Jump to content

NASA

Publishers
  • Posts

    5,864
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. As another inspiring Hispanic Heritage Month concludes, we wanted to take the moment to highlight one of our own, Tracy Hudspeth. Tracy Hudspeth is the Communication Specialist at NASA Office of Small Business Programs. She plays a pivotal role in shaping the organization’s public image and ensuring effective communication internally and externally. National Hispanic Heritage Month celebrates the contributions of Hispanic and Latino Americans to the United States. How do you feel about being part of this celebration, especially in the context of your work with NASA? I’m honored to be recognized in this celebration as an Afro-Latina working for NASA. In this position, I have the pleasure of planning our monthly Learning Series and quarterly Outreach Events. I take pride in the fact that we create events that provide resources and help to promote the growth and development of Hispanic-owned businesses in the United States. This is personal to me because several members of my family, including my mom, utilized available programs and resources to start their businesses. Can you share an exciting project you recently worked on? All of my projects have been exciting but if I had to choose, I would say the NASA Small Business Opportunities and Resources Networking Conference which took place on Wednesday, October 11th! Who inspires you? All the women in my family. I come from a long line of strong women. Their traits include being self-confident, productive, optimistic, caring, fearless women who stand up for what they believe in and unbothered by what others say or think. They have always inspired me to be true to myself and a go-getter! Do you have a favorite memory where you most strongly felt a sense of community? I recently attended a block party in my old neighborhood. This event is special to me because my son who was 5 at the time came up with the idea of having an “outside party” after having a conversation with an original homeowner who had been living there since the 1960’s. With the assistance of our neighbors, my son’s dream of bringing the block party back to life came true and they have continued the tradition ever since. It was wonderful to attend this year to see the community come together to celebrate and fellowship. Editor: Maliya Malik, NASA Office Of Small Business Programs Intern OSBP Home Share Details Last Updated Oct 19, 2023 Related Terms Office of Small Business Programs (OSBP) Explore More 1 min read Navigating Tomorrow’s Opportunities Article 2 weeks ago 4 min read NASA and Bastion: A Collaborative Teamwork Advancing Deep Space Exploration and Ensuring Safety in Missions Article 2 weeks ago 2 min read Honoring Hispanic Heritage Month: Patriot Construction Supports NASA Ames Research Center Article 3 weeks ago View the full article
  2. NASA

    Metrics

    2 Min Read Metrics Services Catalog The catalogs provide service description, chargeback rate, unit of measure, and service level indicators for each NSSC service. Service Level Agreement (SLA) The SLA provides information about roles, responsibilities, rates, and service level indicators for all NASA Centers. The SLA is negotiated on an annual basis in line with the fiscal year. A single SLA is shared by all NASA Centers and signed by the Associate Administrator, Chief Financial Officer, Chief Information Officer, and the Office of Inspector General. The SLA provides for the delivery of specific services from the NSSC to NASA Centers and Headquarters Operations in the areas of: Financial Management Procurement Human Resources Information Technology Agency Business Services Customer Satisfaction Surveys The NSSC is fundamentally changing the way NASA does business. In order to maintain customer loyalty and satisfaction, we must not only deliver a higher level of service, but also be customer focused. Executive Summary of Broad-Based Survey Results for 2016 Executive Summary of Broad-Based Survey Results for 2013 NSSC Bill (Formerly know as Performance and Utilization Report (PUR)) *** On-Line Course Management and Training Purchases have been realigned to the OLC &Training Purchases section of the bill in accordance with the realignment of training funds. Center Special Projects have been consolidated into one Special Projects bill with the funding Center identified for each project.*** FY 2023 – Utilization Reports M September 2023 August 2023 July 2023 June 2023 May 2023 April 2023 March 2023 February 2023 January 2023 December 2023 November 2023 October 2022 FY 2022 – Utilization Reports September 2022 August 2022 July 2022 June 2022 May 2022 April 2022 March 2022 February 2022 January 2022 December 2021 November 2021 October 2021 FY 2021 – Utilization Reports September 2021 August 2021 July 2021 June 2021 May 2021 April 2021 March 2021 February 2021 January 2021 December 2020 November 2020 October 2020 View the full article
  3. Narrow jet stream near equator has winds traveling 320 miles per hour NASA’s James Webb Space Telescope has discovered a new, never-before-seen feature in Jupiter’s atmosphere. The high-speed jet stream, which spans more than 3,000 miles (4,800 kilometers) wide, sits over Jupiter’s equator above the main cloud decks. The discovery of this jet is giving insights into how the layers of Jupiter’s famously turbulent atmosphere interact with each other, and how Webb is uniquely capable of tracking those features. Image: Webb’s View of Jupiter This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white ‘spots’ and ‘streaks’ are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover.Image: NASA, ESA, CSA, STScI, R. Hueso (University of the Basque Country), I. de Pater (University of California, Berkeley), T. Fouchet (Observatory of Paris), L. Fletcher (University of Leicester), M. Wong (University of California, Berkeley), J. DePasquale (STScI) “This is something that totally surprised us,” said Ricardo Hueso of the University of the Basque Country in Bilbao, Spain, lead author on the paper describing the findings. “What we have always seen as blurred hazes in Jupiter’s atmosphere now appear as crisp features that we can track along with the planet’s fast rotation.” The research team analyzed data from Webb’s NIRCam (Near-Infrared Camera) captured in July 2022. The Early Release Science program – jointly led by Imke de Pater from the University of California, Berkeley and Thierry Fouchet from the Observatory of Paris – was designed to take images of Jupiter 10 hours apart, or one Jupiter day, in four different filters, each uniquely able to detect changes in small features at different altitudes of Jupiter’s atmosphere. “Even though various ground-based telescopes, spacecraft like NASA’s Juno and Cassini, and NASA’s Hubble Space Telescope have observed the Jovian system’s changing weather patterns, Webb has already provided new findings on Jupiter’s rings, satellites, and its atmosphere,” de Pater noted. While Jupiter is different from Earth in many ways – Jupiter is a gas giant, Earth is a rocky, temperate world – both planets have layered atmospheres. Infrared, visible, radio, and ultraviolet light wavelengths observed by these other missions detect the lower, deeper layers of the planet’s atmosphere – where gigantic storms and ammonia ice clouds reside. Image: Jupiter’s Equatorial Jet Stream This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white ‘spots’ and ‘streaks’ are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks.Image: NASA, ESA, CSA, STScI, R. Hueso (University of the Basque Country), I. de Pater (University of California, Berkeley), T. Fouchet (Observatory of Paris), L. Fletcher (University of Leicester), M. Wong (University of California, Berkeley), J. DePasquale (STScI) On the other hand, Webb’s look farther into the near-infrared than before is sensitive to the higher-altitude layers of the atmosphere, around 15-30 miles (25-50 kilometers) above Jupiter’s cloud tops. In near-infrared imaging, high-altitude hazes typically appear blurry, with enhanced brightness over the equatorial region. With Webb, finer details are resolved within the bright hazy band. The newly discovered jet stream travels at about 320 miles per hour (515 kilometers per hour), twice the sustained winds of a Category 5 hurricane here on Earth. It is located around 25 miles (40 kilometers) above the clouds, in Jupiter’s lower stratosphere. By comparing the winds observed by Webb at high altitudes, to the winds observed at deeper layers from Hubble, the team could measure how fast the winds change with altitude and generate wind shears. Image: Jupiter’s Winds Researchers using NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) have discovered a high-speed jet stream sitting over Jupiter’s equator, above the main cloud decks. At a wavelength of 2.12 microns, which observes between altitudes of about 12-21 miles (20-35 kilometers) above Jupiter’s cloud tops, researchers spotted several wind shears, or areas where wind speeds change with height or with distance, which enabled them to track the jet. This image highlights several of the features around Jupiter’s equatorial zone that, between one rotation of the planet (10 hours), are very clearly disturbed by the motion of the jet stream.: NASA, ESA, CSA, STScI, Image: NASA, ESA, CSA, STScI, R. Hueso (University of the Basque Country), I. de Pater (University of California, Berkeley), T. Fouchet (Observatory of Paris), L. Fletcher (University of Leicester), M. Wong (University of California, Berkeley), A. James (STScI) While Webb’s exquisite resolution and wavelength coverage allowed for the detection of small cloud features used to track the jet, the complementary observations from Hubble taken one day after the Webb observations were also crucial to determine the base state of Jupiter’s equatorial atmosphere and observe the development of convective storms in Jupiter’s equator not connected to the jet. “We knew the different wavelengths of Webb and Hubble would reveal the three-dimensional structure of storm clouds, but we were also able to use the timing of the data to see how rapidly storms develop,” added team member Michael Wong of the University of California, Berkeley, who led the associated Hubble observations. The researchers are looking forward to additional observations of Jupiter with Webb to determine if the jet’s speed and altitude change over time. Image: Zoom in on Webb’s View of Jupiter A zoomed in view of Webb’s Jupiter image. Image: NASA, ESA, CSA, STScI, R. Hueso (University of the Basque Country), I. de Pater (University of California, Berkeley), T. Fouchet (Observatory of Paris), L. Fletcher (University of Leicester), M. Wong (University of California, Berkeley), J. DePasquale (STScI) “Jupiter has a complicated but repeatable pattern of winds and temperatures in its equatorial stratosphere, high above the winds in the clouds and hazes measured at these wavelengths,” explained team member Leigh Fletcher of the University of Leicester in the United Kingdom. “If the strength of this new jet is connected to this oscillating stratospheric pattern, we might expect the jet to vary considerably over the next 2 to 4 years – it’ll be really exciting to test this theory in the years to come.” “It’s amazing to me that, after years of tracking Jupiter’s clouds and winds from numerous observatories, we still have more to learn about Jupiter, and features like this jet can remain hidden from view until these new NIRCam images were taken in 2022,” continued Fletcher. The researchers’ results were recently published in Nature Astronomy. The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. Media Contacts Laura Betz – laura.e.betz@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. Hannah Braun – hbraun@stsci.edu , Christine Pulliam – cpulliam@stsci.edi Space Telescope Science Institute, Baltimore, Md. Downloads Download full resolution images for this article from the Space Telescope Science Institute. Related Information NASA’s Jupiter Website – https://science.nasa.gov/jupiter/ NASA’s Solar System Website – https://science.nasa.gov/solar-system/ More Webb News – https://science.nasa.gov/mission/webb/latestnews/ More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/ Webb Mission Page – https://science.nasa.gov/mission/webb/ Keep Exploring Related Topics Jupiter Overview Jupiter is the fifth planet from our Sun and is, by far, the largest planet in the solar system… Our Solar System Overview Our planetary system is located in an outer spiral arm of the Milky Way galaxy. We call it the… Planets Our solar system can be divided into three regions: the inner solar system, the outer solar system, and the Kuiper… Universe Explore the universe: Learn about the history of the cosmos, what it’s made of, and so much more. Share Details Last Updated Oct 19, 2023 Editor Steve Sabia Contact Location Goddard Space Flight Center Related Terms James Webb Space Telescope (JWST)JupiterPlanetary SciencePlanetsThe Solar System View the full article
  4. Four astronauts are busy training for Artemis II, the first mission to carry humans on NASA’s powerful SLS (Space Launch System) rocket and Orion spacecraft, testing systems to support life in deep space on future Moon missions and expanding the space frontier beyond Earth orbit. In August, the crew – NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen – finished the first part of their training known as fundamentals, establishing a foundational knowledge of all SLS and Orion systems. The quartet began the process of learning every inch of their Orion crew module’s interior, which will serve as their home for the approximately 10-day flight test. They reviewed the building blocks for navigating the spacecraft’s displays and executing the procedures they will use to fly and monitor Orion. While some training activities included all four crew members together, other activities involved one-on-one sessions with trainers. “The crew is making incredible progress getting ready for their flight as the first people to fly inside NASA’s newest spacecraft built for deep space,” said Jacki Mahaffey, chief training officer for Artemis II, based at NASA’s Johnson Space Center in Houston. “Their training is preparing them to do everything from planned mission tasks and daily operations, to how to recognize and deal with unexpected situations.” Artemis II crew members Reid Wiseman (foreground) and Jeremy Hansen participate in training in the Orion simulator at NASA’s Johnson Space Center in Houston.(Credit: NASA/James Blair) In September, Koch and Hansen, alongside several other astronauts, took part in geology training in the remote Mistastin Crater in Canada, an area in Newfoundland scientists have identified as one of the sites on Earth that’s most analogous to the Moon. While there, Koch and Hansen worked on identifying instruments and techniques for exploring the lunar surface, demonstrated sampling techniques, and practiced identifying and photographing geological features. While Hansen and Koch will not walk on the Moon during Artemis II, the training helped prepare them for key lunar observations during their mission and will pave the way for future Artemis crews as they train for surface science and discovery. CSA astronaut Jeremy Hansen and NASA astronaut Christina Koch sample rocks using rock hammers during a field geology training expedition in northern Labrador in Canada. (Credit: CSA) The full crew also took part in the first dry run for launch day operations at NASA’s Kennedy Space Center in Florida. The test gave the Exploration Ground Systems Program team an opportunity to share and demonstrate the steps involved in preparing the crew to get to their rocket and spacecraft on launch day, including donning their spacesuits, traveling to the launch pad, taking the elevator up the mobile launcher, and walking the crew access arm to the white room, where technicians will help them take their spacecraft seats and check out their systems atop the giant rocket. “Our training has been very smooth so far and we have enjoyed meeting the men and women around the globe working to bring Artemis missions to reality,” said NASA astronaut Reid Wiseman, the mission commander. “From the crew side, Victor, Christina, Jeremy, and I have developed a strong interpersonal chemistry that will be crucial as we work together to learn more about the Artemis II mission.” Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.(Credit: NASA) This month, the crew is beginning orbit operations training, including practicing operations in the Orion mission simulator at Johnson. They also are learning details about how to use cameras inside Orion to take photos of their activities inside the spacecraft, and document views of Earth and the Moon through the spacecraft’s four primary windows. Medical training will prepare the crew to handle potential medical situations that could arise during their mission. In the coming months, they also will delve deeper into training for the last leg of the mission, their return to Earth and recovery by a combined NASA and U.S. Navy team, They’ll prepare for both normal and emergency exits from their spacecraft in the ocean. With Artemis missions, NASA is collaborating with commercial and international partners to explore the Moon for scientific discovery and technology advancement and establish the first long-term presence on the Moon. The Moon missions will serve as training for how to live and work on another world as NASA prepares for human exploration of Mars. View the full article
  5. 24 Min Read The Marshall Star for October 18, 2023 Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASA Credits: NASA Marshall Managers Win Top Federal Award for DART Asteroid Deflection Mission By Rick Smith Brian Key and Scott Bellamy of NASA’s Marshall Space Flight Center accepted the Samuel J. Heyman Service to America Medals, presented by Partnership for Public Service Oct. 17 during a ceremony at the John F. Kennedy Center for Performing Arts in Washington. The awards program for career federal employees, known as the Sammies, aims to highlight key accomplishments that benefit the nation, seeks to build trust in government, and inspire people to consider careers in public service. Scott Bellamy, left, and Brian Key, right, pictured moments after receiving the Samuel J. Heyman Service to America Medals, known as the Sammies. Bellamy and Key accepted the prestigious awards on behalf of the entire DART (Double Asteroid Redirection Test) team during a ceremony on Oct. 17 at the John F. Kennedy Center for Performing Arts in WashingtonPartnership for Public Service/Allison Shelley Key and Bellamy led NASA’s DART (Double Asteroid Redirection Test) team, which successfully altered the orbit of an asteroid in September 2022, providing the first-ever planetary defense test capable of protecting Earth from celestial threats. As part of the PMPO (Planetary Missions Program Office) at Marshall, Key and Bellamy served as program manager and mission manager, respectively, for DART. For their work on the mission, the duo was honored in the Science, Technology, and Environment category of the Sammie awards. “DART was a first-of-its-kind mission that marked a watershed moment for planetary defense. The DART team members are some of the very best of NASA, and we are so excited to see Brian Key and Scott Bellamy recognized for their contributions and leadership,” NASA Administrator Bill Nelson said. “Brian, Scott, and the entire DART team have shaped the course of human space exploration, inspiring people around the world through innovation. Thanks to their dedication and hard work, NASA is better prepared to defend our home planet, and will be ready for whatever the universe throws at us.” In his role on DART, Key maintained budget, staff, and schedule oversight for the mission and worked directly with DART spacecraft developers at Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. “I’m elated to see our team honored with this award, and hope it will bring more attention to the valuable work NASA does to protect our home world,” said Key, who as program manager oversees NASA’s science exploration portfolio spanning the Discovery Program, the New Horizons Program, and the Solar System Exploration Program, which covers the full range of large and small science missions exploring the solar system, planets, and other targets of interest. Bellamy was tasked with keeping the team on track to launch and execute the mission – echoed Key’s praise for the entire DART team. “We’re just the managers,” he said. “Our role has been to serve the team, keeping things moving forward as smoothly as possible to enable them to do the actual hands-on, pencil-to-hardware that brought this mission from concept to reality.” That mission could not have gone more flawlessly, they agreed. Launched in November 2021, the DART spacecraft traveled to more than 6.8 million miles from Earth with one simple goal: to intentionally impact into Dimorphos, a 492-foot-diameter asteroid, at roughly 14,000 miles per hour, thus altering its orbit around its much larger parent asteroid, Didymos. DART’s collision with Dimorphos altered the asteroid’s roughly 12-hour orbit period around its parent by about a half-hour. An illustration of the DART spacecraft.NASA “I don’t even have the words to describe the release of emotion in the control room when we got confirmation that DART had impacted,” Bellamy said. “The whole team went from nail-biting suspense to unbelievable excitement in a matter of seconds.” Neither Key, Bellamy, nor the Planetary Missions Program Office is resting on these newly acquired laurels. Key continues to serve as program manager on NASA’s Juno mission, which since its arrival at Jupiter in 2016 has sought new clues about the gas giant’s evolution and role in the formation of our solar system. He’s also program manager for NASA’s Psyche mission, launched Oct. 13 to begin a six-year journey to study a metal-rich asteroid of the same name in solar orbit between Mars and Jupiter. Bellamy, meanwhile, is mission manager for NASA’s Lucy mission, which over a 12-year period will tour the asteroid belt between Mars and Jupiter and closely study seven Jovian asteroids. Launched in 2021, Lucy will be the first spacecraft ever to return to Earth from the outer solar system. Bellamy also leads development of NASA’s Europa Clipper mission, which could launch in late 2024 to fly to Jupiter’s moon and conduct an intensive survey of the potentially life-sustaining seas beneath Europa’s icy surface. As for future planetary defense activities, NASA and its partners will build on DART’s success. A follow-up mission by ESA (European Space Agency), called Hera, is scheduled to launch in 2024 to further assess DART’s impact on Dimorphos. NASA also is developing the NEO Surveyor mission, which is designed to accelerate the rate at which the agency can discovery potentially hazardous near-Earth objects, asteroids and comets which can come close to Earth and could pose an impact risk. “Even small asteroids could do a tremendous amount of damage to a city or metropolitan area,” Key said. “We need to be more aware of the very real threat they pose and develop the means to avoid calamity.” Johns Hopkins Applied Physics Laboratory managed the DART mission for NASA’s Planetary Defense Coordination Office. The agency provided support for the mission from several centers, including the Jet Propulsion Laboratory, Goddard Space Flight Center, Johnson Space Center, Glenn Research Center, and Langley Research Center. Created in 2002, the Samuel J. Heyman Service to America Medals, named for the organization’s late founder, recognize excellence and leadership in the federal government. Presented annually by the nonprofit Partnership for Public Service, the awards honor public servants whose significant achievements help the nation innovate, engage globally, and deliver vital services to the public. Learn more about the awards. Smith, a Manufacturing Technical Solutions employee, supports Marshall’s Office of Communications. › Back to Top Mission Success is in Our Hands to Showcase New Look at Oct. 19 Event By Wayne Smith An initiative highlighting mission success and the safety culture at NASA’s Marshall Space Flight Center will showcase a new look at its Oct. 19 event. Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs Engineering. As part of the final Shared Experiences Forum of the year, the Mission Success committee will display eight new testimonial banners featuring Marshall team members as part of its rebranding. The banners will be placed across the center. Garrett Harencak, Jacobs Engineering vice president and president of Mission Support and Test Services LLC, will be the Mission Success is in Our Hands Shared Experiences Forum speaker Oct. 19. The forum is available to the public virtually through Teams. Garrett Harencak, Jacobs Engineering vice president and president of Mission Support and Test Services LLC, will be the Mission Success is in Our Hands hybrid Shared Experiences Forum speaker from 11:30 a.m. to 1 p.m. Oct. 19. Marshall team members are encouraged to attend the meeting in Building 4203, Room 1201. Light refreshments will be served. The forum is available to NASA employees and the public virtually via Teams. Harencak will share his experiences in working and leading nuclear safety, high hazard projects, and conducting operations in the nuclear and national security industries. “The Mission Success is in Our Hands initiative brings awareness to our workforce of the importance of their individual contributions to the overall success of the NASA and Marshall missions,” said Bill Hill, director of the Safety and Mission Assurance Directorate at Marshall. “Through our banners, the Golden Eagle award, and the Shared Experience Forum, we highlight the risk environment in which we work and in which our launch vehicles and spacecraft operate. Many Shared Experiences Forum events bring in risk practitioners from other industries to provide a comparison and illuminate lessons learned that we could gain from in our everyday activities and missions.” Hill said Marshall has a strong safety culture. The new banners feature team members expressing that message to the workforce and they will be featured with individual profiles in upcoming editions of the Marshall Star.. “The Mission Success is in Our Hands initiative is one of the few tools that we employ at Marshall to keep Safety and Mission Success in the forefront of everyone’s mind,” Hill said. “It is important that we keep people safe at work and allow all to go home at night healthy and safe. Our Incident and Injury Free workshops, which we are soon to begin in-person sessions, offer our employees the opportunity to learn how to identify risky or unsafe behaviors and situations, and how to have those critical conversations to mitigate or eliminate those behaviors among colleagues before an incident or injury occurs.” Eight NASA Marshall Flight Center team members will be featured in new testimonial banners that will be placed around the center as part of the Mission Success is in Our Hands initiative The banners will feature, from left, Matthew Pruitt, Human Landing System schedule lead; Brandon Reeves, Integrated Avionics Test Facilities deputy manager; Dr. Greg Drayer, Jacobs/Aerodyne Modeling & Simulation technical fellow; Dr. Chelsi Cassilly, Jacobs Planetary Protection microbiologist; Jeramie Broadway, strategy lead; Dr. Baraka Truss, Avionics & Software Branch chief; Ashley Marlar, Jacobs Operations Support team lead; and Dr. Amit Patel, Jacobs Solid Rocket Motor design engineer. NASA/Charles Beason Jeff Haars, Jacobs vice president and program manager for Jacobs Space Exploration Group, said team members working on NASA missions must not lose sight of the hazards present in the workplace or the risks of crewed spaceflight. “The Shared Experiences Forum is probably our most impactful initiative,” Haars said. “Leaders from across NASA and industry share their personal experiences around safety and mission success. The forum provides an opportunity for learning and applying lessons and best practices from personal experiences. Ultimately, our goal is to help team members keep safety and mission assurance in their day to day decision making.” Since 2015, the Golden Eagle Award has been presented by Mission Success is in Our Hands. The award promotes awareness and appreciation for flight safety, as demonstrated through the connections between employees’ everyday work, the success of NASA and Marshall’s missions, and the safety of NASA astronauts. The award recognizes individuals who have made significant contributions to flight safety and mission assurance above and beyond their normal work requirements. Management or peers can nominate any team member for the award. Honorees are typically recognized at quarterly Shared Experiences forums. Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications. › Back to Top Alabama Doctors Praise ‘Unique’ NASA Panel on Aerospace Psychiatry By Jessica Barnett Medical professionals from across the U.S. gathered for a different kind of panel discussion during the annual Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville. The Alabama Psychiatric Physicians Association is a district branch of the American Psychiatric Association and the only association exclusively representing psychiatrists in the state of Alabama. Ian Maddox, a systems engineer at NASA’s Marshall Space Flight Center, discussing future Artemis missions during a panel at the Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville. Joining him onstage are Erin Hayward, an engineer on the Marshall Space Environmental Effects team, and Julie Mason, a space propulsion and thermal engineer working on NASA’s Space Launch System with Boeing. NASA/Christopher Blair Psychiatrists were treated to a panel of NASA experts who shared insight from their work supporting human spaceflight research and habitation design for extended duration missions on the lunar and Martian surfaces. Panelists included Ian Maddox, a systems engineer supporting Artemis at NASA’s Marshall Space Flight Center; Erin Hayward, an engineer on the Marshall Space Environmental Effects team; and Julie Mason, a space propulsion and thermal engineer working on NASA’s Space Launch System with Boeing. During the panel, Hayward and Mason shared their experiences serving as crew members in multiple NASA analog missions, including HERA (Human Exploration Research Analog) and Desert RATS. Both involve space habitat design, isolation, and confinement studies, as well as identifying if certain stressors could affect astronauts during off-world missions. Such stressors include changes to sleep patterns, food intake, gravity, exercise routines, and more. Maddox explained that it’s part of NASA’s ongoing work to prepare for longer missions to the Moon and beyond. “Humanity has always explored, and NASA is really the organization responsible for making sure that continues to happen safely and peacefully,” he said. Maddox, Hayward, and Mason share a laugh with the audience during the Q&A portion of their panel at the Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville. NASA/Jessica Barnett Audience members were particularly interested in the analog missions, with several taking part in the Q&A portion of the panel. Many thanked the experts for presenting such a unique and fascinating topic, while some expressed interest in hosting similar discussions at future conferences across the nation. Panelists answered questions about the crew selection process, explaining NASA’s careful screening procedures for identifying candidates to serve together for weeks or months in confined spaces and with very limited access to the outside world. Hayward and Mason also answered questions about their day-to-day lives inside the habitats, from smells and privacy concerns to handling downtime, and how it felt returning to their families and jobs after their campaigns. “It took me a while to turn my phone notifications back on, just to ease back into the world,” Mason said. “I learned to be present and have more gratitude for the little things, like getting to feel the humidity, especially after 45 days without weather.” The three NASA panelists encouraged audience members to submit a research proposal or even consider applying to participate in a future analog. Barnett, a Media Fusion employee, supports the Marshall Office of Communications. › Back to Top Dozens of Student Teams Worldwide to Compete in NASA Rover Challenge NASA has selected 72 student teams to begin an engineering design challenge to build human-powered rovers that will compete next April at the U.S. Space & Rocket Center in Huntsville, near the agency’s Marshall Space Flight Center. Celebrating its 30th anniversary in 2024, the Human Exploration Rover Challenge tasks high school, college, and university students to design, build, and test lightweight, human-powered rovers on an obstacle course simulating lunar and Martian terrain, all while completing mission-focused science tasks. Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASANASA Participating teams represent 42 colleges and universities and 30 high schools from 24 states, the District of Columbia, Puerto Rico, and 13 other nations from around the world. NASA’s handbook has complete proposal guidelines and task challenges. “Throughout this authentic learning challenge, NASA encourages students to improve their understanding of collaboration, inquiry, and problem-solving strategies,” said Vemitra Alexander, rover challenge activity lead, Office of STEM Engagement at NASA Marshall. “Improving these critical real-world skills will benefit our students throughout their academic and professional careers.” Throughout the nine-month challenge, students will complete design and safety reviews to mirror the process used by NASA engineers and scientists. The agency also incorporates vehicle weight and size requirements encouraging students to consider lightweight construction materials and stowage efficiency to be replicate similar payload restrictions of NASA launch operations. Teams earn points throughout the year by successfully completing design reviews and fabricating a rover capable of meeting all criteria while completing course obstacles and mission tasks. The teams with the highest number of points accumulated throughout the project year will win their respective divisions. The challenge will conclude with an event April 19 and April 20, 2024, at the U.S. Rocket and Space Center. This competition is one of nine Artemis Student Challenges and reflects the goals of NASA’s Artemis program, which includes landing the first woman and first person of color on the Moon. It is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. NASA uses challenges and competitions to further the agency’s goal of encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics. › Back to Top NASA Prepares Artemis II Moon Rocket Core Stage for Final Assembly Phase By Megan Carter NASA and its partners have fully secured the four RS-25 engines onto the core stage of the agency’s SLS (Space Launch System) rocket for the Artemis II flight test. The core stage, and its engines, is the backbone of the SLS mega rocket that will power the flight test, the first crewed mission to the Moon under Artemis. Engineers have begun final integration testing at NASA’s Michoud Assembly Facility, in preparation for acceptance ahead of shipment of the stage to Kennedy Space Center in the coming months. These photos and videos show how technicians at NASA’s Michoud Assembly Facility in New Orleans installed the third and fourth RS-25 engines onto the core stage for the agency’s SLS (Space Launch System) rocket that will help power NASA’s first crewed Artemis mission to the Moon. Technicians added the first engine to the SLS core stage Sept. 11. The second engine was installed onto the stage Sept. 15 with the third and fourth engines following Sept. 19 and Sept. 20. Engineers consider the engines to be “soft” mated to the rocket stage. Technicians with NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, will now focus efforts on the complex tax of fully securing the engines to the stage and integrating the propulsion and electrical systems within the structure. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.Credits: NASA The 212-foot-tall core stage includes two massive liquid propellant tanks and four RS-25 engines at its base. For Artemis II, the core stage and its engines act as the powerhouse of the rocket, providing more than two million pounds of thrust for the first eight minutes of flight to send the crew of four astronauts inside NASA’s Orion spacecraft on an approximately 10-day mission around the Moon. NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, secured the engines to the maze of propulsion and avionics systems within the core stage Oct. 6. In the coming weeks, engineers will perform testing on the entire stage and its avionics and electrical systems, which act as the “brains” of the rocket to help control it during flight. Once testing of the stage is complete and the hardware passes its acceptance review, the core stage will be readied for shipping to Kennedy via the agency’s Pegasus barge, based at Michoud. As teams prepare the core stage for Artemis II, rocket hardware is also under construction on our factory floor for Artemis III, IV, and V that will help send the future Artemis astronauts to the lunar South Pole. The engines were first soft mated one by one onto the stage beginning in early September. The last RS-25 engine was structurally installed onto the stage Sept. 20. Installing the four engines is a multi-step, collaborative process for NASA, Boeing, and Aerojet Rocketdyne. Following the initial structural connections of the individual engines, securing and outfitting all four engines to the stage is the lengthiest part of the engine assembly process and includes securing the thrust vector control actuators, ancillary interfaces, and remaining bolts before multiple tests and checkouts. All major hardware elements for the SLS rocket that will launch Artemis II are either complete or in progress. The major components for the rocket’s two solid rocket boosters are at Kennedy. The rocket’s two adapters, produced at NASA’s Marshall Space Flight Center, along with the rocket’s upper stage, currently at lead contractor United Launch Alliance’s facility in Florida near Kennedy, will be prepared for shipment in the spring. Marshall manages the SLS Program. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. Carter, a Media Fusion employee, supports the Marshall Office of Communications. › Back to Top NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series NASA conducted the first hot fire of a new RS-25 test series Oct. 17, beginning the final round of certification testing ahead of production of an updated set of the engines for the SLS (Space Launch System) rocket. The engines will help power future Artemis missions to the Moon and beyond. NASA completed a full duration, 550-second hot fire of the RS-25 certification engine Oct. 17, beginning a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. NASA / Danny Nowlin Operators fired the RS-25 engine for more than nine minutes (550 seconds), longer than the 500 seconds engines must fire during an actual mission, on the Fred Haise Test Stand at NASA’s Stennis Space Center. Operators also fired the engine up to the 111% power level needed during an SLS launch. The hot fire marked the first in a series of 12 tests scheduled to stretch into 2024. The tests are a key step for lead SLS engines contractor Aerojet Rocketdyne, an L3Harris Technologies company, to produce engines that will help power the SLS rocket, beginning with Artemis V. The test series will collect data on the performance of several new key engine components, including a nozzle, hydraulic actuators, flex ducts, and turbopumps. The components match design features of those used during the initial certification test series completed at the south Mississippi site in June. Aerojet Rocketdyne is using advanced manufacturing techniques, such as 3D printing, to reduce the cost and time needed to build the new engines. Four RS-25 engines help power SLS at launch, including on its Artemis missions to the Moon. Through Artemis, NASA is returning humans, including the first woman and the first person of color, to the Moon to explore the lunar surface and prepare for flights to Mars. SLS is the only rocket capable of sending the agency’s Orion spacecraft, astronauts, and supplies to the Moon in a single mission. › Back to Top Psyche Launch Highlighted on ‘This Week at NASA’ NASA’s Psyche launched aboard a SpaceX Falcon Heavy from the agency’s Kennedy Space Center on Oct. 13. The mission is featured in “This Week @ NASA,” a weekly video program broadcast on NASA-TV and posted online. Psyche is on its way to a metal-rich asteroid of the same name. The mission could teach us more about how rocky planets like Earth formed. Managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center, Psyche is the 14th planetary exploration mission in NASA’s Discovery program, which is also managed for the agency by Marshall. Read more about Marshall’s role in Psyche. View this and previous episodes at “This Week @NASA” on NASA’s YouTube page. › Back to Top Lucy Spacecraft Continues Approach to Asteroid Dinkinesh Since NASA’s Lucy spacecraft first imaged the asteroid Dinkinesh on Sept. 3, Lucy has traveled over 33 million miles and is now 4.7 million miles away from the small asteroid. However, as Dinkinesh continues on its orbit around the Sun, Lucy still has another almost 16 million miles to travel to its meet-up with the asteroid on Nov. 1. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This data visualization overlays some of the images taken by the Lucy spacecraft’s L’LORRI from Sept. 3 to Oct. 3 on the Lucy trajectory (red) and the orbit of the asteroid Dinkinesh (gold). These images were taken as part of the optical navigation program in advance of the encounter on Nov. 1. The stars indicate the locations at closest approach on Nov. 1. (NASA/SwRI/APL) Over the last month, the spacecraft team has seen the target asteroid generally brightening as Lucy approaches it and has also seen a subtle brightness variation consistent with the previously observed 52.7-hour rotation period. Since Lucy first observed the asteroid on Sept. 3, the team has used images collected by the spacecraft’s high-resolution camera, L’LORRI, to refine their knowledge of the relative positions of the spacecraft and asteroid, optically navigating Lucy towards the encounter. Using this information, on Sept. 29 the spacecraft carried out a small trajectory correction maneuver, changing the spacecraft’s speed by just 6 cm/s (around 0.1 mph). This nudge is predicted to send the spacecraft on a path that will pass within 265 miles of the asteroid. In late October the team will have another opportunity to adjust the trajectory if necessary. On Oct. 6, the spacecraft passed behind the Sun as viewed from Earth, beginning a planned communications blackout. The spacecraft has continued to image the asteroid and will return these images to Earth once communications resume after the end of the solar conjunction period in mid-October. Lucy’s principal investigator, Hal Levison, is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio, Texas. NASA’s Goddard Space Flight Center provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center manages the Discovery Program for the Science Mission Directorate at NASA Headquarters. › Back to Top Webb Detects Tiny Quartz Crystals in the Clouds of a Hot Gas Giant Researchers using NASA’s James Webb Space Telescope have detected evidence for quartz nanocrystals in the high-altitude clouds of WASP-17 b, a hot Jupiter exoplanet 1,300 light-years from Earth. The detection, which was uniquely possible with MIRI (Webb’s Mid-Infrared Instrument), marks the first time that silica (SiO2) particles have been spotted in an exoplanet atmosphere. “We were thrilled!” said David Grant, a researcher at the University of Bristol in the UK and first author on a paper published in the Astrophysical Journal Letters. “We knew from Hubble observations that there must be aerosols – tiny particles making up clouds or haze – in WASP-17 b’s atmosphere, but we didn’t expect them to be made of quartz.” This artist concept shows what the exoplanet WASP-17 b could look like.NASA, ESA, CSA, and R. Crawford (STScI)Science: Nikole Lewis (Cornell University), David Grant (University of Bristol), Hannah Wakeford (University of Bristol) Crawford (STScI) Silicates (minerals rich in silicon and oxygen) make up the bulk of Earth and the Moon as well as other rocky objects in our solar system, and are extremely common across the galaxy. But the silicate grains previously detected in the atmospheres of exoplanets and brown dwarfs appear to be made of magnesium-rich silicates like olivine and pyroxene, not quartz alone – which is pure SiO2. The result from this team, which also includes researchers from NASA’s Ames Research Center and NASA’s Goddard Space Flight Center, puts a new spin on our understanding of how exoplanet clouds form and evolve. “We fully expected to see magnesium silicates,” said co-author Hannah Wakeford, also from the University of Bristol. “But what we’re seeing instead are likely the building blocks of those, the tiny ‘seed’ particles needed to form the larger silicate grains we detect in cooler exoplanets and brown dwarfs.” With a volume more than seven times that of Jupiter and a mass less than one-half Jupiter, WASP-17 b is one of the largest and puffiest known exoplanets. This, along with its short orbital period of just 3.7 Earth-days, makes the planet ideal for transmission spectroscopy : a technique that involves measuring the filtering and scattering effects of a planet’s atmosphere on starlight. Webb observed the WASP-17 system for nearly 10 hours, collecting more than 1,275 brightness measurements of 5- to 12-micron mid-infrared light as the planet crossed its star. By subtracting the brightness of individual wavelengths of light that reached the telescope when the planet was in front of the star from those of the star on its own, the team was able to calculate the amount of each wavelength blocked by the planet’s atmosphere. What emerged was an unexpected “bump” at 8.6 microns, a feature that would not be expected if the clouds were made of magnesium silicates or other possible high temperature aerosols like aluminum oxide, but which makes perfect sense if they are made of quartz. While these crystals are probably similar in shape to the pointy hexagonal prisms found in geodes and gem shops on Earth, each one is only about 10 nanometers across – one-millionth of one centimeter. “Hubble data actually played a key role in constraining the size of these particles,” explained co-author Nikole Lewis of Cornell University, who leads the Webb GTO (Guaranteed Time Observation) program designed to help build a three-dimensional view of a hot Jupiter atmosphere. “We know there is silica from Webb’s MIRI data alone, but we needed the visible and near-infrared observations from Hubble for context, to figure out how large the crystals are.” Unlike mineral particles found in clouds on Earth, the quartz crystals detected in the clouds of WASP-17 b are not swept up from a rocky surface. Instead, they originate in the atmosphere itself. “WASP-17 b is extremely hot – around 1,500 degrees Celsius (2,700°F) – and the pressure where they form high in the atmosphere is only about one-thousandth of what we experience on Earth’s surface,” explained Grant. “In these conditions, solid crystals can form directly from gas, without going through a liquid phase first.” Understanding what the clouds are made of is crucial for understanding the planet as a whole. Hot Jupiters like WASP-17 b are made primarily of hydrogen and helium, with small amounts of other gases like water vapor (H2O) and carbon dioxide (CO2). “If we only consider the oxygen that is in these gases, and neglect to include all of the oxygen locked up in minerals like quartz (SiO2), we will significantly underestimate the total abundance,” explained Wakeford. “These beautiful silica crystals tell us about the inventory of different materials and how they all come together to shape the environment of this planet.” Exactly how much quartz there is, and how pervasive the clouds are, is hard to determine. “The clouds are likely present along the day/night transition (the terminator), which is the region that our observations probe,” said Grant. Given that the planet is tidally locked with a very hot day side and cooler night side, it is likely that the clouds circulate around the planet, but vaporize when they reach the hotter day side. “The winds could be moving these tiny glassy particles around at thousands of miles per hour.” WASP-17 b is one of three planets targeted by the JWST-Telescope Scientist Team’s DREAMS (Deep Reconnaissance of Exoplanet Atmospheres using Multi-instrument Spectroscopy) investigations, which are designed to gather a comprehensive set of observations of one representative from each key class of exoplanets: a hot Jupiter, a warm Neptune, and a temperate rocky planet. The MIRI observations of hot Jupiter WASP-17 b were made as part of GTO program 1353. The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. Several NASA centers contributed to the project, including NASA’s Marshall Space Flight Center. › Back to Top View the full article
  6. Thale cress plants from the Plant Habitat-03 investigation just before a harvest.NASA As NASA plans missions to the Moon and Mars, a key factor is figuring out how to feed crew members during their weeks, months, and even years in space. Astronauts on the International Space Station primarily eat prepackaged food, which requires regular resupply and can degrade in quality and nutrition. Researchers are exploring the idea of crews growing some of their food during a mission, testing various crops and equipment to figure out how to do this without a lot of extra hardware or power. Picking the right plants The first step in this research is identifying which plants to test. NASA started a project in 2015 with the Fairchild Botanical Garden in Miami called “Growing Beyond Earth.” The program has recruited hundreds of middle and high school science classes across the U.S. to grow different seeds in a habitat similar to one on the space station. Seeds that grow well in the classrooms are then tested in a chamber at NASA’s Kennedy Space Center. Ones that do well there are sent to the station to test how they grow in microgravity. Gardens in space NASA also has tested facilities to host future microgravity gardens. One is the Vegetable Production System, or Veggie, a simple, low-power chamber that can hold six plants. Seeds are grown in small fabric “pillows” that crew members look after and water by hand, similar to caring for a window garden on Earth. Another system, the Passive Orbital Nutrient Delivery System, or Veggie PONDS, works with the Veggie platform but replaces seed pillows with a holder that automatically feeds and waters the plants. The Advanced Plant Habitat is a fully automated device designed to study growing plants in ways that require only minimal crew attention. Mark Vande Hei harvests for the Veggie PONDS investigation. NASA The right light and food A series of experiments aboard the space station known as Veg-04A, Veg-04B, and Veg-05 grew Mizuna mustard, a leafy green crop, under different light conditions and compared plant yield, nutritional composition, and microbial levels. The investigation also compared the space-grown plants to ones grown on Earth, and had crew members rate the flavor, texture, and other characteristics of the produce. Plant Habitat-04 analyzed plant-microbe interactions and assessed the flavor and texture of chile peppers. The first crop, harvested on Oct. 29, 2021, was eaten by the crew and 12 peppers from the second harvest were returned to Earth for analysis. This experiment demonstrated that research about space crop production is on the right path and researchers plan to apply lessons learned to testing other plants. NASA astronauts Mark Vande Hei and Shane Kimbrough, JAXA astronaut Akihiko Hoshide, and NASA astronaut Megan McArthur with chile peppers grown for Plant Habitat-04.NASA The influence of gravity An early experiment, PESTO, found that microgravity alters leaf development, plant cells, and the chloroplasts used in photosynthesis, but did not harm the plants overall. In fact, wheat plants grew 10% taller compared to those on Earth. The Seedling Growth investigations showed that seedlings can acclimate to microgravity by modulating expression of some genes related to the stressors of space, a discovery that adds to knowledge about how microgravity affects plant physiology [1]. One way that plants sense gravity is via changes to calcium within their cells. Plant Gravity Sensing, a JAXA (Japan Aerospace Exploration Agency) investigation, measured how microgravity affects calcium levels, which could help scientists design better ways to grow food in space. ADVASC, an investigation that grew two generations of mustard plants using the Advanced Astroculture chamber, showed that seeds were smaller but germination rates near normal in microgravity [2]. Close-up view of Apogee Wheat Plants grown as part of the PESTO experiment during Expedition 4.NASA Water delivery One significant challenge for growing plants in microgravity is providing enough water to keep them healthy without drowning them in too much water. Plant Water Management demonstrated a hydroponic (water-based) method for providing water and air to plant roots. The XROOTS study tested using both hydroponic and aeroponic (air-based) techniques to grow plants rather than traditional soil. These techniques could enable large-scale crop production for future space exploration. NASA astronauts Jessica Watkins and Bob Hines work on the XROOTS investigation.NASA Transplanting veggies During a series of investigations called VEG-03, which cultivated Extra Dwarf Pak Choi, Amara Mustard, and Red Romaine Lettuce, NASA astronaut Mike Hopkins noticed some of the plants were struggling. Hopkins conducted the first plant transplant in space, moving extra sprouts from thriving plant pillows into two of the struggling pillows in Veggie. The transplants survived and grew, opening new possibilities for future plant growth. Plant genetics Plants exposed to spaceflight undergo changes that involve the addition of extra information to their DNA, affecting how genes turn on or off without changing the sequence of the DNA itself. This process is known as epigenetic change. Plant Habitat-03 assesses whether such adaptations in one generation of plants grown in space can transfer to the next generation. The long-term goal is to understand how epigenetics contribute to adaptive strategies that plants use in space and, ultimately, develop plants better suited for providing food and other services on future missions. Results also could support the development of strategies for adapting crops and other economically important plants for growth in marginal and reclaimed habitats on Earth. The human effect Gardens need tending, of course. The Veg-04A, Veg-04B, and Veg-05 investigations also looked at how tending plants contributed to the well-being of astronauts. Many astronauts reported they found caring for plants an enjoyable and relaxing activity – another important contribution to future long-duration missions. NASA astronauts Shannon Walker and Michael Hopkins collect leaf samples from plants growing inside the European Columbus laboratory for the Veg-03 experiment during Expedition 64.NASA Citations: 1 Medina F, Manzano A, Herranz R, Kiss JZ. Red Light Enhances Plant Adaptation to Spaceflight and Mars g-Levels. Life. 2022, 12(10), 1484; https://doi.org/10.3390/life12101484 2 Link BM, Busse JS, Stankovic B. Seed-to-Seed-to-Seed Growth and Development of Arabidopsis in Microgravity. Astrobiology. 2014 October; 14(10): 866-875. DOI: 10.1089/ast.2014.1184.PMID: 25317938 Explore more pictures of plants aboard the space station here. Facebook logo @ISS @ISS_Research Instagram logo @ISS Linkedin logo @company/NASA Keep Exploring Discover More Topics Station Science 101: Biology and Biotechnology Biological & Physical Science Stories Station Benefits for Humanity Latest News from Space Station Research View the full article
  7. NASA’s “Spacey Casey” welcomes visitors to NASA Langley Research Center.NASA 2 min read News Media Invited to NASA Langley’s Open House HAMPTON, Virginia – Members of the media are invited to cover the Open House at NASA’s Langley Research Center in Hampton, Virginia. The event takes place 9 a.m. to 4 p.m. Saturday, Oct. 21, 2023. Media will have photo, video, and interview opportunities. Center Director Clayton Turner and NASA astronaut Victor Glover will be available to answer media questions at 9 a.m. on Saturday. This is the first time since 2017 Langley has opened its gates and doors to the public, inviting them to learn more about the center’s innovative aerospace research. Event: Open House Date: Saturday, Oct. 21, 2023 Time: 9 a.m. to 4 p.m. Location: NASA’s Langley Research Center, Hampton, Va. RSVP Deadline: Friday, Oct. 20, 2023 at 2 p.m. Please note! In order to cover the event and have access to parking on center, media outlets must RSVP with Brittny McGraw at 757-769-3763 or brittny.v.mcgraw@nasa.gov no later than 2 p.m. Friday, Oct. 20. Media who attempt to come to the center without an RSVP will not have vehicle access. Media interested in interviewing Clayton Turner and Victor Glover should follow the procedures listed above, but must arrive no later than 8:30 a.m. on Saturday, Oct. 21. Helpful links: NASA Langley Research Center: https://www.nasa.gov/langley/ NASA Langley’s Open House: https://openhouse.larc.nasa.gov/ Please contact: Brittny McGraw Langley Research Center, Hampton, Va. 757-769-3763 brittny.v.mcgraw@nasa.gov David Meade Langley Research Center, Hampton, Va. 757-751-2034 davidlee.t.meade@nasa.gov -end- View the full article
  8. Space Life Sciences Training Program An investment in tomorrow The Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years, and entering graduate students, with professional experience in space life science disciplines. This challenging ten-week summer program is hosted by NASA’s Ames Research Center in the heart of California’s Silicon Valley. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Summer 2023 SLSTP students present their projects during midterm.NASA / Stephanie Perreau Rainey The SLSTP Experience In this rigorous program, students work closely with renowned NASA scientists and engineers on cutting-edge research, benefitting from the concentration of bioscience expertise at Ames. In addition to conducting hands-on research, SLSTP students attend technical lectures given by experts on a wide range of topics and tour NASA research facilities. This program provides opportunities for students to develop professional skills. These include technical and professional development training, presenting their scientific work and submitting an abstract to a professional scientific organization (e.g. the American Society for Gravitational and Space Research.) SLSTP participants are exposed to a broad scope of space biosciences research performed by NASA scientists. While learning about the tools and methodology that enable biological experiments to be conducted in flight, students acquire skills and knowledge required for the design and execution of life science research conducted in microgravity. Participants in the program receive a stipend and may be eligible to attend a scientific conference to formally present their research. Research Areas Students in SLSTP undertake research projects in multiple areas, including: The effects of spaceflight on living systems, conducted both on the ground and also in space aboard the International Space Station and other spacecraft. The development and operation of specialized research facilities to support investigations in microgravity, partial gravity, and hypergravity. Research and development of advanced biotechnologies that enable NASA’s exploration of distant destinations. Information for Applicants The SLSTP is an equal opportunity program. Admission is by competitive application process. Past student participants were selected for their outstanding merit, passion for space, and desire to study space life science. Applicants must fulfill the following requirements: be a US citizen, age 18 or older in high academic standing (GPA of 3.2 or greater). Applicants should be junior or senior undergraduate student next Fall or a senior graduating in 2024 and entering graduate school for Fall 2024. How to Apply: Applications for the summer 2024 program will be opening soon in late 2023. Applications will be open in the NASA Gateway. SLSTP Mailing List To subscribe to our mailing list and to receive e-mail announcements about the program and application process, please send an email to arc-slstp@mail.nasa.gov with “subscribe” in the subject to be added to our mailing list. Program Support The SLSTP is funded by NASA’s Space Biology Program, which is part of the Biological and Physical Sciences Division of NASA. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center. For more information, contact: arc-slstp@mail.nasa.gov View the full article
  9. NASA astronaut Joe Acaba with one of the Microbial Air Samplers, devices that monitor microbes in the air of the space station.NASA Wherever there are humans, there are microbes, too. Bacteria and fungi live all around us, in our homes, offices, industrial areas, the outdoors – even in space. People literally could not live without these tiny organisms, many of which are beneficial. The trick is limiting potentially harmful ones, particularly in a contained environment such as a spacecraft. So from the launch of the very first module of the International Space Station, NASA has monitored its microbial community. Because the station is an enclosed system, the only way that microbes get there is hitching a ride on the contents of resupply spacecraft from Earth and on arriving astronauts. The NASA Johnson Space Center Microbiology Laboratory puts a lot of effort into knowing which microbes ride along. “We can’t sterilize everything we send into space, and don’t want to, but we do a lot to limit potential pathogens from making their way to the station,” says NASA microbiologist Sarah Wallace, Ph.D. “At launch, the cargo, food, vehicles, and crew members each have their own microbiome, or suite of microbes. When everything gets to the station, these microbiomes become part of the space station microbiome.” The lab uses the traditional method of culturing a sample in a growth medium, similar to Petri dishes from high school science class, to sample a portion of everything during packing for launch and the launch vehicles themselves. This sampling confirms that contamination control plans are working properly – essentially making sure the numbers of microbes remain low and that those present are the ones normally expected. Astronauts sample a surface on the International Space Station for this microbial culture slide.NASA Then the lab continues monitoring after the vehicle, cargo, and crew arrive at the station. Crew members sample and culture microbes from the air, surfaces, and water on the station. “It’s kind of a spot check to see how well housekeeping procedures are being implemented and how well the water system and the air filters are working,” Wallace says. She calls the station’s water processing system “a phenomenal piece of engineering” that produces water much cleaner than most of us drink on Earth. In addition, the station itself is remarkably clean thanks to HEPA filters for the air and housekeeping practices for surfaces. “What microbes we see are really what we’d see if we looked at your home. In fact, we’ve done several studies comparing the station to a typical home and it is similar but usually cleaner,” she adds. This monitoring over the lifetime of the orbiting lab has created a unique, long-term database that helps microbiologists know what to expect. “Our requirements are two-fold, how much is there and what is there,” Wallace says. For years, the scientists didn’t know the ‘what’ until samples came back to ground. Now the equipment exists to perform direct swab-to-sequencer identification, eliminating the need to culture samples and return them to Earth. That equipment includes the miniPCR, a device that amplifies or makes many copies of a DNA strand using a process called polymerase chain reaction (PCR), and the MinION, a portable DNA sequencer. The Genes in Space 3 collaboration between Boeing and NASA paired these two platforms together, which led to the first identification of unknown bacteria off Earth. NASA’s lab then conducted tests and confirmed that microbe identifications from the inflight process matched those determined on the ground down to the species level1. “For the first time ever, we identified unknown microbes collected and cultured off Earth,” says Wallace. “We followed that up with the swab-to-sequencer, which lets us move away from culturing completely. We can swab a surface and sequence whatever is there.” Plates for culturing samples collected by the Microbial Air Samplers on the space station.NASA Subsequent work advanced the use of sequencing in space and later tests found that the culture-independent method showed the same microbial distributions as the standard culture-dependent method2. The swab-and-sequence method has been streamlined so that crew members can easily complete it in an extreme environment. That is a critical capability for future missions to the Moon and Mars, both to continue to protect crew health and safety and to make sure that we do not contaminate other worlds. If explorers detect microbial life on another planet, they need to know whether it was already there or came from Earth. Researchers also use the space station to conduct long-term microbial studies. The Microbial Tracking series studied what kinds of microbes are on the space station, both in the environment and in the astronauts’ bodies. In addition to surveying the types of microbes present on the station, the lab studies whether those microbes could be harmful, as microgravity and radiation in space can render innocuous microorganisms potentially harmful and microbial behavior can change as the organisms adapt to the spaceflight environment. So far, microbial issues on Earth far exceed any seen in space, Wallace says. “In addition to all the preflight monitoring, crew members are quarantined prior to launch. These steps were started back during Apollo missions and still are effective toward keeping our crews healthy.” Because where people go, scientists want to know what microbes follow. Citations 1 Burton AS, Stahl-Rommel SE, John KK, Jain M, Juul S, Turner DJ, Harrington ED, Stoddart D, Paten B, Akeson M, Castro-Wallace SL. Off Earth Identification of Bacterial Populations Using 16S rDNA Nanopore Sequencing. Genes. 2020 January 9; 76(11): 76 (https://www.mdpi.com/2073-4425/11/1/76) 2 Stahl-Rommel S, Jain M, Nguyen HN, Arnold RR, Aunon-Chancellor SM, Sharp GM, Castro CL, John KK, Juul S, Turner DJ, et al. Real-Time Culture-Independent Microbial Profiling Onboard the International Space Station Using Nanopore Sequencing. Genes. 2021; 12(1):106. (https://www.mdpi.com/2073-4425/12/1/106) Facebook logo @ISS @ISS_Research@ISS Instagram logo @ISS Linkedin logo @company/NASA Keep Exploring Discover More Topics Station Science 101: Biology and Biotechnology Latest News from Space Station Research ISS National Laboratory NASA Biological & Physical Sciences NASA’s Division of Biological and Physical Sciences (BPS) uses the spaceflight environment to study phenomena in ways that cannot be… View the full article
  10. In October 1968, the American human spaceflight program took significant steps toward achieving President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to the Earth before the end of the decade. American astronauts returned to space after a 23-month hiatus. The success of the 11-day Apollo 7 mission heralded well for NASA to decide to send the next mission, Apollo 8, to orbit the Moon in December. The Saturn V rocket for that flight rolled out to its seaside launch pad two days before Apollo 7 lifted off. Preparations for later missions to test the Lunar Module (LM) in Earth orbit and around the Moon continued in parallel, as did work in anticipation of astronauts and their lunar samples returning from the Moon. Meanwhile, the Soviet Union also resumed its human spaceflight program. Left: Apollo 7 astronauts Donn F. Eisele, left, Walter M. Schirra, and R. Walter Cunningham review flight trajectories with Director of Flight Crew Operations Donald K. “Deke” Slayton shortly before launch. Middle: Schirra, left, Eisele, and Cunningham suit up for launch. Right: Liftoff of Apollo 7, returning American astronauts to space! The liftoff of Apollo 7 astronauts Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham on Oct. 11, 1968, signaled the end of a 23-month hiatus in American human spaceflights resulting from the tragic Apollo 1 fire. To prevent a recurrence of the fire and to increase overall safety, NASA and North American Rockwell in Downey, California, redesigned the Apollo spacecraft, and Schirra, Eisele, and Cunningham spent months training to test it in Earth orbit. By the time they lifted off from Launch Pad 34 at NASA’s Kennedy Space Center (KSC) in Florida, the Saturn V rocket for the Apollo 8 mission had already rolled out to Launch Pad 39A a few miles away. Left: View of Apollo 7 lifting off from Launch Pad 34, with the Saturn V for Apollo 8 on Launch Pad 39A in the background. Middle: The Apollo 7 S-IVB third stage, used as a rendezvous target. Right: Apollo 7 astronauts Donn F. Eisele, left, Walter M. Schirra, and R. Walter Cunningham on the prime recovery U.S.S. Essex following their successful 11-day mission. During their 11-day mission, Schirra, Eisele, and Cunningham thoroughly tested the redesigned Apollo spacecraft. Early in the mission, they performed rendezvous maneuvers with their rocket’s S-IVB second stage, a maneuver planned for later missions to retrieve the LM. They thoroughly tested the Service Propulsion System engine, critical on later lunar missions for getting into and out of lunar orbit, by firing it on eight occasions, including the critical reentry burn to bring them home. The three astronauts conducted the first live television broadcasts from an American spacecraft, providing viewers on the ground with tours of their spacecraft. Teams from the U.S.S. Essex (CV-9) recovered Schirra, Eisele, and Cunningham and their Command Module (CM) from the Atlantic Ocean on Oct. 22. Apollo program managers declared that Apollo 7 “accomplished 101%” of its planned objectives. Left: Apollo 8 astronauts James A. Lovell, left, William A. Anders, and Frank Borman attend the rollout of their Saturn V from the Vehicle Assembly Building to Launch Pad 39A. Middle: The Apollo 8 Saturn V at Launch Pad 39A. Right: Borman, left, Lovell, and Anders pose with their Saturn V following a crew egress exercise from their spacecraft. The success of Apollo 7 gave NASA the confidence to announce in November that the next mission, Apollo 8, would attempt to enter orbit around the Moon. In early October, workers in High Bay 2 of KSC’s Vehicle Assembly Building (VAB) completed the stacking of the Saturn V rocket for Apollo 8 by adding the Command and Service Module (CSM). On Oct. 9, two days before Apollo 7 lifted off, as the Apollo 8 crew of Frank Borman, James A. Lovell, and William A. Anders and other NASA officials looked on, the completed Saturn V rolled out from the VAB to begin its eight-hour journey to Launch Pad 39A, three and a half miles away. After the rocket arrived at the pad and engineers began testing it, on Oct. 23, Borman, Lovell, and Anders suited up and practiced emergency egress from the spacecraft, as did their backups Neil A. Armstrong, Edwin E. “Buzz” Aldrin, and Fred W. Haise. Left: Apollo 8 astronauts Frank Borman, left, William A. Anders, and James A. Lovell on the deck of the M/V Retriever prepare for their water egress test. Middle: Anders, left, Lovell, and Borman inside the boilerplate Apollo spacecraft during the water egress test. Right: Anders, left, Lovell, and Borman in the life raft after egressing from their spacecraft. As part of their training, Borman, Lovell, and Anders conducted water egress training in the Gulf of Mexico near Galveston, Texas. On Oct. 25, sailors aboard the Motor Vessel M/V Retriever lowered a mockup CM with the crew inside into the water in a nose-down position. Flotation bags inflated to right the spacecraft to a nose-up position. The astronauts then exited the capsule onto life rafts and recovery personnel hoisted them aboard a helicopter. The next day, backups Armstrong, Aldrin, and Haise repeated the test. Left: Workers in the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida lower the S-IVB third stage onto the S-II second stage during stacking operations of the Apollo 9 Saturn V. Middle: Apollo 9 astronaut Russell L. Schweickart practices entering and leaving the Command Module while wearing a pressure suit during brief periods of weightlessness aboard a KC-135 aircraft. Right: Engineers conduct a docking test between the Apollo 9 CM, bottom, and Lunar Module in an altitude chamber in KSC’s Manned Spacecraft Operations Building. Preparations for Apollo 9 included training for the first spacewalk of the Apollo program. According to the mission plan, with the LM and CM docked, crew members in both spacecraft would open their hatches. During the spacewalk, one astronaut would transfer from the LM to the CM using handrails for guidance and enter the CM in a test of an emergency rescue capability. The training for this activity took place aboard a KC-135 aircraft from Patrick Air Force Base (AFB) in Florida. By flying repeated parabolic trajectories, the aircraft could simulate 20-30 seconds of weightlessness at a time, during which the astronauts wearing space suits practiced entering and exiting a mockup of the CM. Backup crew members Alan L. Bean and Richard F. Gordon completed the training on Oct. 9 followed by David R. Scott and Russell L. Schweickart of the prime crew the next day. North American Rockwell delivered the Apollo 9 CSM to KSC in early October. At the end the month, technicians in KSC’s Manned Spacecraft and Operations Building (MSOB) conducted a docking test of the Apollo 9 LM and CSM to verify the interfaces between the two vehicles. In the VAB’s High Bay 3, workers stacked the three stages of the Saturn V rocket for Apollo 9 during the first week of October. Left: Workers in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida uncrate the Apollo 10 Lunar Module (LM) descent stage shortly after its arrival. Middle: MSOB workers unwrap the Apollo 10 LM ascent stage. Right: MSOB workers prepare to mate the Apollo 10 LM ascent stage to its descent stage. In preparation for Apollo 10, planned as a test of the CSM and LM in lunar orbit, the Grumman Aircraft Engineering Corporation in Bethpage, New York, delivered the LM for that mission to KSC. The descent stage arrived Oct. 11, followed by the ascent stage five days later. Technicians in the MSOB mated the two stages and installed the assembled vehicle into a vacuum chamber on Nov. 2 to begin a series of altitude tests. Left: A flight of the Lunar Landing Training Vehicle at Ellington Air Force Base in Houston. Middle: The forward instrument panel of the Lunar Module Test Article-8. Right: Richard Wright, administrative assistant for the Lunar Receiving Laboratory, gives astronaut Michael Collins a tour of the gloveboxes for examining lunar samples. The Lunar Landing Training Vehicle (LLTV), built by Bell Aerosystems of Buffalo, New York, allowed Apollo astronauts to master the intricacies of landing on the Moon by simulating the LM’s performance in the final few hundred feet of the descent to the surface. Although an excellent training tool, the LLTV and its predecessor the Lunar Landing Research Vehicle (LLRV) also carried some risk. Astronaut Armstrong ejected from an LLRV on May 6, 1968, moments before it crashed at Houston’s Ellington AFB. The final accident investigation report, issued on Oct. 17, cited a loss of helium pressure that caused depletion of the fuel used for the reserve attitude thrusters, with inadequate warning to the pilot as a contributing factor. By that time, Chief of Aircraft Operations Joseph S. “Joe” Algranti piloted the properly modified LLTV during its first flight on Oct 3. Algranti and NASA pilot H.E. “Bud” Ream completed 14 checkout flights before a crash in December grounded the LLTV. In October, NASA began a series of critical thermal-vacuum tests to certify the Apollo LM for lunar missions. The tests, conducted in the Space Environment Simulation Laboratory (SESL), at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, involved Grumman pilots Gerald P. Gibbons and Glennon M. Kingsley and astronaut James B. Irwin. The tests using Lunar Module Test Article-8, concluded in November, and simulated the temperatures expected during a typical flight to the Moon and descent to the surface. To receive astronauts and their lunar samples after their return from the Moon, NASA built the Lunar Receiving Laboratory (LRL) in MSC’s Building 37. The LRL’s special design isolated astronauts and rock samples returning from the Moon to prevent back-contamination of the Earth by any possible lunar micro-organisms. By October 1968, with the Moon landing likely less than a year away, the LRL had reached a state of readiness that warranted a simulation of some its capabilities. Between Oct. 22 and Nov. 1, managers, scientists, and technicians carried out a 10-day simulation of LRL operations following a lunar landing mission. Although the exercise uncovered many deficiencies, enough time remained to correct them before the actual Moon landing. Left: Lift off of Soyuz 3 from the Baikonur Cosmodrome carrying cosmonaut Georgi T. Beregovoi. Middle: Beregovoi during a television broadcast from Soyuz 3. Right: The Soyuz 3 spacecraft carrying Beregovoi descends under its parachute for a soft-landing. Image credits: courtesy Roscosmos. As a reminder that a race to the Moon still existed, the Soviet Union also resumed crewed missions, halted in April 1967 by the death of Soyuz 1 cosmonaut Vladimir M. Komarov. Just three days after the Apollo 7 splashdown, the Soviets launched Soyuz 2, but without a crew. The next day, Soyuz 3 lifted off with cosmonaut Georgi T. Beregovoi aboard, at 47 the oldest person to fly in space up to that time. Although Beregovoi brought the two spacecraft close together, he could not achieve the intended docking. Soyuz 2 landed on Oct. 28 and Beregovoi in Soyuz 3 two days later. Following the Zond 5 circumlunar flight in September, rumors persisted that the next Zond mission may soon carry two cosmonauts on a similar circumlunar flight. The apparently successful Zond 5 mission coupled with the rumors of an imminent Soviet crewed lunar mission possibly contributed to the decision to send Apollo 8 on its historic circumlunar flight in December 1968. News from around the world in October 1968: Oct. 2 – Redwood National Park established to preserve the tallest trees on Earth. Oct. 7 – The Motion Picture Association of America adopts a film rating system. Oct. 12 – Equatorial Guinea gains independence from Spain. Oct. 12 – The XIX Olympic Games open in Mexico City, the first time the games held in Latin America. Oct. 14 – The Beatles finish recording the double “White Album.” Oct. 16 – The Jimi Hendrix Experience releases its last studio album “Electric Ladyland.” Oct. 17 – Release of the film “Bullitt,” starring Steve McQueen. Oct. 20 – American high jumper Dick Fosbury introduces the Fosbury Flop technique at the Mexico City Olympics. Oct. 24 – The 199th and last flight of the X-15 hypersonic rocket plane takes place at Edwards Air Force Base in California, piloted by NASA pilot William H. Dana. Oct. 25 – Led Zeppelin gives its first concert, at Surrey University in England. Explore More 13 min read 60 Years Ago: NASA Selects Its Third Group of Astronauts Article 1 day ago 7 min read 40 Years Ago: Space Shuttle Discovery Makes its Public Debut Article 2 days ago 21 min read 65 Years Ago: First Factory Rollout of the X-15 Hypersonic Rocket Plane Article 5 days ago View the full article
  11. The maps above show sea levels in the Pacific Ocean during early October of 1997, 2015, and 2023, in the run up to El Niño events. Higher-than-average ocean heights appear red and white, and lower-than-average heights are in blue and purple. Sentinel-6 Michael Freilich is the latest satellite contributing to a 30-year sea level record that researchers are using to compare this year’s El Niño with those of the past. Not all El Niño events are created equal. Their impacts vary widely, and satellites like the U.S.-European Sentinel-6 Michael Freilich help anticipate those impacts on a global scale by tracking changes in sea surface height in the Pacific Ocean. Water expands as it warms, so sea levels tend to be higher in places with warmer water. El Niños are characterized by higher-than-normal sea levels and warmer-than-average ocean temperatures along the equatorial Pacific. These conditions can then propagate poleward along the western coasts of the Americas. El Niños can bring wetter conditions to the U.S. Southwest and drought to regions in the western Pacific, including Indonesia. This year’s El Niño is still developing, but researchers are looking to the recent past for clues as to how it is shaping up. There have been two extreme El Niño events in the past 30 years: the first from 1997 to 1998 and the second from 2015 to 2016. Both caused shifts in global air and ocean temperatures, atmospheric wind and rainfall patterns, and sea level. The maps above show sea levels in the Pacific Ocean during early October of 1997, 2015, and 2023, with higher-than-average ocean heights in red and white, and lower-than-average heights in blue and purple. Sentinel-6 Michael Freilich captured the 2023 data, the TOPEX/Poseidon satellite collected data for the 1997 image, and Jason-2 gathered data for the 2015 map. By October 1997 and 2015, large areas of the central and eastern Pacific had sea levels more than 7 inches (18 centimeters) higher than normal. This year, sea levels are about 2 or 3 inches (5 to 8 centimeters) higher than average and over a smaller area compared to the 1997 and 2015 events. Both of the past El Niños reached peak strength in late November or early December, so this year’s event may still intensify. “Every El Niño is a little bit different,” said Josh Willis, Sentinel-6 Michael Freilich project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “This one seems modest compared to the big events, but it could still give us a wet winter here in the Southwest U.S. if conditions are right.” More About the Mission Launched in November 2020, Sentinel-6 Michael Freilich is named after former NASA Earth Science Division Director Michael Freilich. The satellite is one of two that compose the Copernicus Sentinel-6/Jason-CS (Continuity of Service) mission. Sentinel-6/Jason-CS was jointly developed by ESA (European Space Agency), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), NASA, and the U.S. National Oceanic and Atmospheric Administration, with funding support from the European Commission and technical support on performance from the French space agency CNES (Centre National d’Études Spatiales). To learn more about Sentinel-6 Michael Freilich, visit: https://www.nasa.gov/sentinel-6 News Media Contacts Jane J. Lee / Andrew Wang Jet Propulsion Laboratory, Pasadena, Calif. 818-354-0307 / 626-379-6874 jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov Share Details Last Updated Oct 18, 2023 Related Terms EarthEarth ScienceOceansSea IceSentinel-6 Michael Freilich SatelliteWeather and Atmospheric Dynamics Explore More 3 min read All Together Now: Drill Joins Other Moon Rover Science Instruments Article 2 hours ago 2 min read NASA’s Global Science Hackathon Attracts Thousands of Participants Article 2 weeks ago 8 min read Goddard Earth Science Projects Featured at the American Geophysical Union For a week in December, nearly 23,000 people roam the large Chicago convention center where… Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  12. Scott Bellamy, left, and Brian Key, right, received the Samuel J. Heyman Service to America Medals. Bellamy and Key accepted on behalf of the entire DART team during a ceremony at the John F. Kennedy Center for Performing Arts in Washington on Oct. 17.Allison Shelley for the Partnership for Public Service NASA’s Brian Key and Scott Bellamy accepted the Samuel J. Heyman Service to America Medal on behalf of a mission team for the first planetary defense test during a ceremony at the John F. Kennedy Center for Performing Arts in Washington on Oct. 17. The awards program for career federal employees, known as the Sammies, aims to highlight key accomplishments that benefit the nation, seeks to build trust in government, and inspire people to consider careers in public service. Known as DART, NASA’s Double Asteroid Redirection Test mission successfully impacted a known asteroid in September 2022 and altered its orbit, demonstrating one planetary defense method that could be used to protect Earth from a potentially hazardous asteroid on a collision course with our home planet if one were ever discovered. Key and Bellamy served as program manager and mission manager for DART, respectively, and are based in the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama. For their work on the mission, the team was honored in the Science, Technology, and Environment category of the Heyman awards. “DART was a first-of-its-kind mission that marked a watershed moment for planetary defense. The DART team members are some of the very best of NASA, and we are so excited to see Brian Key and Scott Bellamy recognized for their contributions and leadership,” NASA Administrator Bill Nelson said. “Brian, Scott, and the entire DART team have shaped the course of human space exploration, inspiring people around the world through innovation. Thanks to their dedication and hard work, NASA is better prepared to defend our home planet, and will be ready for whatever the universe throws at us.” In his role on DART, Key maintained budget, staff, and schedule oversight for the mission and worked directly with DART spacecraft developers at Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “I’m elated to see our team honored with this award and hope it will bring more attention to the valuable work NASA does to defend our home world,” Key said, who oversees management of NASA’s $2 billion portfolio spanning the Discovery Program, the New Horizons Program, and the Solar System Exploration Program, which covers the full range of large and small science missions exploring the planets, moons, asteroids, comets and other destinations of interest in the solar system. Bellamy was tasked with keeping the team on track to launch and operate the mission. He echoed Key’s praise for the entire DART team. “We’re just the managers,” Bellamy said. “Our role has been to serve the team, keeping things moving forward as smoothly as possible to enable them to do the actual hands-on, pencilwork-to-hardware that brought this mission from concept to reality.” That mission could not have gone more flawlessly, they agreed. Launched in November 2021, the DART spacecraft traveled to more than 6.8 million miles from Earth with one simple goal: to intentionally impact into Dimorphos, a 492-foot-diameter asteroid, at roughly 14,000 miles per hour, thus altering its orbit around its much larger parent asteroid, Didymos. DART’s collision with Dimorphos altered the asteroid’s roughly 12-hour orbit period around its parent by about a half-hour. “I don’t even have the words to describe the release of emotion in the control room when we got confirmation that DART had impacted,” Bellamy said. “The whole team went from nail-biting suspense to unbelievable excitement in a matter of seconds.” As for future planetary defense activities, NASA and its partners will build on DART’s success. A follow-up mission by ESA (European Space Agency), called Hera, is scheduled to launch in 2024 to further assess DART’s impact on Dimorphos. NASA also is developing the NEO Surveyor mission, which is designed to accelerate the rate at which the agency can discovery potentially hazardous near-Earth objects, asteroids and comets which can come close to Earth and could pose an impact risk. Johns Hopkins Applied Physics Laboratory managed the DART mission for NASA’s Planetary Defense Coordination Office. The agency provided support for the mission from several centers, including the Jet Propulsion Laboratory in Southern California; Goddard Space Flight Center in Greenbelt, Maryland; NASA’s Johnson Space Center in Houston; Glenn Research Center in Cleveland; and Langley Research Center in Hampton, Virginia. Learn more about NASA’s Planetary Missions Program and Planetary Defense Coordination Offices online. -end- News Media Contacts Jackie McGuinness Headquarters, Washington 202-358-1600 jackie.mcguinness@nasa.gov Jonathan Deal Marshall Space Flight Center, Huntsville, Ala. 256-544-0034 jonathan.e.deal@nasa.gov Read More Share Details Last Updated Oct 18, 2023 Editor Claire A. O'Shea Location NASA Headquarters Related Terms DART (Double Asteroid Redirection Test) Explore More 1 min read Double Asteroid Redirection Test Post-Impact Image Gallery Article 2 days ago 8 min read From Impact to Innovation: A Year of Science and Triumph for Historic DART Mission From Impact to Innovation: A Year of Science and Triumph for Historic DART Mission Article 3 weeks ago 6 min read Hubble Sees Boulders Escaping from Asteroid Dimorphos The popular 1954 rock song “Shake, Rattle and Roll,” could be the theme music for… Article 3 months ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  13. NASA / Jasmin Moghbeli While aboard the International Space Station, astronaut Jasmin Moghbeli took this picture of the Moon passing in front of the Sun during the annular solar eclipse on Oct. 14, 2023. As the space station orbits Earth, astronauts take images of the planet below and phenomena in space. Visible in parts of the United States, Mexico, and many countries in South and Central America, millions of people in the Western Hemisphere experienced this eclipse. If you weren’t in the path of the annular eclipse, or you want to relive this exciting event, watch our coverage of the 2023 annular solar eclipse. Image credit: NASA/Jasmin Moghbeli View the full article
  14. A team of engineers from NASA’s Johnson Space Center in Houston and Honeybee Robotics in Altadena, California inspect TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – shortly after its arrival at the integration and test facility.NASA/Robert Markowitz A team of engineers from NASA’s Johnson Space Center in Houston and Honeybee Robotics in Altadena, California, inspect TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – shortly after its arrival at the integration and test facility. In the coming months, the team will integrate the drill into NASA’s first robotic Moon rover, VIPER – short for the Volatiles Investigating Polar Exploration Rover. TRIDENT is the fourth and final science instrument for VIPER to arrive at the clean room, where the vehicle is being built. NASA engineers have already successfully integrated VIPER’s three other science instruments into the rover. These include: the MSOLO (Mass Spectrometer Observing Lunar Operations), which was integrated in July, and the NSS (Neutron Spectrometer System) and NIRVSS (Near-Infrared Volatiles Spectrometer System) instruments, which were integrated in August. TRIDENT will dig up soil cuttings from as much as three feet below the lunar surface using a rotary percussive drill – meaning it both spins to cut into the ground and hammers to fragment hard material for more energy-efficient drilling. In addition to being able to measure the strength and compactedness of the lunar soil, the drill features a tip that carries a temperature sensor to take readings below the surface. MSOLO is a commercial off-the-shelf mass spectrometer modified to withstand the harsh lunar environment by engineers and technicians at the agency’s Kennedy Space Center in Florida. MSOLO will help NASA analyze the chemical makeup of the lunar soil and study water on the surface of the Moon. NIRVSS will detect which types of minerals and ices are present, if any, and identify the composition of the lunar soil. NSS will help scientists study the distribution of water and other potential resources on the Moon, by targeting its search for hydrogen – the element that’s the telltale sign of water, or H2O. Over the past few months, engineers and technicians from the agency’s Johnson, Kennedy, and Ames Research Center, performed pre-integration operations, such as installing external heaters, harnesses, instrumentation sensors, and multi-layer insulation onto the instruments. This critical hardware will help monitor and control how hot or cold the instruments get as the rover encounters different temperature conditions on the Moon; depending on whether the rover is in sunlight or shade, temperatures can vary by as many as 300 degrees Fahrenheit. VIPER will launch to the Moon aboard Astrobotic’s Griffin lunar lander on a SpaceX Falcon Heavy rocket as part of NASA’s Commercial Lunar Payload Services initiative. It will reach its destination at Mons Mouton near the Moon’s South Pole in November 2024. During VIPER’s approximately 100-day mission, these four instruments will work together to better understand the origin of water and other resources on the Moon, which could support human exploration as part of NASA’s Artemis program. View the full article
  15. 2 min read NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series NASA conducted the first hot fire of a new RS-25 test series Oct. 17, beginning the final round of certification testing ahead of production of an updated set of the engines for the SLS (Space Launch System) rocket. The engines will help power future Artemis missions to the Moon and beyond. NASA completed a full duration, 550-second hot fire of the RS-25 certification engine Oct. 17, beginning a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. NASA / Danny Nowlin NASA completed a full duration, 550-second hot fire of the RS-25 certification engine Oct. 17, beginning a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all.NASA / Danny Nowlin NASA completed a full duration, 550-second hot fire of the RS-25 certification engine Oct. 17, beginning a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all.NASA / Danny Nowlin NASA completed a full duration, 550-second hot fire of the RS-25 certification engine Oct. 17, beginning a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all.NASA / Danny Nowlin Operators fired the RS-25 engine for more than nine minutes (550 seconds), longer than the 500 seconds engines must fire during an actual mission, on the Fred Haise Test Stand at NASA’s Stennis Space Center, near Bay St. Louis, Mississippi. Operators also fired the engine up to the 111% power level needed during an SLS launch. The hot fire marked the first in a series of 12 tests scheduled to stretch into 2024. The tests are a key step for lead SLS engines contractor Aerojet Rocketdyne, an L3Harris Technologies company, to produce engines that will help power the SLS rocket, beginning with Artemis V. The test series will collect data on the performance of several new key engine components, including a nozzle, hydraulic actuators, flex ducts, and turbopumps. The components match design features of those used during the initial certification test series completed at the south Mississippi site in June. Aerojet Rocketdyne is using advanced manufacturing techniques, such as 3D printing, to reduce the cost and time needed to build the new engines. Four RS-25 engines help power SLS at launch, including on its Artemis missions to the Moon. Through Artemis, NASA is returning humans, including the first woman and the first person of color, to the Moon to explore the lunar surface and prepare for flights to Mars. SLS is the only rocket capable of sending the agency’s Orion spacecraft, astronauts, and supplies to the Moon in a single mission. View the full article
  16. 6 min read Mercury’s Strange Hollows Enigmatic depressions on the surface have puzzled scientists since the 1970s NASA’s MESSENGER probe has discovered a surprise on Mercury: Something is digging “hollows” in the surface of the innermost planet. NASA’s MESSENGER spacecraft discovered strange hollows on the surface of Mercury. Images taken from orbit revealed thousands of mysterious depressions, pitted and uneven, in areas all across the planet, up to a half-mile (800 meters) across and 120 feet (37 meters) deep. This mosaic view of the Raditladi impact basin includes individual frames capturing areas about 12 miles (20 km) wide, which merged high-resolution monochrome images from MESSENGER’s Narrow Angle Camera with a lower-resolution enhanced-color image from its Wide Angle Camera. For decades, scientists have been puzzling over strange hollows on Mercury’s surface, thousands of peculiar depressions at a variety of longitudes and latitudes, ranging in size from 60 feet to more than a half-mile across (18-800 meters), and up to 120 feet deep (37 meters). No one knows how they got there. And while none are as spooky as the Sleepy Hollow of Washington Irving’s legend, Mercury’s hollows are just as mysterious and, so far, seen nowhere else in the universe. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution for Science “There’s essentially no atmosphere on Mercury,” said planetary geologist David Blewett, of the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. “With no atmosphere, wind doesn’t blow and rain doesn’t fall, so the hollows weren’t carved by wind or water. Other forces must be at work.” Mercury, the smallest planet in the solar system and closest to the Sun, is battered by heat, radiation, and solar wind; its extreme temperatures range from 800°F (430°C) on the sunny side, to as low as -290°F (-180°C) on the night side. It’s slightly larger, and similar to our Moon – airless, rocky, and peppered with impact craters large and small – but Mercury has rarely been visited by spacecraft, and retains many of its secrets. Scientists got their first tantalizing glimpses of the hollows when the Mariner 10 probe flew past Mercury in the 1970s, and captured low-resolution shots of curious bright areas in some craters. NASA returned to the small planet with the MESSENGER mission, which first flew past Mercury in 2008, then settled into orbit in 2011. That spacecraft circled the planet more than 4,000 times in four years, collecting hundreds of thousands of images and other data, and giving researchers new insights into this little-explored world. Mariner had cataloged less than half the planet’s surface during its brief visits 40 years earlier. A view of hollows on the crater named for author Edgar Allan Poe on Mercury, “This sinfully scintillant planet.” In this representation, Poe’s raven-colored rim stands out from the tan volcanic plains that surround it. Tiny hollows speckle the dark rim like blue-white stars in the blackness of night. The image was one of hundreds of high-resolution targeted color observations by MESSENGER’s Wide Angle Camera, using filters of red, green, and blue. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution for Science “A Little Valley…Among High Hills” MESSENGER (the Mercury Surface, Space Environment, Geochemistry and Ranging mission) finally provided a sharper view of the enigmatic tracts. To differentiate them from other surface features, researchers dubbed them “hollows” (akin to Washington Irving’s description of the terrain in “The Legend of Sleepy Hollow” – “a little valley or rather lap of land among high hills.”) The probe sent back finely detailed, beautiful images of the hollows, looking in some color-enhanced mosaics like sheets of copper corroded with blue-green patina. In others – such as shots of Sander crater in Mercury’s vast Caloris basin – the strange landforms, etched and ragged, glow bright blue amid the surrounding crater walls and mounds. And yet the images and other data, from MESSENGER’s X-Ray Spectrometer, Laser Altimeter, and other instruments, gave only hints and no definitive answers about the hollows. This enhanced-color image from the MESSENGER mission shows (from left to right) the craters Munch (38 miles, or 61 km, wide), Sander (32 miles, or 52 km), and Poe (50 miles, 81 km), which lie in the northwest portion of Mercury’s Caloris basin. The hollows are the bright blue areas covering the floor of Sander and dotting the rims of Munch and Poe. The hollows are highly reflective and naturally appear bluish; in images like this, the spacecraft’s Wide Angle Camera used its 11 color filters to exaggerate the color spectrum, to highlight the variation among surface materials. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution for Science ”When we got high-resolution views back of Sander, the floor of the crater just looked amazing,” said Carolyn Ernst of Johns Hopkins APL, a deputy instrument scientist on the MESSENGER mission. “It had all these crazy-shaped, irregular depressions, and it had this bright material outside of it. And to this day, we don’t fully know what causes them.” Researchers observed that the hollows are among the youngest and brightest features on the planet, especially compared to the impact craters where most reside, which date back as far as 4 billion years. The hollows, on the other hand, are relatively shiny and new – about 100,000 years old, on average – and may still be evolving today. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video MESSENGER mission scientists Ralph McNutt and Carolyn M. Ernst, both with Johns Hopkins APL, discuss what they’ve learned about Mercury’s hollows, and how much more needs to be figured out. Clues and Theories “We’ve been thinking of Mercury as a relic – a place that’s really not changing much anymore, except by impact cratering,” Blewett said. “But the hollows appear to be younger than the craters in which they are found, and that means Mercury’s surface is still evolving in a surprising way.” One possible clue to their formation is that many of the hollows are associated with central mounds or mountains inside Mercury’s impact craters. These so-called “peak rings” are thought to be made of material forced up from the depths by an impact that formed the crater. Ernst suggested a large object slamming into the planet, with the meteorite forming a new crater and tossing material from deep underground onto Mercury’s surface. The newly-excavated material could be unstable, finding itself suddenly exposed at the surface. Because Mercury is so close to the Sun, it’s battered by fierce heat and extreme space weather – factors that might play a role in forming hollows, added Blewett, a member of the science team for MESSENGER. ”Certain minerals, for example those that contain sulfur and other volatiles, would be easily vaporized by the onslaught of heat, solar wind, and micrometeoroids that Mercury experiences on a daily basis,” he said. “Perhaps sulfur is vaporizing, leaving just the other minerals, and therefore weakening the rock and making it spongier. Then the rock would crumble and erode more readily, forming these depressions.” Looking Ahead NASA’s Mars Reconnaissance Orbiter spotted similar depressions in the carbon dioxide ice at Mars’ south pole, giving that surface a “swiss cheese” appearance. But on Mercury the depressions are found in rock and often have bright interiors and halos. “We’ve never seen anything quite like this on a rocky surface,” Blewett said. Other theories include the idea that darker areas on Mercury’s surface are graphite deposits that, when pummeled and destroyed by solar wind, collapse and leave behind pitted, hollowed areas of only the much brighter, blue-tinged materials. We’ve never seen anything quite like this on a rocky surface. David Blewett Johns Hopkins University Applied Physics Laboratory MESSENGER mission participating scientist MESSENGER finally ran out of fuel and crashed into Mercury in April 2015, but researchers are still sifting through the data it collected. Scientists are also eagerly anticipating the arrival of BepiColombo to Mercury in 2025 and what secrets the mission will reveal. A joint European-Japanese venture, with two orbiters riding together, the craft made their first flyby of Mercury in October 2021 – only the third mission ever to visit the planet. In 1820, Washington Irving wrote of Sleepy Hollow being a place of “strange sights, …haunted spots, and twilight superstitions; stars shoot and meteors glare oftener across the valley than in any other part of the country.” Likewise, Mercury has its own “ghosts” – craters in a previous life, later shrouded by lava – and has seen shooting stars and meteors peppering every part of its surface for billions of years. The craters they leave are named for artists and authors, including Nathaniel Hawthorne, Herman Melville, and Edgar Allan Poe, whose namesake crater contains hollows. Maybe one day Irving, their mentor and contemporary, will join their company. By then the true nature of Mercury’s strange hollows may be unmasked. A Ghost Story About the Author agreicius Share Details Last Updated Oct 17, 2023 Related Terms The Solar System Explore More 3 min read Trick or Treat: Sidewalk Astronomy! Find events in your area and see what neighboring clubs are up to by checking… Article 1 day ago 2 min read NASA’s Lucy Spacecraft Continues Approach to Asteroid Dinkinesh Article 5 days ago 3 min read Five Tips for Photographing the Annular Solar Eclipse on Oct. 14 Article 1 week ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  17. 6 min read Lynn Bassford Prioritizes Learning as a Hubble Mission Manager Name: Lynn Bassford Title: Hubble Space Telescope Mission Flight Operations Manager Formal Job Classification: Multifunctional Engineering and Science Manager Organization: Astrophysics Project Division, Hubble Space Telescope Operations Project, Code 441 Lynn Bassford’s long career enables her to keep learning. “It’s just a fact of my life to learn something new every day until the day I die,” she says. “I’m not happy being stagnant.”NASA’s Goddard Space Flight Center/Tim Childers What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission? I help Goddard’s Hubble Space Telescope Mission Operations Team to make sure that we’re taking care of the health and safety of the spacecraft. This includes commanding and playing back data from Hubble and working with the ground system and subsystems engineering teams to coordinate procedures, train people, schedule everyone, and manage resources. How did you find your path to Goddard? I graduated and wasn’t quite sure where a physics major would go for a position. So, I picked up a copy of Physics Today, went through every company in there, and sent out my résumé. After sending approximately 200, an application came back from Lockheed. It said to fill it out and send it to the Lockheed closest to you. There were 10 different locations, so I sent it to all 10. One day, there was a message on the answering machine that said, “Hey, Lynn, just wondering if you would like to work on a telescope in space for NASA.” The person who called, his name sounded like “Mr. Adventure,” and I gave him a call back and found out his name was Mr. Ed Venter. I can’t help but think it’s pretty cool, actually, because it has indeed been a great adventure! What is your favorite part of working at Goddard? Working with the spacecraft! Physically sending a command up and seeing it come back is just utterly amazing. Over the years, I’ve had the luck of being able to meet several astronauts that have gone up in our servicing missions. In a couple cases, we had them visit us in the middle of the night on our long shifts. Meeting them is like meeting a rock star. What first sparked your interest in space? Space was a combination of sci-fi and reality. The Apollo 11 Moon landing took place a couple of months after I was born, so my dad and I like to say that I was in front of the TV watching and it just got absorbed into my persona. One day, I saw Sally Ride up working in space and the TV said she had a background in physics, so I did physics. Lynn Bassford says her favorite part of working at Goddard has always been working directly with the Hubble Space Telescope. “Physically sending a command up and seeing it come back is just utterly amazing,” she says.Courtesy of Lynn Bassford What is your educational background? I was always very good at science and math and absolutely loved them. In middle school, I wanted to do astrogeology, but everyone I talked to said I kind of made that up. Now it’s all around the place! I went to University of Lowell for physics, which became UMass at Lowell. I ended up working for a physics professor who was also the head of the astronomy department. You’ve held many roles over your years at Goddard. How do you feel that they’ve contributed to your current role as a manager? Everything I’ve done aligns. I learn from everyone at all levels that I interact with. I did eight-and-a-half years of rotating shift work with flight operations, and I made sure that I moved across the room from console to console learning the different areas. Then I went into science instruments system engineering for over five years, where I became the lead. Then I moved into this role in mission operations, which combines those but also brings in employee performance, career growth, safety, diversity and inclusion, and engagement. Understanding what each area does and how they work together helps you optimize everything. It’s just a fact of my life to learn something new every day until the day I die. I’m not happy being stagnant. How do you manage stressful situations when working with the telescope? I don’t even think about how stressful it is because of the training I had in those early days: working with and learning from the experts about what you look at, who you call, what you do, and how to keep the telescope in a safe condition. Even during issues or service missions, we’re actually a very calm team. What is your proudest accomplishment at Goddard? When I was a Flight Operations Team shift supervisor in charge of my own crew for Hubble, on Jan. 6, 1996, we got hit with a three-foot snowstorm. Back in those days, we were on rotating shift work. When I left work that day, there was a light layer of snow, so I went home and collected whatever I could in the house for food, knowing there were at least five people on-site that might not go home. I drove back to work with half-a-foot of snow. Seven people stayed for two-and-a-half days straight. We pulled the foam coverings off the walls, piled them up in layers, and made a mattress out of it. We put it in one of the warmer inner offices so we could take turns sleeping eight hours and splitting 16 hours between working real-time operations and moving our vehicles from lot to lot for the Goddard snowplows. NASA gave us a small award afterwards. Lynn Bassford and the 1996 Hubble flight operations team received an award for keeping Hubble running during a three-foot snowstorm. “Seven people stayed for two-and-a-half days straight,” Lynn recalls.NASA’s Goddard Space Flight Center What is the coolest part of your job? Hubble’s mission is just generally the coolest. It’s helping to discover, and to rewrite science books. Helping humanity discover what’s out there and move forward into the universe is groundbreaking. What advice would you give to people looking to have jobs at Goddard? For students, make sure you work hard even though college can be quite a challenge. That’s the intention – to get you thinking in all different ways and broaden your mind. Don’t give up, even when it’s challenging. For workers, diversifying your interests and not specializing in one area will make you open to a lot of different opportunities that you might not know about. You need to keep learning in order to be the best asset to an employer. Do you have a favorite space or Hubble fact? Hubble is a green telescope! We had solar panels before houses did. Lynn Bassford frequently helps out with Hubble outreach. “Hubble’s mission is just generally the coolest,” she says. “Helping humanity discover what’s out there and move forward into the universe is groundbreaking.” Courtesy of Jim Jeletic How do you like to spend your time outside of work? My dedication to work and family takes up most of my time, admittedly. If I can fit it in, I like to walk outside, do artwork that involves Hubble, and do challenging sports like white water rafting and bungee jumping. In the ’90s, I played on the men’s softball team at Goddard. I was a pitcher for the Hubble team. What is your “six-word memoir”? A six-word memoir describes something in just six words. We’re all made of stardust, IDIC. IDIC stands for infinite diversity in infinite combinations – it comes from Star Trek’s Spock. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. By Hannah Richter NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Oct 17, 2023 Related Terms Goddard Space Flight CenterHubble Space TelescopePeople of Goddard Explore More 6 min read Webb Detects Tiny Quartz Crystals in the Clouds of a Hot Gas Giant Article 1 day ago 3 min read NASA’s Webb Captures an Ethereal View of NGC 346 Article 1 week ago 5 min read NASA’s Roman Mission Gears Up for a Torrent of Future Data Article 1 week ago View the full article
  18. 3 min read NASA Makes It Easier to Find Assistive Technologies for Licensing Alter-G Inc. licensed NASA technology in 2005 and commercialized it through an “anti-gravity” treadmill that is now used by a variety of patients, including professional and collegiate athletes, people learning to walk again after injury or surgery and people suffering from other stresses on the joints such as arthritis or obesity. Alter-G Inc. NASA develops a variety of technologies to explore space and beyond for the benefit of humanity. One measure of its success is the impact on the daily lives of millions of people with injuries and disabilities who are assisted with innovative treatments and products developed from NASA-derived technology. Kennedy Space Center engineer Adam Kissiah is inducted into the Space Foundation’s Space Technology Hall of Fame in 2003 for his invention of the cochlear implant. Left to right are former astronaut Donald McMonagle, Kissiah, former astronaut and NASA administrator Vice Adm. Richard Truly, and Space Foundation president and CEO Elliot Pulham. Space Foundation After all, it was thanks to NASA’s resources that Adam Kissiah, an electronics instrumentation engineer at NASA’s Kennedy Space Center, was able to create what would become the cochlear implant. This assistive technology is now considered a medical wonder and has restored hearing to hundreds of thousands of adults and children across the planet since its creation nearly 50 years ago. And now, NASA is making it easier than ever to find and access patented inventions born from space exploration that could help design or manufacture assistive technologies. To help spur the next generation of assistive technologies, NASA has compiled patented technologies with potential applications to this industry in one place. Companies are invited to browse the list for innovations that can help improve an existing product or launch the creation of something new. “NASA is no stranger to improving the world of health and medicine. Our technologies benefit all humanity, and making them easier to find for companies creating these tools to improve people’s quality of life just made sense,” said Dan Lockney, program executive for NASA’s Technology Transfer program. “We can’t wait to learn how these innovations born from NASA expertise will help people lead healthy, productive, and independent lives.” According to the Assistive Technology Industry Association (ATIA), assistive technologies are products, equipment, and systems that enhance learning, working, and daily living for people with disabilities. This includes everything from hardware, such as prosthetics, hearing aids, and wheelchairs, to software like screen readers and communication programs. The Joint Optical Reflective Display (JORDY) wearable device helps people with low vision see by letting them change contrast, brightness, and display modes and by magnifying objects up to 50 times. The technology grew out of a joint effort by NASA, the Johns Hopkins Wilmer Eye Institute, and the U.S. Department of Veterans Affairs.Enhanced Vision Another notable NASA assistive technology spinoff is JORDY, or Joint Optical Reflective Display. The device enables people with low vision to read and write. JORDY enhances an individual’s remaining sight by magnifying objects up to 50 times and allowing them to change contrast, brightness, and display modes, depending on what works best for their low-vision condition. Swedish company Bioservo Technologies’ Ironhand, based on a set of patents from NASA and General Motors’ (GM) Robo-Glove, is the world’s first industrial-strength robotic glove for factory workers and others who perform repetitive manual tasks.Bioservo Technologies/Niklas Lagström The curated list on technology.nasa.gov features hardware and software available for licensing, including: A robotic upper body exoskeleton that helps the user control the shoulder and elbow to rehabilitate people suffering from the effects of a stroke or traumatic brain injury A glove to help reduce the grasping force needed to operate tools for an extended period of time, born from a collaboration to build a robotic astronaut 3D printing techniques to help build delicate or complex parts New and improved processes to fabricate circuitry In January 2024, representatives from NASA’s Technology Transfer program will be present at the ATIA conference in Orlando, Florida. Attendees will be able to learn more about the assistive technologies available for licensing. NASA’s Technology Transfer program, managed by the Space Technology Mission Directorate, ensures technologies developed for missions of exploration and discovery are broadly available to the public, maximizing the benefit to humanity. Learn more by visiting the Technology Transfer Portal at: https://technology.nasa.gov Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA Space Technology Mission Directorate Technology Transfer & Spinoffs Technology NASA News Share Details Last Updated Oct 17, 2023 Editor Loura Hall Contact Ann M. Harkeyann.m.harkey@nasa.gov Related Terms Space Technology Mission DirectorateTechnologyTechnology Transfer & Spinoffs View the full article
  19. NASA The crew of the International Space Station saw this view of the north coast of the Mexican state of Baja California Sur as the space station orbited 258 miles above on Oct. 14, 2023. In 24 hours, the space station makes 16 orbits of Earth, traveling through 16 sunrises and sunsets. The station’s orbital path takes it over 90 percent of the Earth’s population, with astronauts taking millions of images of the planet below. See more photos of our planet here. Image credit: NASA View the full article
  20. On Oct. 17, 1963, NASA announced the selection of its third group of astronauts. Chosen from 720 military and civilian applicants, the newest group of 14 astronauts comprised the best educated class up to that time. Seven represented the U.S. Air Force, four the U.S. Navy, one the U.S. Marine Corps, and two were civilians. NASA selected them to fly the two-seat Gemini spacecraft designed to test techniques for the Apollo Moon landing program as well as the Apollo missions themselves. Tragically, four of their members died before making their first spaceflight. The 10 surviving members of the group flew 18 important missions in the Gemini and Apollo programs, with seven traveling to the Moon and four walking on its surface. In addition, one flew a long-duration mission aboard Skylab. The Group 3 astronauts pose following their introduction during the Oct. 17, 1963, press conference – front row, Edwin E. “Buzz” Aldrin, left, William A. Anders, Charles M. Bassett, Alan L. Bean, Eugene A. Cernan, and Roger B. Chaffee; back row, Michael Collins, left, R. Walter Cunningham, Donn F. Eisele, Theodore C. Freeman, Richard F. Gordon, Russell L. Schweickart, David R. Scott, and Clifton C. Williams. On June 5, 1963, NASA announced that it would select 10-15 new candidates to augment the existing cadre of 15 active duty astronauts from its first two selections in 1959 and 1962. The agency had enough astronauts to staff the Gemini missions, but with Apollo missions then expected to begin in 1965, with up to four flights per year, it needed more astronauts. Selection criteria at the time for the candidates included U.S. citizenship, a degree in engineering or physical science, test pilot experience or 1,000 hours flying jets, 34 years old or younger, and no taller than six feet. From the 720 applications received by the July deadline, the selection board chose 136 candidates for further screening and narrowed that field down to 34 for extensive medical evaluations at Brooks Air Force Base (AFB) in San Antonio between July 31 and Aug. 15. The chair of the selection board, coordinator of astronaut activities Donald K. “Deke” Slayton, presented the names of the top 14 applicants to Robert R. Gilruth, director of the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, who approved the list. Slayton then called each of the winning candidates with the good news. On Oct. 17, he introduced the new astronauts during a press conference in Houston. On average, this third group of astronauts were younger, slightly taller and heavier than the previous two groups, and better educated, six with master’s degrees and one having earned a doctorate. Mercury 7 astronaut and chief of operations and training for the astronaut office Walter M. Schirra, with back to camera, briefs the newly arrived 14 astronauts at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. The Fourteen reported to work on Feb. 3, 1964, stationed initially at Houston’s Ellington AFB while construction of the MSC main campus on Clear Lake continued. During their first few months as astronauts, they visited various NASA centers and contractor facilities to become familiar with the space program’s major elements. Each astronaut received a technical assignment to gain expertise in specific aspects of spaceflight to pass their knowledge on to the rest of the group, and to help in the design of spacecraft, rockets, spacesuits, control systems, and simulators. Additionally, their 240-hour course work covered topics such as astronomy, aerodynamics, rockets, communications, space medicine, meteorology, upper atmospheric physics, navigation, orbital mechanics, computers, and geology. Because some of the group members could potentially receive assignments to land on the Moon, training including field trips to geologically interesting sites where they received instruction from geologists. They conducted jungle survival training in Panama, desert survival training around Reno, Nevada, and water survival training at the Pensacola, Florida, Naval Air Station. Left: Group 3 astronaut Russell L. “Rusty” Schweickart, center, gets hands on experience as capsule communicator (capcom) during Gemini IV, the first flight controlled from the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Schweickart, geologist Uel Clanton, Michael Collins, and Roger B. Chaffee during geology training near Bend, Oregon. Right: David R. Scott, left, and Richard F. Gordon examine a rock sample during a geology field trip to the Nevada Test Site at Yucca Flats. Of the 14, seven came from the U.S. Air Force (USAF), four from the U.S. Navy (USN), one from the U.S. Marine Corps (USMC), and two were civilians at the time of selection but had military experience. The astronauts included Edwin E. “Buzz” Aldrin (USAF), William A. Anders (USAF), Charles M. Bassett (USAF), Alan L. Bean (USN), Eugene A. Cernan (USN), Roger B. Chaffee (USN), Michael Collins (USAF), R. Walter Cunningham (civilian), Donn F. Eisele (USAF), Theodore C. “Ted” Freeman (USAF), Richard F. Gordon (USN), Russell L. “Rusty” Schweickart (civilian), David R. Scott (USAF), and Clifton C. “CC” Williams (USMC). Williams had the distinction as the first bachelor astronaut, a distinction he lost in July 1964. Group 3 astronauts Edwin E. “Buzz” Aldrin, left, William A. Anders, and Charles M. Bassett. Aldrin, who wrote his thesis on orbital rendezvous techniques for his Ph.D. in astronautics from the Massachusetts Institute of Technology in Cambridge, earned the nickname Dr. Rendezvous. Appropriately, Slayton tasked him to help with mission planning. Aldrin received his first crew assignment as the backup pilot for Gemini IX that included training for a spacewalk. He put that experience, plus additional training in a neutral buoyancy simulator, or underwater training to better simulate weightlessness, during his four-day Gemini XII flight during which he successfully completed three spacewalks. Moving on to the Apollo program, Aldrin next served as the backup Command Module Pilot (CMP) for the Apollo 8 first lunar orbital mission. As the prime Lunar Module Pilot (LMP) on Apollo 11, Aldrin became the second man to walk on the Moon in July 1969. He retired from NASA the following year. Slayton assigned Anders, who held a master’s degree in nuclear engineering, to follow the development of environmental controls for Gemini and Apollo spacecraft. His first mission assignment came as the backup pilot for Gemini XI, and then as prime LMP on Apollo 8. He is credited with taking the famous Earthrise photo while he and his crewmates orbited the Moon. He served as backup CMP on Apollo 11, before retiring from NASA in August 1969 to join the National Aeronautics and Space Council. Bassett’s technical assignment included training and simulators. Slayton assigned him as pilot on Gemini IX, a mission that included docking and a spacewalk. Tragically, on Feb. 28, 1966, just three months before their planned mission, Bassett and his command pilot Elliott M. See died in the crash of their T-38 Talon aircraft as they approached Lambert International Airport in St. Louis in inclement weather. Group 3 astronauts Alan L. Bean, left, Eugene A. Cernan, and Roger B. Chaffee. Bean’s primary technical assignment involved spacecraft recovery systems. Slayton first assigned him as backup command pilot on Gemini X with Williams as his pilot. He next served as the backup LMP on Apollo 9, the first mission to test the Lunar Module (LM) in Earth orbit. That put him in position as the prime LMP on Apollo 12. During that mission he became the fourth man to walk on the Moon. He later served as the commander for the 59-day Skylab 3 mission in 1973 and as the backup commander for the Apollo-Soyuz Test Project (ASTP) in 1975. He retired from NASA in 1981. Cernan, with a master’s in aeronautical engineering, followed the development of spacecraft propulsion and the Agena docking target for Gemini missions. Slayton assigned him as backup pilot for Gemini IX, and following the deaths of See and Bassett, Cernan and his commander Thomas P. Stafford took over as the prime crew. As luck would have it, they did not have a chance to dock with an Agena as it did not make it to orbit. Cernan conducted the second American spacewalk during that mission. He served as Aldrin’s backup on Gemini XII and then as the backup LMP on Apollo 7. That rotated him to the prime crew on Apollo 10, the dress rehearsal for the Moon landing during which he and Stafford took their LM to within nine miles of the lunar surface. He served as backup commander for Apollo 14, and then as prime commander of Apollo 17, the final Apollo Moon landing mission, he left the last footprints of that program in the lunar soil in December 1972. He remains one of only three people to have traveled to the Moon twice. He retired from NASA in 1976. Chaffee’s technical assignment led him to follow the development of spacecraft communications systems. In March 1966, Slayton assigned him to the first crewed Apollo mission, along with commander Virgil I. “Gus” Grissom and senior pilot Edward H. White. Tragically, the three died on Jan. 27, 1967, in a fire aboard their spacecraft during a ground test on the launch pad. Group 3 astronauts Michael Collins, left, R. Walter Cunningham, and Donn F. Eisele. Collins, who had applied for the 1962 class but did not get selected, followed the development of pressure suits and spacewalking systems. As his first crew assignment, he served as the backup pilot for the long duration Gemini VII mission. He next served as the pilot for Gemini X, the first mission to complete a rendezvous with two Agena targets, and during which he conducted two spacewalks. He briefly served as the CMP on the Apollo 8 crew before being sidelined by surgery to correct a bone spur in his neck. After his recovery, he served as the CMP on Apollo 11, the first Moon landing mission. He retired from NASA in 1970, and went on to serve as the director of the Smithsonian Institution’s National Air and Space Museum in Washington, D.C., overseeing the building of its new facility that opened for the nation’s bicentennial in 1976. Cunningham, who held a master’s degree in physics and had nearly completed work on his Ph.D. when selected, oversaw the development of ground-based experiments to support spaceflights. Slayton assigned him to the second crewed Apollo mission, along with classmate Eisele and Walter M. Schirra as their commander. Later, Slayton reassigned them to back up the first Apollo crew of Grissom, White, and Chaffee. After the Apollo fire, Schirra, Eisele, and Cunningham became the prime crew for Apollo 7, the first crewed Apollo flight. After working on the Skylab program, he retired from NASA in 1971. Slayton assigned Eisele, who held a master’s degree in astronautics, to oversee the development of spacecraft attitude control systems. Slayton assigned Eisele, along with Schirra and Cunningham to the second crewed Apollo mission, then reassigned them to back up the first Apollo crew. After the fire, Schirra, Eisele, and Cunningham became the prime crew for the first Apollo mission, completing the 11-day Apollo 7 mission in October 1968. Eisele later served as the backup CMP for Apollo 10. He retired from NASA in 1972. Group 3 astronauts Theodore C. Freeman, left, Richard F. Gordon, and Russell L. “Rusty” Schweickart. With a master’s degree in aeronautical engineering, Freeman’s technical assignment involved following the development of the various boosters for the Gemini and Apollo programs. Tragically, before he received a flight assignment, Freeman died in the crash of a T-38 Talon aircraft on Oct. 31, 1964, near Ellington AFB in Houston. He was the first active duty astronaut to perish. Slayton put Gordon in charge of following the design of cockpit controls. Gordon’s first crew assignment was as backup pilot for Gemini VIII, the first docking mission. He next served as the pilot for Gemini XI that completed the docking with their Agena target on the first revolution. He conducted two spacewalks during that mission. On his next assignment, he served as the backup CMP for Apollo 9, and then as prime CMP on Apollo 12, the second Moon landing mission. His last official assignment as backup commander of Apollo 15 would have led him to most likely be commander of Apollo 18, but budget cuts in September 1970 canceled that mission. He retired from NASA the following year. Schweickart, the youngest member of this astronaut class and with a master’s in aeronautics and astronautics, oversaw the development and integration of inflight experiments. First assigned in March 1966 as Chaffee’s backup on the first crewed Apollo mission, Schweickart and his crew mates James A. McDivitt and fellow classmate Scott were reassigned to the mission to carry out the first in-orbit test of the LM. They flew that mission as Apollo 9 in March 1969. Schweickart later served as the backup commander of the first Skylab crew. He retired from NASA in 1977. Group 3 astronauts David R. Scott, left, and Clifton C. “CC” Williams. Slayton placed Scott, who held a master’s degree in aeronautics and astronautics, in charge of monitoring the development of guidance and navigation systems. On his first crew assignment, he served as pilot on Gemini VIII, the mission that featured the first docking with an Agena target and the first in-space emergency requiring an immediate return to Earth. Just days after that harrowing flight in March 1966, Scott was named to the backup crew for the first Apollo mission, but later he, McDivitt, and Schweickart were reassigned to the first flight to test the LM in space, the flight that flew as Apollo 9 in March 1969. Scott next served as backup commander of Apollo 12, then as prime commander of Apollo 15. He became the seventh man to walk on the Moon and the first to drive there, using the Lunar Roving Vehicle. After leaving the astronaut corps, he served first as the deputy director and then the director of NASA’s Dryden, now Armstrong, Flight Research Center at Edwards AFB in California’s Mojave Desert. He retired from NASA in 1977. Williams, the only Marine and lone bachelor of the group (he married in July 1964), oversaw range operations and crew safety. Slayton assigned Williams as the backup pilot for Gemini X, and later he served as the LMP on a backup crew for the first flight of the LM in Earth orbit, along with Charles “Pete” Conrad and fellow classmate Gordon. Tragically, Williams died in the crash of a T-38 Talon aircraft near Tallahassee, Florida, on Oct. 5, 1967. Bean replaced him on Conrad’s crew, that became the Apollo 9 backup crew and ultimately the prime crew for Apollo 12. At Bean’s suggestion, Williams is memorialized on the Apollo 12 crew patch as a fourth star, the other three stars representing the actual flight crew. Summary of spaceflights by Group 3 astronauts. The boxes with flight names in italics represent astronauts who died before they could undertake the mission. As a group, The Fourteen tragically had the highest mortality rate of any astronaut class. The surviving 10 astronauts completed a total of 18 flights, five Gemini missions, 12 Apollo missions, and one Skylab mission. Of the group, Collins received the first crew assignment as Gemini VII backup pilot, while Scott made the first spaceflight on Gemini VIII. Bean made the last spaceflight by a Fourteen, as commander of Skylab 3 in 1973, and also the last to receive a crew assignment as the backup commander for the ASTP mission in 1975. Seven of The Fourteen traveled to the Moon, one of them twice, and four walked on its dusty surface. One even drove on it. Left: Michael Collins, lower left, the first of The Fourteen to receive a crew assignment as backup pilot on Gemini VII. Middle: David R. Scott, lower left, received the first assignment to a prime crew as Gemini VIII pilot – fellow Fourteen Richard F. Gordon was assigned as his backup. Right: Scott awaits launch inside Gemini VIII. Explore More 7 min read 40 Years Ago: Space Shuttle Discovery Makes its Public Debut Article 1 day ago 21 min read 65 Years Ago: First Factory Rollout of the X-15 Hypersonic Rocket Plane Article 4 days ago 23 min read NASA Celebrates Hispanic Heritage Month 2023 Article 6 days ago View the full article
  21. NASA

    Mongolia Lakes

    iss070e003079 (Oct. 12, 2023) — As the International Space Station orbited 260 miles above, two high saline lakes Uvs (left) and Khyargas (right) located in the Northwestern region of Mongolia were photographed. Both basins are nestled amongst mountain regions home to many different ecosystems.View the full article
  22. iss070e000668 (Sept. 30, 2023) — NASA astronaut and Expedition 70 Flight Engineer Loral O’Hara poses for a photo after receiving her first haircut in microgravity.NASAView the full article
  23. iss070e001602 (Oct. 2, 2023) — NASA astronaut and Expedition 70 Flight Engineer Jasmin Moghbeli works with the Advanced Resistive Exercise Device, or ARED, removing and replacing cables. The device uses adjustable resistive mechanisms to provide crew members a weight load while exercising to maintain muscle strength and mass in microgravity.NASAView the full article
  24. 4 min read More than Grants: Perspectives from Past NASA-funded Researchers Monique McClain inspects the print quality of surrogate propellants that were 3D-printed in her laboratory.Credits: Jared Pike/Purdue University Each year, researchers nationwide embark on journeys of discovery facilitated by funding from NASA’s Space Technology Research Grants (STRG) program. They uncover innovations that benefit future research and their careers after graduation. In 2023, STRG hit a significant milestone, making its thousandth award through the most recent cohort of NASA Space Technology Graduate Research Opportunity (NSTRGO) selections. The STRG program supports academic researchers – graduate students to senior faculty –­ through five unique solicitations to examine ideas and approaches critical to making science and space exploration more effective, affordable, and sustainable. The vast majority of STRG awards go to graduate students through NSTGRO, resulting in the development of innovative technology while enriching the careers of students and the aerospace workforce. To date, more than 750 awards have supported graduate student research across the country. For those NASA Space Tech fellows, post-graduation employment is diverse: approximately 19% worked for NASA (or agency contractors), 16% worked in aerospace, 11% at other Federal agencies, 17% in academia, and 20% in other advanced technology industries.Credit: NASA The next 2024 NSTGRO opportunity is open for proposals through Nov. 1, 2023. It marks the 14th consecutive year that STMD has sponsored U.S. citizen and legal permanent resident graduate students who show significant potential to contribute to NASA’s goal of creating innovative new space technologies for our nation’s science, exploration, and economic future. This space technology research investment milestone prompted NASA to reflect on three grantees inspiring and developing a diverse U.S. aerospace technology community. Eliad Peretz wanted to apply before becoming a graduate student at Cornell University in Ithaca, New York. Growing up in Israel, working on his grandfather’s olive grove taught him the value of planning and working hard at a young age. “I knew NASA was the place for me,” said Peretz. He viewed STRG as a way in the door, to work directly with NASA and, maybe, one day for NASA. Eliad Peretz poses for a photo. Credits: Jon Reis Funded by a 2015 grant, Peretz used artificial intelligence to design lightweight spacecraft solar cells. He spent summers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and Marshall Space Flight Center in Huntsville, Alabama. There, he had direct access to agency experts who helped advance the research while discovering something along the way. “I realized that I didn’t want to be a person who can only solve a single problem; I wanted to solve many problems for spaceflight,” said Peretz. “For me, it was a life-changing program and experience.” Today, Peretz works in the Heliophysics Division mission at NASA Goddard. He asks scientists and engineers for their most challenging problems and comes up with concepts, unlike anything that’s been done before. Monique McClain, a 2017 grant recipient, embarked on a different path after graduating from Purdue University in West Lafayette, Indiana. She is an assistant professor in Purdue’s School of Mechanical Engineering, using the NSTRF experience to help her students. “I was hooked on science fiction as a kid and thought the chief engineer in ‘Star Trek’ was the coolest job,” said McClain. “They got to solve all the challenging problems.” The “problem” of her research was to improve control over how a solid rocket motor burns by creating complex propellant shapes using a new 3D printing technology. “Space Tech Research Grants stood out because it was more than just a stipend,” said McClain. “It allowed me to make research decisions, visit government labs, and develop professionally.” McClain tested her 3D-printed components at NASA Marshall and the U.S. Naval Air Weapons Station at China Lake, California. Her current work focuses on understanding multi-material properties and improving 3D printer designs, while other researchers continue to build on her graduate project and are exploring technology commercialization opportunities. "Sometimes in academia, you are hyper-focused on a small problem, and this NASA opportunity helps you see the bigger picture." MONIQUE McClain Space Technology Research Grant recipient In graduate school at the University of Texas in Austin, Kaci Madden worked on robotic exoskeletons. Her uncle is an amputee; growing up, she saw how prosthetic technology evolved. Madden wanted to design devices that helped people. Funded by a 2015 NASA grant, she learned how to evaluate fatigue using robots to monitor astronaut health and performance more accurately. At NASA’s Johnson Space Center in Houston, Madden tested Robo-Glove, collected data, and built her professional network. “NASA has a sense of comradery, vision and mission,” said Madden. “Everyone I met was willing to help or introduce me to someone who could further my research and support theirs.” Madden said the opportunity propelled her career forward. She found a different mechanism for helping people and currently works for a healthcare start-up that empowers researchers to study rare diseases. “I have a lot of gratitude to the STRG program itself for offering these funds and the people I got to work with,” said Madden. “They deserve a lot of credit – they are the shoulders I stood on to complete my dissertation under this fellowship.” NASA Space Technology Research Grants are part of NASA’s Space Technology Mission Directorate (STMD). This program is one of many early-stage funding opportunities for researchers in academia. To browse other funding opportunities, visit: https://techport.nasa.gov/opportunities Share Details Last Updated Oct 17, 2023 Editor Anyah Dembling Contact Related Terms Space Technology Mission DirectorateSpace Technology Research GrantsTechnologyTechnology Research Explore More 4 min read NASA Seeks Development of Universal Payload Interface Article 22 hours ago 1 min read Who Let the Gas Out?: NASA Tank Venting in Microgravity Challenge Article 5 days ago 6 min read 5 Things to Know About NASA’s Deep Space Optical Communications Article 7 days ago Keep Exploring Discover More Topics From NASA Space Technology Mission Directorate Space Technology Research Grants STMD Solicitations and Opportunities Get Involved View the full article
  25. 1 min read Near-Earth Asteroids as of August 31, 2023 Near-Earth objects (NEOs) are asteroids and comets that orbit the Sun like the planets with orbits that come within 30 million miles of Earth’s orbit. NASA established the Planetary Defense Coordination Office (PDCO) to manage the agency’s ongoing efforts in Planetary Defense, which is the “applied planetary science” to address the NEO impact hazard. One key element of the PDCO is NASA’s NEO Observations program, which is composed of projects to find, track, and characterize NEOs. Here’s what we’ve found so far. This page is updated monthly with the most up-to-date numbers. Facebook logo @NASA@Asteroid Watch @NASA@AsteroidWatch Instagram logo @NASA Linkedin logo @NASA Explore More 1 min read Double Asteroid Redirection Test Post-Impact Image Gallery Article 3 hours ago 5 min read Journey to a Metal-Rich World: NASA’s Psyche Is Ready to Launch Article 5 days ago 2 min read Hubble Examines Entrancing Galaxy in Eridanus Hubble is sharing a brand new galaxy image every day through October 7, 2023! Visit… Article 1 week ago Keep Exploring Discover More Topics From NASA Asteroids Overview Asteroids, sometimes called minor planets, are rocky, airless remnants left over from the early formation of our solar system… Kuiper Belt Overview Both Pluto and Arrokoth are in the Kuiper Belt, the doughnut-shaped region of icy bodies extending far beyond the… Our Solar System Overview Our planetary system is located in an outer spiral arm of the Milky Way galaxy. We call it the… Planetary Science For decades, NASA’s planetary science program has advanced scientific understanding of our solar system in extraordinary ways, pushing the limits… Share Details Last Updated Oct 16, 2023 Editor Tricia Talbert Related Terms AsteroidsPlanetary DefensePlanetary Defense Coordination OfficePlanetary SciencePlanetary Science DivisionScience Mission Directorate View the full article
×
×
  • Create New...