’s longest standing challenges – held its concluding event April 19 and April 20, at the U.S. Space & Rocket Center in Huntsville, near NASA’s Marshall Space Flight Center.NASA NASA has selected 75 student teams to begin an engineering design challenge to build rovers that will compete next spring at the U.S. Space and Rocket Center near the agency’s Marshall Space Flight Center in Huntsville, Alabama. The competition is one of the agency’s Artemis Student Challenges, encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics (STEM). Recognized as NASA’s leading international student challenge, the 31st annual Human Exploration Rover Challenge (HERC) aims to put competitors in the mindset of NASA’s Artemis campaign as they pitch an engineering design for a lunar terrain vehicle which simulates astronauts piloting a vehicle, exploring the lunar surface while overcoming various obstacles. Participating teams represent 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations from around the world. The 31st annual Human Exploration Rover Challenge (HERC) is scheduled to begin on April 11, 2025. The challenge is managed by NASA’s Southeast Regional Office of STEM Engagement at NASA Marshall. Following a 2024 competition that garnered international attention, NASA expanded the challenge to include a remote-control division, Remote-Operated Vehicular Research, and invited middle school students to participate. The 2025 HERC Handbook includes guidelines for the new remote-control division and updates for the human-powered division. NASA’s Artemis Student Challenges reflects the goals of the Artemis campaign, which seeks to land the first woman and first person of color on the Moon while establishing a long-term presence for science and exploration. More than 1,000 students with 72 teams from around the world participated in the 2024 challenge as HERC celebrated its 30th anniversary as a NASA competition. Since its inception in 1994, more than 15,000 students have participated in HERC – with many former students now working at NASA, or within the aerospace industry. To learn more about HERC, please visit: HERC Website Taylor Goodwin Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 taylor.goodwin@nasa.gov Share Details Last Updated Oct 04, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related TermsMarshall Space Flight Center Explore More 20 min read The Marshall Star for October 2, 2024 Article 2 days ago 29 min read The Marshall Star for September 25, 2024 Article 1 week ago 3 min read NASA Michoud Continues Work on Evolved Stage of SLS Rocket for Future Artemis Missions Article 1 week ago Keep Exploring Discover Related Topics NASA Student Launch Challenge Middle/high school and college-level student teams design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload. NASA Human Exploration Rover Challenge Teams of high school and college students design, develop, build, and test human-powered rovers capable of traversing challenging terrain. NASA STEM Opportunities and Activities For Students Marshall Space Flight Center View the full article
  20. Hubble Space Telescope Home Hubble Observes a Peculiar… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities 2 min read Hubble Observes a Peculiar Galaxy Shape This NASA/ESA Hubble Space Telescope image features the galaxy, NGC 4694. ESA/Hubble & NASA, D. Thilker This NASA/ESA Hubble Space Telescope image reveals the galaxy, NGC 4694. Most galaxies fall into one of two basic types. Spiral galaxies are young and energetic, filled with the gas needed to form new stars and sporting spiral arms that host these hot, bright youths. Elliptical galaxies have a much more pedestrian look, and their light comes from a uniform population of older and redder stars. But some galaxies require in-depth study to classify their type: such is the case with NGC 4694, a galaxy located 54 million light-years from Earth in the Virgo galaxy cluster. NGC 4694 has a smooth-looking, armless disk which — like an elliptical galaxy — is nearly devoid of star formation. Yet its stellar population is still relatively young and new stars are actively forming in its core, powering its bright center and giving it a markedly different stellar profile from that of a classic elliptical. Although elliptical galaxies often host significant quantities of dust, they generally do not hold the fuel needed to form new stars. NGC 4694 is filled with the hydrogen gas and dust normally seen in a young and sprightly spiral, and a huge cloud of invisible hydrogen gas surrounds the galaxy. As this Hubble image reveals, NGC 4694’s dust forms chaotic structures that indicate some kind of disturbance. It turns out that the cloud of hydrogen gas around NGC 4694 forms a long bridge to a nearby, faint dwarf galaxy named VCC 2062. The two galaxies have undergone a violent collision, and the larger NGC 4694 is accreting gas from the smaller galaxy. This collision helped give NGC 4694 its peculiar shape and star-forming activity that classify it as a lenticular galaxy. Lenticular galaxies lack the unmistakable arms of a spiral, but still have a central bulge and disk. They also hold more star-forming gas than an elliptical galaxy. Some galaxies, like NGC 4694, aren’t as easy to categorize as one type or the other. It takes a bit more digging to reveal their true nature, and thanks to Hubble, we have the ability to uncover their secrets. Download this image Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Oct 04, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Lenticular Galaxies Missions The Universe Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble on the NASA App Hubble’s Galaxies Hubble by the Numbers View the full article
  21. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read Sols 4323-4324: Surfin’ Our Way out of the Channel An image from NASA’s Mars rover Curiosity, looking back at the western edge of the Gediz Vallis deposit (top left) and the channel wall in the sulfate unit with unconsolidated sand/soil deposits in the foreground. This image was taken by Curiosity’s Left Navigation Camera on Sol 4321 — Martian day 4,321 of the Mars Science Laboratory mission — on Oct. 2, 2024, at 02:13:27 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Oct. 2, 2024 As a member of the group tasked with organizing our campaign to investigate the Gediz Vallis channel and deposit (informally known as the Channel Surfers), I was a little sad this morning to see that our drive had successfully taken us out of the channel, back onto the magnesium sulfate-bearing unit, into which the channel is incised. Our long-anticipated investigation of the channel has proven fruitful: Curiosity made the first definitive detection of elemental sulfur on Mars, and we have examined a variety of intriguing lithologies and relationships within the deposit over the last 4.5 months. It has been an exciting time, and I have particularly enjoyed riding this wave with my fellow Channel Surfers — a great team! Now to make sense of all the fantastic data we have collected. We are not completely done looking at the channel and deposits though. We will be driving parallel to the western margin for a while to facilitate comparisons with what we observed from the east. Tosol we will image two areas of interest within the Gediz Vallis channel from our current vantage point with Mastcam and ChemCam long-distance RMI. But back to the sulfate unit — the team planned a number of activities to document the return to the sulfate unit. These include APXS and MAHLI of the nodular bedrock immediately in front of the rover (“Sub Dome”), ChemCam LIBS and Mastcam of another bedrock block (“Vert Lost Grove”), and Mastcam of the resistant bedrock ridge immediately adjacent to the Gediz Vallis channel (“Muah Mountain”). Once the drive of about 25 meters (about 82 feet) hopefully executes successfully, Curiosity will look down and image the terrain between her front wheels with MARDI, acquire ChemCam LIBS on an autonomously selected target in the workspace, and then perform a series of atmospheric and environmental observations. These include a Mastcam tau to measure dust in the atmosphere, Navcam dust devil and suprahorizon movies, and a Navcam line-of-sight observation. The plan is rounded out with DAN, RAD, and REMS activities. Written by Lucy Thompson, Planetary Geologist at University of New Brunswick Share Details Last Updated Oct 03, 2024 Related Terms Blogs Explore More 2 min read Sols 4321-4322: Sailing Out of Gediz Vallis Article 1 day ago 2 min read Sols 4318-4320: One Last Weekend in the Channel Article 4 days ago 4 min read Sols 4316-4317: Hunting for Sulfur Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  22. Learn Home Culturally Inclusive Planetary… Biological & Physical… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 2 min read Culturally Inclusive Planetary Engagement in Colorado In August 2024, the NASA Science Activation program’s Planetary Resources and Content Heroes (ReaCH) project held a Culturally Inclusive Planetary Engagement workshop at the Laboratory for Atmospheric and Space Physics in Boulder, Colorado for the planetary science community. These workshops are designed to enhance the ability of scientists to engage Black and Latinx youth and their families in planetary science. Workshops include discussions with local educators about evidence-based engagement strategies and experiences conducting hands-on planetary science activities, along with an opportunity to practice these approaches during an event with local partners. Planetary scientists and engineers from Boulder, as well as scientists from Florida, Maryland, and Alaska participated. ReaCH partnered with the Boys & Girls Clubs of Metro Denver, whose staff participated in the workshop to share their perspectives. Other educators local to the Denver area also participated, along with an educational specialist from NASA@ My Library (another Science Activation program). The workshop culminated in an event at the Shopneck Boys & Girls Club in Brighton, CO; workshop participants facilitated a variety of hands-on planetary activities for approximately 120 children. Workshop participants also shared information about college pathways into science professions with teenagers at the Club. During feedback with evaluators, workshop participants shared, “I got to have hands-on experience working with an underserved population, which I haven’t done before in a workshop. I think this is the necessary next step for me. I am tired of just learning about things. I want to DO things. This gave me the ability to do it without setting up everything myself.” Through careful revisions to these workshops and detailed evaluation, the Planetary ReaCH project is building a replicable model that will be used to support similar workshops for other science fields. Members of the planetary and astrobiology community are invited to apply to attend future ReaCH workshops. Planetary ReaCH is supported by NASA under cooperative agreement award number 80NSSC21M0003 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn Workshop participants experimented with activities such as this model of impact cratering. Share Details Last Updated Oct 03, 2024 Editor NASA Science Editorial Team Related Terms Biological & Physical Sciences Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation Explore More 2 min read New NASA eClips VALUE Bundles for Learners with Varied Needs Article 1 day ago 3 min read 2024 ASGSR Art Competition! Article 1 day ago 7 min read NASA’s Webb Reveals Unusual Jets of Volatile Gas from Icy Centaur 29P Article 1 day ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  23. Credit: NASA Two proposals for missions to observe X-ray and far-infrared wavelengths of light from space were selected by NASA for additional review, the agency announced Thursday. Each proposal team will receive $5 million to conduct a 12-month mission concept study. After detailed evaluation of those studies, NASA expects to select one concept in 2026 to proceed with construction, for a launch in 2032. The resulting mission will become the first in a new class of NASA astrophysics missions within the agency’s longstanding Explorers Program. The new mission class, Probe Explorers, will fill a gap between flagship and smaller-scale missions in NASA’s exploration of the secrets of the universe. “NASA’s Explorers Program brings out some of the most creative ideas for missions that help us reveal the unknown about our universe. Establishing this new line of missions – the largest our Astrophysics program has ever competed – has taken that creativity to new heights,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Both of the selected concepts could enable ground-breaking science responsive to the top astrophysics priorities of the decade, develop key technologies for future flagship missions, and offer opportunities for the entire community to use the new observatory, for the benefit of all.” The National Academies of Sciences, Engineering, and Medicine’s 2020 Decadal Survey, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, recommended NASA establish this new mission class, with the first mission observing either X-ray or far-infrared wavelengths of light. Mission costs for the new Probe Explorers are capped at $1 billion each, not including the cost of the rocket, launch services, or any contributions. NASA evaluated Probe Explorers proposals based on their scientific merit in alignment with the Decadal Survey’s recommendations, feasibility of development plans, and use of technologies that could support the development of future large missions. The selected proposals are: Advanced X-ray Imaging Satellite This mission would be an X-ray imaging observatory with a large, flat field-of-view and high spatial resolution. It would study the seeds of supermassive black holes; investigate the process of stellar feedback, which influences how galaxies evolve; and help determine the power sources of a variety of explosive phenomena in the cosmos. The observatory would build on the successes of previous X-ray observatories, capturing new capabilities for X-ray imaging and imaging spectroscopy. Principal investigator: Christopher Reynolds, University of Maryland, College Park Project management: NASA’s Goddard Space Flight Center in Greenbelt, Maryland Probe far-Infrared Mission for Astrophysics This observatory would be a 5.9-foot (1.8-meter) telescope studying far-infrared wavelengths, helping bridge the gap between existing infrared observatories, such as NASA’s James Webb Space Telescope, and radio telescopes. By studying radiant energy that only emerges in the far-infrared, the mission would address questions about the origins and growth of planets, supermassive black holes, stars, and cosmic dust. Principal investigator: Jason Glenn, NASA Goddard Project management: NASA’s Jet Propulsion Laboratory in Southern California The Explorers Program is the oldest continuous NASA program designed to provide frequent, low-cost access to space using principal investigator-led space science investigations relevant to the Science Mission Directorate’s astrophysics and heliophysics programs. Since the Explorer 1 launch in 1958, which discovered Earth’s radiation belts, the Explorers Program has launched more than 90 missions, including the Uhuru and Cosmic Background Explorer missions that led to Nobel prizes for their investigators. The Explorers Program is managed by NASA Goddard for the Science Mission Directorate, which conducts a wide variety of research and scientific exploration programs for Earth studies, space weather, the solar system and universe. For more information about the Explorers Program, visit: https://explorers.gsfc.nasa.gov -end- Alise Fisher Headquarters, Washington 202-617-4977 alise.m.fisher@nasa.gov Share Details Last Updated Oct 03, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsScience Mission DirectorateAstrophysics DivisionAstrophysics Explorers Program View the full article
  24. During National Disability Employment Awareness Month, we celebrate the thousands of employees living with disabilities who contribute to NASA’s mission. By sharing their stories, we highlight the impact people with disabilities have on our organization and the vital role they play in fostering an inclusive workforce at NASA. Meghan Daley sits in the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida during the final days of the Space Shuttle Program. Meghan Daley has spent nearly two decades blazing new trails in robotics. As a project manager in NASA’s Engineering, Software Robotics, and Simulation Division at Johnson Space Center in Houston, she is building simulations that will shape the future of space exploration. From training astronauts with advanced robotic tools to collaborating with the Department of Defense on research simulations, Daley’s work is transforming how humans interact with space, ensuring that every mission is set up for success. Daley oversees key programs at Johnson, including the Generic On-Orbit Robotic Trainer (GROOT), the Robotic OnBoard Trainer, and Dynamics Skills Trainers. These tools are vital to NASA’s mission and are used in both ground-based simulations and real-time space operations. One of Daley’s proudest achievements is launching GROOT, a simulation system that trains astronauts in a variety of robotic operations. From handling the Canadarm2 for spacecraft docking to servicing satellites, GROOT prepares astronauts for tasks like performing maintenance, assembling structures in space, managing cargo, and even coordinating multiple robotic systems. The tool also supports astronauts in mastering robotic inspections, autonomous operations, and emergency procedures, making it indispensable for missions to the Moon and Mars. During a visit by Gen. John W. Raymond to the Systems Engineering Simulator, the general requested an outdated rendezvous and proximity operations simulation for the United States Space Force. Recognizing the limitations of the old system and knowing her team’s capabilities, Daley proposed building a new simulation from scratch to meet their needs. In 2019, GROOT was born and continues to be a critical asset in NASA’s training toolkit. United States Space Force Vice Chief of Space Operations Gen. David D. Thompson observes a demonstration of the Generic On-Orbit Robotic Trainer alongside NASA astronauts and crew members. For Daley, celebrating her identity and culture in the workplace is about advocacy and education. She is passionate about using her voice to promote awareness and understanding, not just for her own experience, but for the benefit of all. “Being a woman in engineering is extremely difficult. However, being a woman with a disability in engineering is even harder,” Daley said. “I have learned how important it is to communicate your ideas, questions, and concerns.” When reflecting on her career, Daley says she cannot pick a favorite project. Each one—from Orion to Gateway to the International Space Station and space shuttle—has deepened her understanding of NASA’s vision. The Robotic OnBoard Trainer onboard the International Space Station in the U.S. Destiny Laboratory. As Daley looks to the future of robotics and human spaceflight, she remains optimistic and passionate about inspiring the next generation of explorers. “Keep your hope and don’t be afraid to ask questions because that is how you learn and become a leader!” she said. View the full article
  25. About The Commercial and Intellectual Property Law Practice Group is responsible for providing Agency-wide legal advice for negotiating, drafting, and interpreting Space Act Agreements; for partnering arrangements with commercial organizations; and, for commercialization of NASA activities. The Practice Group also provides advice and counsel in patents, copyrights, and trade secrets. Intellectual Property Group: For the area of patents, the Practice Group has an Intellectual Property division devoted to providing functional guidance with respect to patent solicitation to ensure application of uniform criteria Agency-wide. In addition, the division supports the implementation of policies and procedures related to patent and copyright licensing and supports the U.S. Department of Justice in patent infringement-related claims. Contacts Associate General Counsel: Karen Reilley Agency Counsel for Intellectual Property: Trent Roche Paralegal Specialist: Ruth Catan Attorney Staff: Merideth Bentley Joe Fleishman Jeffrey Heninger Margaret Roberts Olivia Scheuer OGC Disclaimer: The materials within this website do not constitute legal advice. For details read our disclaimer. Read More View the full article
×
×
  • Create New...