Jump to content

NASA

Publishers
  • Posts

    5,864
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. NASA/Aubrey Gemignani The Moon, left, Saturn, upper right, and Jupiter, lower right, are seen after sunset from Washington, DC, on Dec. 17, 2020. The two planets drew closer to each other in the sky as they headed towards a “great conjunction” on Dec. 21, where the two giant planets appeared a tenth of a degree apart. View and download the full image here. See skywatching highlights, including meteor, asteroid, and planet sightings in What’s Up for Dec. 2023. Image Credit: NASA/Aubrey Gemignani View the full article
  2. International Space Station 25 Years in Orbit: Crew Q&A
  3. (Nov. 8, 2021) — The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around of the orbiting lab that took place following its undocking from the Harmony module’s space-facing port on Nov. 8, 2021.NASA/SpaceX NASA is celebrating the 25th anniversary of International Space Station operations during a live conversation with crew aboard the microgravity laboratory for the benefit of humanity. During a space-to-Earth call at 12:25 p.m. EST Wednesday, Dec. 6, the Expedition 70 crew will speak with NASA Associate Administrator Bob Cabana and Joel Montalbano, space station program manager. Watch on the NASA+ streaming service at no cost on demand. The discussion also will air live on NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media. On Dec. 6, 1998, the first two elements of the orbital outpost, Unity and Zarya, were attached by crew members of space shuttle Endeavour’s STS-88 mission. Cabana was the commander of the mission and the first American to enter the space station. Through this global endeavor, astronauts have continuously lived and worked aboard the space station for more than 23 years, testing technologies, performing science, and developing the skills needed to explore farther from Earth. It has been visited by 273 people from 21 countries. More than 3,300 research and educational investigations have been conducted on station from 108 countries and areas. Many of these research and technology investigations benefit people on Earth, and many lay the groundwork for future commercial destinations in low Earth orbit and exploration farther into the solar system. Together with Artemis missions to the Moon, these proving grounds will help prepare NASA for future human exploration of Mars. Learn more about the International Space Station at: https://www.nasa.gov/station -end- Josh Finch Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov Share Details Last Updated Dec 05, 2023 LocationNASA Headquarters Related TermsHumans in SpaceInternational Space Station (ISS) View the full article
  4. 7 Min Read Digging Deeper to Find Life on Ocean Worlds Conceptual image of a cryobot breaching into the ocean of Europa and searching for signs of life. Credits: NASA/JPL-Caltech SNAPSHOT In February 2023, researchers from around the country gathered at a NASA-sponsored workshop to discuss the latest developments and a roadmap for a cryobot mission concept to drill through the icy crusts of Europa and Enceladus and search for life. “Follow the water” has been the mantra of the astrobiology community in search of alien life in the universe. Water is a fundamental building block of all terrestrial life as we know it and—as discovered by various space missions—water is abundant throughout the solar system, and perhaps, the universe. Ancient eroded features on Mars show clear evidence of a wet history, and the ongoing quest of the Perseverance rover aims to uncover clues as to whether or not Mars once hosted a population of microbes. However, there is only so much we can learn from the fossil record. To truly understand the nature of possible alien life, we must directly investigate the source—the liquid water. Enter “Ocean Worlds.” Over the past two decades, scientists have discovered that a vast number of icy moons orbit the outer giant planets in our solar system. Many of these moons show strong evidence for harboring global oceans beneath their icy crusts. In fact, these moons likely have far more liquid water than all of Earth’s oceans combined, and some may even have the right conditions to foster life. Two moons, in particular, have captured the imaginations of astrobiologists due to their amenable conditions for life and their relative ease of interrogation: Jupiter’s moon, Europa and Saturn’s moon, Enceladus. Both show strong evidence of a global subsurface ocean beneath a kilometers-thick water-ice crust—but how can we access this liquid water? Various concepts for ocean access have been investigated over the past decades, ranging from robots that descend through crevasses to drills of varying types. One concept that has emerged as a leading candidate is the cryobot. A cryobot is a self-contained cylindrical probe that uses heat to melt the ice beneath it. The melted water then flows around the probe before refreezing behind it. Thermal ice drilling is so simple and effective that it has become a common tool for studying terrestrial glaciers and ice sheets. But how can we translate this technology to a system that can penetrate planetary icy crusts, which are colder, thicker, and more uncertain? This dilemma has been a core focus of researchers—many of whom are supported by NASA’s Scientific Exploration Subsurface Access Mechanism for Europa (SESAME) and Concepts for Ocean worlds Life Detection Technology (COLDTech) programs—for the past several years. In February 2023, NASA’s Planetary Exploration Science Technology Office (PESTO) convened a workshop at the California Institute of Technology, which brought together nearly 40 top researchers from diverse fields and institutions around the country to discuss progress in maturing this technology and to assess the challenges that remain. Recent studies have made significant progress in refining our understanding of the ice shell environment, detailing a mission architecture, and maturing critical subsystems and technologies. In particular, workshop participants identified four key subsystems that drive the roadmap for developing a flight-ready architecture: the power, thermal, mobility, and communication subsystems. Conceptual image of the Cryobot mission profile. A lander deploys a nuclear-powered probe, which melts through the ice shell to access the ocean below. A tether and wireless transceivers are deployed behind the probe during its descent for communication. Credit: NASA/JPL-Caltech First, the heart of a cryobot is a nuclear power system that generates the sustained heat required to melt through kilometers of ice. Various nuclear power systems that could suit a cryobot system have been identified, including the familiar Radioisotope Power Systems (RPS) that have powered many deep-space missions, and fission reactors that may be developed in the coming years. Two key constraints that drive the power system design are: (1) sufficient total power and density to facilitate efficient melting (about 10 kW), and (2) integration within a structural vessel to protect the power system from the high pressures of the deep ocean. These challenges are both solvable and have some historical precedent: NASA’s Cassini mission had a 14 kW thermal power system, and several Radioisotope Thermoelectric Generators (RTGs) were deployed to the bottom of the ocean in the 1960s and 1970s as power sources for navigation beacons, which operated in comparable pressures to the Europan ocean. However, a cryobot power system will require a concerted effort and close collaboration with the Department of Energy throughout the maturation of the mission concept. Second, a thermal management system is required to manage the heat produced by the onboard nuclear power system, maintain safe internal temperatures, and distribute heat to the environment for efficient performance. This system requires two independent pumped fluid circuits: one that circulates an internal working fluid through channels embedded in the skin and another that circulates melted ice water with the surounding environment. Some of these technologies have been demonstrated at reduced and full scale, but more work is needed to validate performance at the range of ice conditions expected in the outer solar system. In addition, the icy shells of Europa and Enceladus will contain impurities such as dust and salt, which, when sufficiently concentrated, may require auxilliary systems to penetrate. A combination of “water jetting” and mechanical cutting has been demonstrated to be effective at clearing debris ranging from fine particulate to solid blocks of salt from beneath the probe. Some impurities such as larger rocks, voids, or water bodies may remain impenetrable, requiring the cryobot to incorporate a downward-looking mapping sensor and steering mechanism—both of which have been demonstrated in terrestrial prototypes, though not yet in an integrated system. High-priority future work includes a more rigorous and probabilistic definition of the icy environments to quantify the likelihood of potential mobility hazards, and an integrated demonstration of hazard mitigation systems on a flight-like cryobot system. Europa Clipper will also provide key observations to constrain the prevalence and characteristics of hazards for a cryobot. Finally, a cryobot mission requires a robust and redundant communication link through the ice shell to enable the lander to relay data to an orbiting relay asset or directly to Earth. Fiber optic cables are the industry standard for communicating with terrestrial melt probes and deep-sea vehicles, but require careful validation for deployment through ice shells, which are active. The movement of ice in these shells could break the cable. A team led by Dr. Kate Craft at the Johns Hopkins Applied Physics Laboratory has been investigating the propensity of tethers embedded in ice to break during ice-shear events, as well as methods to mitigate such breakage. While preliminary results from this study are highly encouraging, other teams are exploring wireless techniques for communicating through the ice, including radio frequency, acoustic, and magnetic transceivers. These communication systems must be integrated onto the aft end of the probe and depoyed during its descent. Current projects funded under the NASA COLDTech program are taking the first steps toward addressing key risks for the communications system. Future work must validate performance across a broader range of conditions and demonstrate integration on a cryobot. While the power, thermal, mobility, and communication subsystems took center stage, workshop participants also discussed other key systems and technologies that will require maturation to enable a cryobot mission. These topics include an integrated instrument suite with accommodations for liquid sampling and outward-facing apertures, planetary protection and sterilization strategies, materials selection for corrosion mitigation, ice-anchoring mechanisms, and autonomy. However, none of these technologies were identified as major risks or challenges in the cryobot mission concept roadmap. Overall, the consensus finding of workshop participants was that this mission concept remains feasible, scientifically compelling, and the most plausible near-term way to directly search for life in situ on an ocean world. Continued support would allow scientists and engineers to make even further progress toward readying cryobots for future mission opportunities. The potential for the direct detection of life on another world seems more possible than ever. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). PROJECT LEAD Dr. Benjamin Hockman, Jet Propulsion Laboratory, California Institute of Technology SPONSORING ORGANIZATION NASA’s Planetary Exploration Science Technology Office (PESTO) Share Details Last Updated Dec 05, 2023 Related Terms Planetary Science Science-enabling Technology Technology Highlights View the full article
  5. Students participate in the 21st annual Disability Mentoring Day on Tuesday, Nov. 14, 2023, at NASA’s Kennedy Space Center in Florida. The visiting students paired with mentors from Kennedy based on interests spanning from public affairs to engineering, shadowing them to learn about their respective day-to-day duties at the spaceport. Mentors shared experiences and insight on their path to NASA and provided learning opportunities to students looking to kickstart their career development.NASA/Glenn Benson By Matina Douzenis NASA’s John F. Kennedy Space Center Meeting members of the Artemis generation often inspires NASA’s workforce as much as it encourages the students themselves. For one recent group of students, a visit to the agency’s Kennedy Space Center in Florida brought mentorship, new experiences, and inspiration for answering the profound questions of our universe. The 22 students traveled to the world’s preeminent spaceport on Nov. 14 for the 21st annual Disability Mentoring Day hosted at Kennedy by the Disability Awareness and Action Working Group (DAAWG). Students were paired with a mentor based on interests spanning communication to engineering. Mentors shared experiences and insight on their path to NASA and provided learning opportunities to students hoping to kickstart their career development. “As a first-year mentor, it’s hard to capture the spirit of Disability Mentoring Day with words,” said NASA Public Affairs Officer Danielle Sempsrott. “Seeing how excited these kids were to be here at Kennedy, learning what we do, was amazing. One of the students asked us to keep them in mind for any job openings in the future. It’s really cool knowing we made them feel welcome and maybe sparked an interest that may not have been there before.” At Kennedy, teams of diverse people collaborate to do groundbreaking work across a wide range of programs. Event organizers hope that mentoring day will inspire the Artemis generation, who are still in school today, to enter the NASA orbit in any number of career fields. “When I was a young kid, I didn’t have this opportunity to participate in any disability mentoring day,” said DAAWG Co-Chair Nicole Delvesco and NASA cost accountant who has a cochlear implant. “If I had, I know I would have felt better about myself, would have had a lot more confidence to achieve a lot more than I already have.” The mentoring day is just one activity that helps further NASA Kennedy’s diversity, equity, accessibility, and inclusion goals. DAAWG also serves as an advocate for the center’s employees with disabilities and disabled veterans, advises the Center Director on matters relating to employees with disabilities, and serves as a resource to the Office of Diversity and Equal Opportunity and other directorates. Other programs like National Disability Employment Awareness Month, which occurs every October, celebrates the accomplishments and achievements of all individuals with disabilities. The U.S. Congress created the observance in 1988 to raise awareness of disability employment needs and to celebrate the many and varied contributions of individuals with all types of disabilities. “It is important for people to learn about different disabilities – hidden or visible,” said Paul Spann, the Disability Mentoring Day event lead who is a NASA accountant with a cochlear implant. “Most individuals with disabilities that I know will work harder to show their capabilities and always look for ways to prove themselves – I personally have had to do this throughout my career to remove doubts from people. It’s important that everyone understand how to focus on the strengths of individuals with disabilities in the workplace.” View the full article
  6. Dec. 4, 2023 MEDIA ADVISORY: M23-001 Four astronauts, including the current record-holder for the longest single stay in space aboard the International Space Station, will make their first public appearance in Houston since returning to Earth. The crew will be available for interviews at 5 p.m. CST Wednesday, Dec. 6, at Space Center Houston. NASA astronauts Nicole Mann, Josh Cassada, and Frank Rubio, along with JAXA (Japan Aerospace Exploration Agency) astronaut Koichi Wakata, will be at NASA Johnson Space Center’s visitor center to share highlights from their missions during a free, public event at 6:15 p.m. At 7:40 p.m., the crew will help recognize key contributors to its mission success in an awards ceremony. Reporters may request an in-person interview no later than 12 p.m. Dec. 6 by emailing Dana Davis at dana.l.davis@nasa.gov. Crew-5 NASA’s SpaceX Crew mission launched in October 2022 with Mann, Cassada, and Wakata, as well as Roscosmos cosmonaut Anna Kikina, on the fifth commercial crew rotation mission to the International Space Station. The crew spent 157 days aboard the space station, traveled 66,577,531 miles, and completed 2,512 Earth orbits, splashing down off the coast of Tampa, Florida, on March 11. This was the first spaceflight for Mann, Cassada, and Kikina. It was the fifth flight for Wakata who has now logged a total of 505 days in space. Soyuz Crew The international crew that flew on the Soyuz spacecraft served on Expeditions 68 and 69 aboard the space station. The flight launched on the Soyuz MS-22 spacecraft in September 2022 with Rubio and Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin. The crew spent 371 days aboard the space station, traveled 157,412,306 statute miles, and completed 5,963 Earth orbits, landing in Kazakhstan aboard the Soyuz MS-23 spacecraft on Sept. 27, 2023. This was the second spaceflight for Prokepyev and Petelin. This was Rubio’s first spaceflight mission and it broke the U.S. record for a single spaceflight by an American. While on the station, the crew members conducted important scientific investigations and helped maintain the orbiting laboratory. While aboard they tested hydroponic and aeroponic techniques to grow plants without using soil, studied how liquids move in a container in simulated lunar gravity to generate data to improve Moon rover designs, and tested an on-demand system to produce specific quantities of key nutrients from yogurt, kefir, and a yeast-based beverage. The crew also released Uganda and Zimbabwe’s first satellites. Stay current on space station activities by following @space_station and @ISS_Research on Twitter, as well as the station Facebook and Instagram accounts and the space station blog. -end- Chelsey Ballarte Johnson Space Center, Houston 281-483-5111 chelsey.n.ballarte@nasa.gov Dana Davis Johnson Space Center, Houston 281-244-0933 dana.l.davis@nasa.gov View the full article
  7. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Katie Konans, NASA’s audio and podcasting lead at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, is one of two NASA employees named to Forbes’ 30 Under 30 Class of 2024. The other agency honoree, Clare Luckey, is a systems engineer at NASA’s Johnson Space Center in Houston. Katie Konans is NASA’s audio and podcasting lead at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.NASA/Rob Andreoli Forbes’ 30 Under 30 list is a selection of young, creative, and bold minds the magazine’s experts consider revolutionaries, changing the course of business and society. Forbes evaluated more than 20,000 nominees to decide on 600 business and industry figures, with 30 selected in each of 20 industries. “When I joined NASA in 2018, the agency didn’t have a dedicated audio program or strategy,” Konans said. “I was fresh out of an NPR member station fellowship, excited about the world of audio storytelling, and had the rare opportunity to build out a new part of NASA’s communications program. “I will forever feel fortunate to have had that chance to experiment with a new medium and grow NASA’s audio program into the storytelling unit it is today. I recognize what a unique privilege it is to get the time, space, and encouragement – to do something new and different, that also pushes against the status quo, and have that big bet pay off.” Konans has revolutionized NASA’s digital strategy through her work in audio communication. She is a creative communicator who works at the intersection of storytelling and strategy. Konan’s work has expanded NASA’s reach in the digital audio space, resulting in millions of downloads worldwide. At NASA, she manages five active podcasts, including the flagship podcast “NASA’s Curious Universe,” which she launched in 2020. Since taking the leadership role in 2019, she’s grown the podcast audience to more than 8 million episode plays on Apple Podcasts alone, with a listener retention rate of 70% on average. She’s received the NASA Early Career Achievement Medal, a Webby Award, and the Robert H. Goddard Award for her team’s contributions to NASA’s public engagement and communication. Prior to joining NASA, Konans was a features reporter at NPR affiliate Georgia Public Broadcasting, where she covered community-focused stories. Konans is passionate about working with students and is a coordinating mentor for Goddard’s Office of Communications internship program. “I’m from the small town of McDonough, Georgia. I graduated from Mercer University in 2019 as the first in my family to complete a traditional college degree, but not without overcoming significant roadblocks. I put myself through school, and really struggled financially to make it to the finish line. I didn’t give up, and it’s one of the big reasons I was able to make it to NASA. “I have to thank the many mentors I’ve had along the way, but especially the faculty of Mercer University’s Center for Collaborative Journalism. While I was battling those challenges, they saw something in me and truly encouraged me to reach for the stars. It’s one of the reasons I’m so involved in mentoring NASA’s communications interns today – I know that having just one person in your corner can absolutely change your life.” In 2023, Konans also launched the agency’s first Spanish podcast in collaboration with the NASA en Español team. “Today, NASA’s podcasts reach hundreds of thousands of podcast listeners across the globe, sharing stories of space and science that educate, inspire, and encourage younger audiences to get curious about the world of science and space. Working with my team to share those stories is more than I could have ever dreamed of being a part of. It’s incredibly rewarding.” Rob Gutro NASA’s Goddard Space Flight Center Share Details Last Updated Dec 04, 2023 EditorJamie AdkinsContactRob Gutrorobert.j.gutro@nasa.govLocationGoddard Space Flight Center Related TermsGoddard Space Flight CenterPeople of GoddardPeople of NASAPodcasts Explore More 8 min read Hubble Celebrates 30th Anniversary of Servicing Mission 1 In the pre-dawn hours on Dec. 2, 1993, the space shuttle Endeavour launched from Kennedy… Article 3 days ago 3 min read Hubble Views a Double Cluster of Glowing Galaxies This Hubble image features a massive cluster of brightly glowing galaxies, first identified as Abell 3192.… Article 3 days ago 5 min read Webb Study Reveals Rocky Planets Can Form in Extreme Environments Article 4 days ago View the full article
  8. NASA Administrator Bill Nelson participated in the first-ever Space Agencies Leaders’ Summit at COP 28 in Dubai, UAE, on Dec. 4, 2023, where he underscored the importance of sharing climate data transparently and openly with the world. Leaders from two dozen space agencies discussed enhancing data sharing between established and emerging space nations, strengthening climate research by allocating resources and funding towards climate research initiatives within the space sector, supporting climate monitoring initiatives by establishing new programs, and promoting sustainable space operations by minimizing the environmental impact of space operations. The summit ended with participants adopting a pledge to enhance space-based climate initiatives to transform and accelerate climate action to meet the commitments outlined in the 2015 Paris Agreement. Image Credit: COP 28/Stuart Wilson View the full article
  9. NASA/Sam Lott Engineers and technicians at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently installed a key component called the frangible joint assembly onto the adapter that connects the core stage to the upper part of the NASA’s SLS (Space Launch System) rocket. The cone-shaped stage adapter, called the launch vehicle stage adapter, will be part of the SLS mega rocket that will power NASA’s Artemis III mission to the Moon. The frangible joint sits atop the adapter and operates as a separation mechanism. The frangible joint is designed to break apart upon command, allowing the upper part of the rocket, NASA’s Orion spacecraft, and the crew inside Orion to quickly separate from the SLS core stage and adapter. Frangible joint assemblies are widely used across the space industry in a variety of crewed and uncrewed spacecraft to efficiently separate fairings or stages during launch, during ascent, in orbit and during payload deployment. The stage adapter used for Artemis III is set to be the last of its kind as SLS evolves into a larger and more powerful configuration for future Artemis missions, beginning with Artemis IV. The adapter is fully assembled at Marshall by NASA and lead contractor Teledyne Brown, which is also based in Huntsville. The cone-shaped launch vehicle stage adapter, seen in yellow, is in a production area.NASA/Sam Lott SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. For more on NASA SLS, visit: https://www.nasa.gov/sls News Media Contact Corinne Beckinger Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 corinne.m.beckinger@nasa.gov View the full article
  10. If spacecraft are to visit the outer solar system, they must cross the asteroid belt between Mars and Jupiter. The Pioneer mission was faced with the question of just how dangerous this asteroid belt would be to a spacecraft passing through it.NASA This illustration made on Nov. 26, 1974, by Rick Giudice shows the Pioneer 10 spacecraft traveling through the asteroid belt between Mars and Jupiter, the largest planet in the solar system. At the time, it was uncertain whether it would traverse it safely since the density of particles large enough to damage the craft was not yet known, but Pioneer 10 became the first satellite to enter and pass through the asteroid belt. The mission’s primary goal was to explore Jupiter, its satellites, its magnetic field, and trapped radiation belts. On Nov. 6, 1973, while still 16 million miles from Jupiter, Pioneer 10 began to image the giant planet with its photopolarimeter, and shortly thereafter began to take measurements with its other instruments as well. Twenty days later, the spacecraft passed the front of Jupiter’s bowshock, where the solar wind clashed with the planet’s magnetosphere. By Dec. 1, the spacecraft was returning images of the planet exceeding the best pictures from Earth. Pioneer 10 sent its last signal on Jan. 23, 2003, when it was 7.6 billion miles (12.23 billion kilometers) away from Earth. Learn about Pioneer and other planetary exploration and scientific satellite research planned for the 1970s in the Seeds of Discovery documentary on NASA+. Image Credit: NASA View the full article
  11. 1 min read Artificial Intelligence Plus Your Cell Phone Means Better Maps of Earth! GLOBE Observer data from various locations showing four directional views: west, north, south, and east. Credit: Huang et al. 2023, International Journal of Applied Earth Observation and Geoinformation, Volume 122, 103382 In 2019, the GLOBE Land Cover project began asking volunteers to help map planet Earth by taking photos of their surroundings facing multiple directions, including north, south, east and west. Now, a new paper by Huang et al. demonstrates how to combine these images using Artificial Intelligence (AI). The paper compares this “multi-view” approach with the old single-view approach–and finds that the multi-view capabilities of the GLOBE Observer app, processed with AI, enable much more accurate mapping. “We are thrilled about our recent discovery! We’ve observed that the current AI model is increasingly exhibiting human-like behavior, adept at integrating multiple perspectives, synthesizing them, and striving to derive meaning from these views.” Xiao Huang The paper’s lead author “We are thrilled about our recent discovery!” said Xiao Huang, the paper’s lead author. “We’ve observed that the current AI model is increasingly exhibiting human-like behavior, adept at integrating multiple perspectives, synthesizing them, and striving to derive meaning from these views.” The most detailed satellite-based maps of our whole planet still can’t show details smaller than hundreds of meters [about 330 feet]. That means that a park in a city may be too small to show up on the global map. When you use the GLOBE Observer: Land Cover app, you help scientists fill in local gaps and contribute to consistent, detailed global maps that should us how our world is changing. Grab your smartphone and join the project! Facebook logo @DoNASAScience @DoNASAScience Share Details Last Updated Dec 04, 2023 Related Terms Citizen Science Earth Science View the full article
  12. “Trying to do stellar observations from Earth is like trying to do birdwatching from the bottom of a lake.” James B. Odom, Hubble Program Manager 1983-1990. The discovery after its launch that the Hubble Space Telescope’s primary mirror suffered from a flaw disappointed scientists who could not obtain the sharp images they had expected. But thanks to the Hubble’s built-in feature of on-orbit servicing, NASA devised a plan to correct the telescope’s optics during the first planned repair mission. The agency assigned one of its most experienced crews to undertake the complex tasks, naming Richard O. Covey, Kenneth D. Bowersox, Kathryn C. Thornton, Claude Nicollier of the European Space Agency, Jeffrey A. Hoffman, F. Story Musgrave, and Thomas D. Akers to the STS-61 first Hubble Servicing Mission. The first all veteran crew since the STS-26 return to flight mission in 1988 had a cumulative 16 previous missions among them and all had previous spacewalking experience. During their 11-day flight in December 1993, they repaired the telescope during an unprecedented five spacewalks in a single space shuttle mission, rendering it more capable than originally designed. Left: The STS-61 crew of Kenneth D. Bowersox, sitting left, Kathryn C. Thornton, F. Story Musgrave, and Claude Nicollier of the European Space Agency; Richard O. Covey, standing left, Jeffrey A. Hoffman, and Thomas D. Akers. Middle: The STS-61 crew patch. Right: Endeavour rolls over from Launch Pad 39A to 39B at NASA’s Kennedy Space Center in Florida. The first Hubble servicing mission proved to be one of the most complex up to that time. With that in mind, on March 16, 1992, NASA named Musgrave, an astronaut since 1967 and a veteran of four previous missions including conducting the first spacewalk of the shuttle era, as the payload commander and one of the four spacewalkers for STS-61. On Aug. 28, NASA named Hoffman, Akers, and Thornton as the other three spacewalkers who in teams of two would carry out the five spacewalks on alternating days. Finally, on Dec. 3, NASA named Covey, Bowersox, and Nicollier as the commander, pilot, and flight engineer, respectively, for the mission. Nicollier also served as the prime operator of the Remote Manipulator System (RMS), or robotic arm, with Bowersox as his backup. The seven-person crew trained intensely for the next year preparing for the complex tasks ahead, including simulating the spacewalks at the Neutral Buoyancy Simulator at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the Weightless Environment Training Facility at NASA’s Johnson Space Center in Houston. Meanwhile, at NASA’s Kennedy Space Center in Florida, workers prepared space shuttle Endeavour for its fifth journey into space. They rolled the shuttle, assembled with its external tank and solid rocket booster, to Launch Pad 39A on Oct. 28. However, following a wind storm on Oct. 30 that contaminated the payload changeout room with sandy grit, managers decided to move Endeavour to neighboring Pad B on Nov. 15, in only the second roll around in shuttle history. Left: Schematic of the Hubble Space Telescope’s major components. Middle: Workers inspect the Hubble Space Telescope’s 94-inch diameter primary mirror prior to assembly. Right: Astronauts release the Hubble Space Telescope in April 1990 during the STS-31 mission. The first concrete plan for placing an optical telescope in space, above the obscuring and distorting effects of the Earth’s atmosphere, originated with Princeton University astronomer Lyman S. Spitzer in 1946. In 1972, NASA first proposed a plan to launch a Large Space Telescope (LST) and five years later Congress approved the funding. As envisioned, the LST would contain a 94-inch diameter primary mirror and launch on the space shuttle, then still under development, in 1983. With an expected on-orbit lifetime of 15 years, the LST’s instruments would make observations primarily in the visible and ultraviolet parts of the electromagnetic spectrum. In 1983, managers abandoned the original plan to use the space shuttle to return the telescope to Earth for refurbishment and relaunch in favor of in-orbit maintenance and upgrades by astronauts during spacewalks in the shuttle’s payload bay. The same year, NASA renamed the LST after astronomer Edwin P. Hubble and set the launch for October 1986. The Challenger accident in January 1986 delayed the launch of the Hubble Space Telescope until April 24, 1990, during Discovery’s STS-31 mission. The shuttle flew to an unusually high 380-mile orbit to ensure that Hubble would operate above as much of the Earth’s atmosphere as possible. After initial on-orbit activation and checkout of the telescope’s systems, it was time for the much-anticipated “first light” images. The initial images, however, puzzled scientists as they showed stars not as single well-focused points of light but as blurred and fuzzy. Investigators learned that the telescope’s primary mirror suffered from a production error, its edges too flat by 0.003 mm, resulting in an optical problem called spherical aberration. While this significantly degraded the capability of several of Hubble’s instruments to return exceptionally detailed photographs, the telescope still produced some good images. NASA put in place a plan to fix the Hubble’s optical problems without resorting to repairing the mirror. With the spherical aberration well-defined, engineers designed a set of mirrors that astronauts could place aboard Hubble during the previously planned first servicing mission. Left: Liftoff of space shuttle Endeavour on the STS-61 mission to repair the Hubble Space Telescope. Middle: The Hubble Space Telescope as seen from Endeavour during the rendezvous, with the end of the Remote Manipulator System (RMS), or robotic arm, visible at lower right. Right: On the shuttle’s flight deck, European Space Agency astronaut Claude Nicollier operates the RMS to grapple Hubble. Planning for the first servicing mission to Hubble began in 1988, two years before the launch of the telescope. With the post-launch discovery of spherical aberration, the scope of the first servicing mission changed dramatically. The primary goal now focused on correcting the telescope’s optics to ensure that its onboard instruments could function as planned. Engineers developed the Corrective Optics Space telescope Axial Replacement (COSTAR), a tool to correct Hubble’s blurry vision, consisting of five pairs of corrective mirrors placed in front of the Faint Object Camera, the Faint Object Spectrograph, and the Goddard High Resolution Spectrograph (GHRS) instruments. Installing COSTAR required the removal of the High-Speed Photometer, the sacrifice of one instrument outweighed by the saving of the other three. The astronauts also replaced the original Wide Field Planetary Camera (WFPC) with the more advanced WFPC2 to improve the telescope’s ultraviolet performance. The WFPC2 carried its own corrective optics. The astronauts also replaced fuses and the telescope’s two solar arrays, one of which imparted vibrations that prevented precise pointing. On Dec. 2, 1993, space shuttle Endeavour lifted off from Pad 39B at 4:27 a.m. EST, after a one-day weather delay. Following insertion into an unusually high 360-mile orbit to reach Hubble, the astronauts began their initial on-orbit operations by opening the payload bay doors. The next day, Covey and Bowersox performed several engine burns as part of the rendezvous maneuvers. The astronauts checked out the rendezvous radar, the Ku-band antenna, the Canadian-built Remote Manipulator System (RMS) or robotic arm, and the spacesuits, and reduced the pressure inside the shuttle from 14.7 pounds per square inch (psi) to 10.2 psi in preparation for the upcoming spacewalks to reduce the pre-breathe time required to prevent decompression sickness or the bends. Left: Endeavour continues its approach to the Hubble Space Telescope. Middle: Hubble secured onto its flight support structure in Endeavour’s payload bay. Right: The STS-61 crew poses on Endeavour’s flight deck, with Hubble visible through the windows. On the third day, Covey brought Endeavour to within 30 feet of Hubble so Nicollier could grapple it with the RMS. Covey radioed Houston, “Endeavour has a firm handshake with Mr. Hubble’s telescope.” Nicollier berthed the giant telescope onto its turntable-like Flight Support System (FSS) in the shuttle’s payload bay. Nicollier then used the RMS cameras to perform an inspection of Hubble. First spacewalk. Left: European Space Agency astronaut Claude Nicollier operates the shuttle’s Remote Manipulator System (RMS) or robotic arm in support of the spacewalks. Middle: Astronaut F. Story Musgrave works on the Hubble. Right: Near the end of the first spacewalk, Musgrave releases bolts on the replacement solar arrays. With Nicollier operating the RMS as he did for all five spacewalks, Hoffman and Musgrave conducted the mission’s first excursion on flight day four. They replaced two sets of Rate Sensing Units that contain gyroscopes to orient the telescope and replaced electrical control units and fuse plugs, providing the telescope with six healthy gyroscopes. Musgrave and Hoffman prepared for the next day’s spacewalk by loosening bolts on the replacement solar arrays, stored in the forward part of the payload bay. The pair spent 7 hours and 54 minutes outside on this first spacewalk. The ground commanded the two existing solar arrays on the telescope to retract, and while one did so the second one did not due to a bent support rod. Second spacewalk. Left: Astronaut Kathryn C. Thornton, on the end of the Remote Manipulator System, releases Hubble’s old solar array that failed to retract properly. Middle: The solar array drifting away from space shuttle Endeavour. Right: Thornton disconnects Hubble’s retracted solar array. On flight day five, Thornton and Akers stepped outside for the mission’s second spacewalk, lasting 6 hours 36 minutes. The primary tasks revolved around replacing the telescope’s two solar arrays. First, they disconnected the array that would not retract as planned, working only at night since the array generated electricity when exposed to sunlight. With Thornton on the end of the RMS, she released the partially open array as Nicollier pulled her away. Bowersox fired thrusters to separate from the array, the plumes impinging on it causing it to flap like a giant bird. Thornton and Akers then connected one of the new arrays, rotated the telescope on its FSS, disconnected the other array, stowing it in the payload bay for return to Earth, and replaced it with a new one. Third spacewalk. Left: Astronauts Jeffrey A. Hoffman, left, and F. Story Musgrave have removed the old Wide Field Planetary Camera (WFPC) from Hubble, the black rectangle at upper left shows its former location. Middle: With European Space Agency astronaut Claude Nicollier operating the Remote Manipulator System from inside the shuttle, Hoffman guides the new WFPC2 into position, with Musgrave ready to assist. Right: Musgrave, left, and Hoffman have installed WFPC2, the white triangle in the middle of the telescope, with Hoffman about to pick up WFPC1 temporarily stowed on the side of the payload bay and place it in its permanent location for return to Earth. On the sixth day, Hoffman and Musgrave took their turn outside for the mission’s third spacewalk. Their primary task involved the replacement of the original WFPC with the more advance WFPC2 instrument. With Nicollier controlling the RMS, Hoffman removed the WFPC1 from the telescope and temporarily stowed it on the side of the payload bay. He then removed WFPC2 from its stowage location and he and Musgrave installed it into the telescope. After stowing WFPC1 in the payload bay for return to Earth, Hoffman replaced two magnetometers, essentially compasses the telescope uses to determine its orientation in space. This third spacewalk lasted 6 hours 47 minutes. Fourth spacewalk. Left: Astronaut Kathryn C. Thornton works in shuttle Endeavour’s payload bay. Middle: With European Space Agency astronaut Claude Nicollier controlling the Remote Manipulator System, Thornton, top, removes the Corrective Optics Space telescope Axial Replacement (COSTAR) from its storage location. Right: Astronaut Thomas D. Akers, inside the Hubble Space Telescope prepares to install the COSTAR. For Akers and Thornton, the primary tasks of the fourth spacewalk on the mission’s seventh day focused on the removal of the HSP instrument and replacing it with the COSTAR system to correct the telescope’s optics. Akers opened the telescope’s shroud doors and with Thornton removed the HSP, temporarily stowing it on the side of the payload bay. Nicollier then maneuvered the RMS with Thornton to pick up COSTAR from its storage location and translate them to Hubble where Akers awaited to help with the installation. After closing the door and stowing the HSP, and installing an electronics package with additional computer memory, Akers and Thornton finished the 6-hour 50-minut spacewalk. Fifth spacewalk. Left: Remote Manipulator System operator European Space Agency astronaut Claude Nicollier translates Jeffrey A. Hoffman and F. Story Musgrave to the top of the Hubble Space Telescope. Middle: The second of two solar arrays unfurls as Hoffman and Musgrave continue working. Right: Hoffman celebrates the first Hannukah in space, with a spinning dreidel floating nearby. On the morning of the eighth day, Bowersox used Endeavour’s thrusters to slightly raise and circularize Hubble’s orbit. Hoffman and Musgrave stepped outside for the mission’s fifth and final spacewalk. When the two newly installed solar arrays failed to deploy after ground commanding, they manually deployed them, and the arrays unfurled without incident. They next replaced the solar array drive electronics and fitted an electronic connection box on the GHRS instrument. Hoffman and Musgrave’s final task involved installing covers, manufactured by Bowersox and Nicollier on board the shuttle, on the telescope’s magnetometers. The final spacewalk lasted 7 hours 21 minutes, bringing the mission’s total spacewalk time to 35 hours 28 minutes. Once back inside Endeavour, Hoffman celebrated the first Hanukkah in space during a televised broadcast, displaying a traveling menorah, unlit of course, and a spinning dreidel. Left: European Space Agency astronaut Claude Nicollier grapples the Hubble Space Telescope, with its high-gain antenna deployed, just prior to release. Middle: After its release, Hubble slowly drifts away from Endeavour. Right: A distant view of Hubble, right, with a crescent Moon. On flight day nine, Nicollier grappled Hubble with the RMS for the final time and lifted it above the payload bay. Ground controllers commanded its aperture door to open, and Nicollier released the telescope. Bowersox fired Endeavour’s thrusters to slowly back away from the telescope. The next day, the astronauts enjoyed a well-deserved day of rest. They returned the shuttle’s cabin pressure to 14.7 psi and tidied up the spacecraft. On the mission’s 11th day, Covey and Bowersox tested Endeavour’s flight control surfaces and practiced touchdowns using a laptop computer, all in preparation for deorbit, entry, and landing the following day. Left: Astronaut Richard O. Covey guides Endeavour to a landing at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers at KSC continue to safe Endeavour following its landing. Right: Images of M100 galactic nucleus before, left, and after the first servicing mission showing the improved optical qualities. On Dec. 13, 1993, their 12th and final day in space, the astronauts donned their pressure suits and prepared for the return to Earth. Due to predicted worsening weather conditions at KSC, Mission Control elected to bring them home one orbit earlier than planned. Covey guided Endeavour to a smooth landing at night at KSC, concluding a flight of 10 days, 19 hours, 59 minutes. They circled the Earth 163 times. Within a month, new images from Hubble indicated the repairs returned the telescope to its expected capabilities, providing astronomers with a unique observation platform. The lessons learned from planning and executing the complex series of spacewalks, with extensive coordination with teams on the ground, proved highly useful not only for future Hubble servicing mission but also for the difficult spacewalks required to assemble and maintain the International Space Station. Left: Timeline of the Hubble Space Telescope’s instruments and their replacements during servicing missions. Right: Hubble as it appeared after its release during the final servicing mission in 2009. Although the STS-61 crew’s work left the Hubble Space Telescope in better condition than originally designed, over the years it required additional servicing to ensure it met its expected 15-year on-orbit life. Four additional shuttle crews serviced the telescope between 1997 and 2009, and today it carries a suite of instruments far more advanced than its original complement. During the five servicing missions, 16 space walking astronauts conducted 23 spacewalks totaling more than 165 hours, or just under 7 days, to make repairs or improvements to the telescope’s capabilities. To summarize the discoveries made by scientists using data from the Hubble Space Telescope is well beyond the scope of this article. Suffice it to say that during its more than 30 years of operation, information and images returned by Hubble continue to revolutionize astronomy, literally causing scientists to rewrite textbooks, and have dramatically altered how the public views the wonders of the universe. On the technical side, the launch of Hubble and the servicing missions to maintain and upgrade its capabilities have proven conclusively the value of maintainability of space-based scientific platforms. Watch the STS-61 crew narrate a video of their Hubble servicing mission. Share Details Last Updated Dec 04, 2023 Related TermsNASA HistorySTS-61 Explore More 10 min read 40 Years Ago: STS-9, the First Spacelab Science Mission Article 6 days ago 9 min read Spacelab 1: A Model for International Cooperation Article 7 days ago 10 min read Thanksgiving Celebrations in Space Article 2 weeks ago View the full article
  13. Visualization of total carbon dioxide in the Earth’s atmosphere in 2021NASA NASA Administrator Bill Nelson, U.S. Environmental Protection Agency (EPA) Administrator Michael Regan, and other United States government leaders unveiled the U.S. Greenhouse Gas Center Monday during the 28th annual United Nations Climate Conference (COP28). “NASA data is essential to making the changes needed on the ground to protect our climate. The U.S. Greenhouse Gas Center is another way the Biden-Harris Administration is working to make critical data available to more people – from scientists running data analyses, to government officials making decisions on climate policy, to members of the public who want to understand how climate change will affect them,” said Nelson. “We’re bringing space to Earth to benefit communities across the country.” The U.S. Greenhouse Gas Center will serve as a hub for collaboration between agencies across the U.S. government as well as non-profit and private sector partners. Data, information, and computer models from observations from the International Space Station, various satellite and airborne missions, and ground stations are available online. As the lead implementing agency of the center, NASA partnered with the EPA, National Institute of Standards and Technology, and National Oceanic and Atmospheric Administration. Science experts from each of these U.S. federal agencies curated this catalog of greenhouse gas datasets and analysis tools. “A goal of the U.S. Greenhouse Gas Center is to accelerate the collaborative use of Earth science data,” said Argyro Kavvada, center program manager at NASA Headquarters in Washington. “We’re working to get the right data into the hands of people who can use it to manage and track greenhouse gas emissions.” The center’s data catalog includes a curated collection of data sets that provide insights into greenhouse gas sources, sinks, emissions, and fluxes. Initial information in the center website is focused on three areas: Estimates of greenhouse gas emissions from human activities Naturally occurring greenhouse gas sources and sinks on land and in the ocean. Large methane emission event identification and quantification, leveraging aircraft and space-based data An example of a dataset is the methane gas information detected by NASA’s EMIT (Earth Surface Mineral Dust Source Investigation) mission. Located on the International Space Station, EMIT is an imaging spectrometer that measures light in visible and infrared wavelengths and thus can measure release of methane on Earth. Built on open-source principles, the U.S. Greenhouse Gas Center’s datasets, related algorithms, and supporting code are fully open sourced. This allows anyone to test the data, algorithms, and results. The center also includes user support and an analysis hub for users to perform advanced data analysis with computational resources and an interactive, visual interface for storytelling. NASA encourages feedback and ideas on the center’s evolution. The center is part of a broader administration effort to enhance greenhouse gas information, outlined in the recently released National Strategy to Advance an Integrated U.S. Greenhouse Gas Measurement, Monitoring, and Information System. For more information on NASA, visit: https://www.nasa.gov -end- Jackie McGuinness / Karen Fox Headquarters, Washington 202-358-1600 jackie.mcguiness@nasa.gov / karen.fox@nasa.gov View the full article
  14. In Search of Cleaner Fuel for Aviation on Earth on This Week @NASA – December 1, 2023
  15. NASA During a ceremony in Washington Nov. 30, Angola became the 33rd country to sign the Artemis Accords. The Artemis Accords establish a practical set of principles to guide space exploration cooperation among nations, including those participating in NASA’s Artemis program. NASA, in coordination with the U.S. Department of State, established the Artemis Accords in 2020 together with seven other original signatories. Since then, the Accords signatories have held focused discussions on how best to implement the Artemis Accords principles. The Artemis Accords reinforce and implement key obligations in the 1967 Outer Space Treaty. They also strengthen the commitment by the United States and signatory nations to the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior NASA and its partners have supported, including the public release of scientific data. More countries are expected to sign the Artemis Accords in the months and years ahead, as NASA continues to work with its international partners to establish a safe, peaceful, and prosperous future in space. Working with both new and existing partners adds new energy and capabilities to ensure the entire world can benefit from our journey of exploration and discovery. Learn more about the Artemis Accords at: https://www.nasa.gov/artemis-accords View the full article
  16. 3 min read Erickson to Retire after Over 40 Years of Service December 1, 2023 It is my pleasure to share information about new hires within NASA’s Science Mission Directorate (SMD) on this blog, and it is also my bittersweet duty to share information about retirements. After 40 years with NASA, Kristen Erickson – Director of NASA Science Engagement & Partnerships Division — will retire at the end of 2023. Kristen has made many contributions to the agency. Over the years she has mentored dozens of scientists and engineers to carry on NASA’s legacy of sharing the science with audiences of all ages. Kristen started her career at the Johnson Space Center in Houston, Texas, in 1983. After witnessing the Space Shuttle Challenger tragedy, she transferred to NASA Headquarters in Washington for Return to Flight and led the Space Operations Business office for nine years during the heyday of the Space Shuttle Program when eight missions per year were flown. After graduating from Harvard’s Kennedy School on a NASA fellowship, she returned to work for at NASA Headquarters. She was chosen as the lead management executive for the new Office of Biological and Physical Research – which has since joined as a division in the Science Mission Directorate. She then moved to leading the new Office of Communications Planning under then Deputy Administrator, Shana Dale, where her role was to forge a more cohesive strategic public engagement environment. Her work there included leading the agency’s 50th anniversary activities, including “NASA at the Smithsonian Folklife Festival,” Future Forums to engage top-tier community leaders, and the Apollo 40th Anniversary events. Kristen brought those goals of working for a more integrated approach to engaging with audiences to her new job with NASA science in 2009. There she created the Year of the Solar System campaign to transition awareness and excitement post-Space Shuttle to science events and missions. Comet encounters, Venus transiting of the Sun, science launches, and the historic landing of Curiosity Rover on Mars – all broke engagement records and helped show that working together on a common theme (and using data to drive decisions) was better than a siloed approach. In addition to integrating messages and plans, Kristen worked hard to create integrated working groups as well. She helped create robust teams of diverse individuals, whose different skills and expertise combined together to pull off giant and complex projects. One such project was NASA’s 2017 total solar eclipse communications efforts, which engaged over 88% of the US adult population and still holds agency records – though Kristen says she hopes those records will soon be broken with the upcoming April 8, 2024, eclipse broadcast. When asked to say something about her career, Kristen said: “The power of the NASA team to do the impossible never fails to inspire, especially when all feel included in the process.” I wish her luck in the next phase of her life and know that her legacy lives on with a robust team of science engagement experts – whose integrated skills will continue to bring NASA science to learners of all ages. View the full article
  17. Former NASA Acting Administrator Steve Jurczyk delivering remarks during NASA’s 60th anniversary.NASA/Joel Kowsky Former NASA Acting Administrator Steve Jurczyk passed away Nov. 23, at the age of 61, following a battle with pancreatic cancer. During his career, which spanned more than three decades with the agency, Jurczyk rose in ranks to associate administrator, the highest-ranking civil servant, a position he held from May 2018 until January 2021. He ultimately went on to serve as acting administrator between administration changes, serving in that position from January 2021 until his retirement in May 2021. “Steve dedicated his life to solving some of the most daring spaceflight challenges and propelling humanity’s reach throughout the solar system. The world lost Steve too soon, but his legacy of kindness and exceptional leadership lives on. My thoughts are with his family and loved ones during this difficult time,” said NASA Administrator Bill Nelson. Preceding his roles as acting administrator and associate administrator, Jurczyk served as the associate administrator for the Space Technology Mission Directorate at NASA Headquarters in Washington, a position he had held since June 2015. He was responsible for formulating and executing the agency’s space technology portfolio, focusing on the development and demonstration of new technologies supporting human and robotic exploration within the agency, public/private partnerships, and academia. Jurczyk joined the leadership team at headquarters after serving as director of NASA’s Langley Research Center in Hampton, Virginia. He was named to that position in May 2014. He previously served as deputy center director from August 2006 until his appointment as director. His NASA career began in 1988, serving as a design, integration, and test engineer in the Electronic Systems Branch at NASA Langley. There he worked on developing several space-based Earth remote sensing systems. He served in a variety of other roles at Langley including director of engineering, and director of research and technology. At the time of his retirement, Jurczyk shared the following: “It has been an honor to lead NASA and see the agency’s incredible growth and transformation throughout my time here. The NASA workforce is what makes this agency so special, and I’m incredibly grateful for their amazing work, especially throughout the coronavirus pandemic. At NASA, we turn dreams into reality, and make the seemingly impossible possible. I am so fortunate to have been a member of the NASA family.” Among his awards, Jurczyk received a Distinguished Service Medal, Presidential Rank Award for Distinguished Executive, Presidential Rank Award for Meritorious Executive, Silver Achievement Medal, Outstanding Leadership Medal, and numerous Group Achievement Awards. He also was a finalist for Sammie management excellence award for his leadership in response to the COVID-19 pandemic. Jurczyk is a graduate of the University of Virginia where he earned a Bachelor of Science and Master of Science degrees in electrical engineering in 1984 and 1986. He also was an associate fellow of the American Institute of Aeronautics and Astronautics. An obituary for Steve Jurczyk is online. For more information about his NASA career, visit: https://www.nasa.gov/people/steve-jurczyk/ View the full article
  18. 6 min read Hubble Celebrates 30th Anniversary of Servicing Mission 1 Astronaut F. Story Musgrave works in the space shuttle Endeavour’s cargo bay while the solar array panels on the Hubble Space Telescope are deployed during the final Servicing Mission 1 spacewalk. NASA In the pre-dawn hours on Dec. 2, 1993, the space shuttle Endeavour launched from Kennedy Space Center in Florida on a critical mission to repair NASA’s Hubble Space Telescope. Hubble was designed to be serviced in space with components that astronauts can slide in and out of place. But prior to launch, no one expected the first servicing mission to be of such urgency. For three years, Hubble had been the punchline of late-night comics and editorial cartoons: the telescope that couldn’t see straight. Since its deployment in 1990, the telescope had been beaming blurry images back to Earth, the result of a flaw in the shape of its primary mirror. Though the mirror was off by only one-fiftieth the width of a human hair, the error had devastating consequences: the light from the mirror didn’t focus quite right. While the images were still better than those taken from Earth and science was still possible, their quality was not what the world expected. The sense that you got was everybody was looking at the servicing and repair of the Hubble Space Telescope as the mission that could prove NASA’s worth … There was this overarching focus and pressure on the success of this mission. Richard Covey Servicing Mission 1 Astronaut Servicing Mission 1 was the solution. Aboard the shuttle were the Wide Field and Planetary Camera 2 (WFPC2) and Corrective Optics Space Telescope Axial Replacement (COSTAR), along with other critical components to upgrade the telescope. WFPC2, responsible for the telescope’s visually impactful images, had built-in corrective optics to compensate for the mirror flaw and would replace the Wide Field/Planetary Camera that Hubble launched with. COSTAR was a refrigerator-sized component containing a constellation of mirrors, some only the size of a U.S. nickel, intended to correct and redirect light to the telescope’s other cameras and spectrographs. Astronaut Kathryn C. Thornton grips a tool to perform servicing mission tasks on the Hubble Space Telescope during the fourth spacewalk of Servicing Mission 1. NASA The shuttle’s crew of seven astronauts was aware that not only Hubble’s fate was on their shoulders, but the public perception of NASA and its space program as well. “If the Hubble repair is a failure, we can write off space science for the foreseeable future,” John Bahcall, the late astrophysicist who advocated for the telescope and a member of its science working group, told the New York Times in 1993. Credit: NASA’s Goddard Space Flight Center; Lead Producer: Grace Weikert On Dec. 2, 2023, NASA commemorates the 30th anniversary of Servicing Mission 1 and its success in transforming Hubble into one of NASA’s greatest triumphs: a shining example of human ingenuity in the face of adversity. During one of the most complex spacewalking missions ever attempted, astronauts conducted five extravehicular activities, totaling over 35 hours. They removed the High Speed Photometer instrument to add COSTAR and swapped out the original Wide Field/Planetary Camera for the Wide Field and Planetary Camera 2. They also installed other critical components to upgrade the telescope. The crew of Servicing Mission 1 poses for a portrait on the space shuttle. In the front row from left to right are Swiss scientist Claude Nicollier, mission specialist; Kenneth D. Bowersox, pilot; and Richard O. Covey, mission commander. In the back row are the spacewalkers on this flight: F. Story Musgrave, payload commander; Jeffrey A. Hoffman, mission specialist; Kathryn D. Thornton, mission specialist; and Thomas D. Akers, mission specialist. NASA At 1 a.m. on December 18, 1993, about a week after the mission had ended, astronomers gathered around computers at the Space Telescope Science Institute in Baltimore to witness the first new image from the telescope: a star, shining clear and pristine in the image without the hazy effects of Hubble’s flawed mirror. The new images were so dramatically different that even though the telescope needed around 13 weeks for adjustment to reach its full capabilities, NASA released them early. “It’s fixed beyond our wildest expectations,” said Ed Weiler, Hubble chief scientist during SM1, at a January 1994 press conference. The look on people’s faces as this picture came up – this was an old [cathode ray] tube-type TV. It took a while for it to build up, but it got clearer and clearer and clearer. Everybody starts shouting. Ed Weiler Hubble chief scientist during SM1 Images of spiral galaxy M100 show the improvement in Hubble’s vision between Wide Field/Planetary Camera and its replacement instrument, the Wide Field and Planetary Camera 2. NASA, STScI Senator Barbara Mikulski of Maryland, who had advocated diligently for Hubble, was the first to show off the new images to the public at the Jan. 13 press conference. “I’m happy to announce today that after its launch in 1990 and some of its earlier disappointments, the trouble with Hubble is over,” she said. Sen. Barbara Mikulski displays a picture showing the difference between a star image taken before COSTAR’s installation and the same star after Servicing Mission 1 during the Jan. 13, 1993 press conference announcing the success of the mission. NASA Though Servicing Mission 1 is best remembered for its resolution of Hubble’s blurry vision, it accomplished a host of additional tasks that helped transform the telescope into the astronomical powerhouse it remains today. By the time Servicing Mission 1 launched, the telescope’s gyroscopes – delicate pieces of equipment required to steer and point Hubble – were already breaking down. Three of the six gyroscopes, or gyros, aboard Hubble had failed. The other three – typically kept as backups – were in operation, the minimum number needed to keep Hubble collecting science data. Astronauts replaced four gyroscopes, a fix that would help keep the telescope running smoothly for several years. Early in Hubble’s time in orbit, NASA discovered that the telescope’s solar arrays would expand and contract excessively in the alternating heat and cold of space as the telescope traveled in and out of sunlight, causing them to vibrate. This forced engineers to use Hubble’s computing capacity to compensate for the “jitter” and reduced observation time. Astronauts replaced Hubble’s solar arrays with new versions that brought the natural jitter down to acceptable levels. Astronauts also performed an augmentation whose vital importance would become clear a year later: upgrading Hubble’s flight computer with a co-processor and associated memory. Just weeks before the disintegrating comet Shoemaker-Levy 9 collided with Jupiter in 1994, Hubble went into a protective “safe mode” due to a memory unit problem in the main computer. Engineers were able to use that co-processor’s memory to fix the problem, capturing stunning images of the gas giant being pummeled by comet fragments. Hubble Memorable Moments: Comet Impact Find out more about Servicing Mission 1 and its accomplishments Servicing Mission 1’s impact echoed far beyond Hubble. The mission was a showcase for tasks that could be done in space, proving humanity’s ability to perform highly complex work in orbit. The lessons learned from training for Hubble and from the servicing work itself would be built upon for other astronaut missions, including the four subsequent servicing visits to Hubble between 1997-2009. These additional missions to Hubble would enable the installation of new, cutting-edge instruments, repair of existing science instruments, and the replacement of key hardware, keeping Hubble at the forefront of astrophysics exploration. Further, the lessons learned from Servicing Mission 1 were a guiding force for work on the International Space Station, and for missions yet to occur. “A lot of the knowledge that was developed there transferred directly to construction of the International Space Station and it’ll transfer to the things we do with [the future orbiting lunar space station] Gateway someday,” said Kenneth Bowersox, associate administrator for NASA’s Space Operations Mission Directorate, who was also astronaut on Servicing Mission 1. “And it’ll apply to things we do on the Moon and in deep space, going to Mars and beyond. It all links.” To celebrate Servicing Mission 1, NASA is releasing a series of videos over the next two weeks featuring key players – astronauts, scientists, engineers, and more – as they reflect on the struggles and triumphs of that time, as well as the emotional and personal impact that Hubble and SM1 had on their lives. Follow @NASAHubble on X, Instagram, and Facebook, or go to nasa.gov/hubble to watch as the series kicks off this weekend. Share Details Last Updated Dec 01, 2023 Editor Andrea Gianopoulos Contact Location Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Science & Research Science Mission Directorate Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Stars Stories Galaxies Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
  19. In microgravity, without the continuous load of Earth’s gravity, the tissues that make up bones reshape themselves. Bone cells readjust their behaviors—the cells that build new bone slow down, while the cells that break down old or damaged bone tissue keep operating at their normal pace so that breakdown outpaces growth, producing weaker and more brittle bones. For every month in space, astronauts’ weight-bearing bones become roughly 1% less dense if they don’t take precautions to counter this loss. Muscles, usually activated by simply moving around on Earth, also weaken because they no longer need to work as hard. This loss of bone and muscle is called atrophy. Atrophy has serious implications for astronaut health. On Earth, muscle and bone loss or atrophy also occur from normal aging, sedentary lifestyles, and illnesses. This may cause serious health issues from injuries due to falls, osteoporosis, or many other medical problems. While researchers understand broad causes of atrophy, they continue to investigate the fundamental mechanisms and contributing factors of microgravity-induced muscle and bone atrophy. Much research focuses on determining the right combination of diet, exercise, and medication to keep astronauts healthy during missions and when they return to Earth or set foot on the Moon or Mars. Exercise & Forces To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video NASA astronauts Bob Hines and Kjell Lindgren work out on the Advanced Resistive Exercise Device (ARED). Credits: NASA Each astronaut aboard the space station engages the muscles, bones, and other connective tissues that comprise their musculoskeletal systems using Earth-like exercise regimens. Crews exercise for an average of two hours a day. Astronauts have biked on stationary bicycles and run on treadmills in space for decades. One of the first missions on the space station flew TVIS, a treadmill with a harness to keep the user tethered to the machine and add some gravity-like force.1 A current piece of equipment called ARED allows astronauts to mimic weightlifting in microgravity. Unfortunately, these machines are too large to bring aboard a spacecraft for long duration space flight where room is at a premium. So scientists are curious: Could exercises using minimal or no equipment could provide adequate physical activity while taking up less room? One study in particular aims to find out. For the Zero T2 experiment, some astronauts do not use the treadmill and instead simply perform aerobic and resistance exercises. Researchers plan to compare their muscle performance and recovery to their crewmates who did use the treadmill. NASA astronaut Frank Rubio performs maintenance on the space station’s treadmill.NASA The motivation to exercise is a major hurdle both on Earth and on the space station. Two hours or more of exercise a day is a large chunk of time! VR for Exercise focuses on developing a virtual reality environment astronauts can pedal through while on the station’s exercise bicycle. It’s more than just a different view—creating an immersive experience helps astronauts enjoy their time exercising. In addition to testing the exercise regime itself, researchers want to understand how the body experiences exercise in microgravity. Full-body exercise affects the entire musculoskeletal system. ARED Kinematics analyzes how muscle strain, bone stress, and other internal factors affect the body while exercising in microgravity. Measuring the body during space workouts can help scientists understand how astronauts need to adapt exercises in microgravity to preserve and optimize their health during long duration spaceflight missions. Researchers found that pre-flight exercise training improves performance on station, just as pre-season training helps athletes in later competition. 2 The investigation aims to determine optimal exercise programs to prepare astronauts before a mission, limit the effects of microgravity during a mission, and enable safe and rapid recovery postflight.2 ESA (European Space Agency) astronaut Alexander Gerst gets a workout on the Advanced Resistive Exercise Device (ARED). NASA The search for treatments for bone atrophy in space overlaps with research on bone loss associated with osteoporosis on Earth. Some experiments, like Vertebral Strength, capture detailed scans of astronauts’ bones and muscles supporting the vertebral column before and after flight, providing researchers with information about overall musculoskeletal strength. Drugs used to prevent bone loss on Earth, such as myostatin inhibitors, also may successfully prevent bone and muscle loss in both astronauts and animal models in space. Rodent Research 19 (RR-19) tested this drug during spaceflight.3 Developing drugs to treat bone loss could benefit people on Earth as well as provide countermeasures for those on long-duration space missions. NASA astronaut Jessica Meir installs the Bone Densitometer device for the Rodent Research 19 experiment.NASA Tissue chips are small devices that imitate complex functions of specific tissues and organs. Rather than bringing a whole organ to study in space, researchers can send a small sample in a handheld device. One tissue chip experiment, Human Muscle-on-Chip, used a 3D model of muscle fibers created from muscle cells of young and older adults to study muscle function changes in microgravity. Electrical pulses cause the tissue to contract, just like the muscles in our bodies when we use them. Researchers found decreased expression of genes related to muscle growth and metabolism in muscle cells exposed to space, with differences based on the age of the individuals that the tissue samples came from.4 Understanding how to prevent and treat muscle atrophy and bone loss is particularly important as NASA plans missions to the Moon and Mars. Once they arrive, astronauts may need to perform strenuous activity in partial gravity after a long time in near weightlessness. CIPHER is an integrated experiment measuring psychological and physiological changes—including bone and muscle loss – in crew members on missions ranging in length from a few weeks to one year. As NASA sets goals or longer missions deeper into space, scientists want to know: Do long missions change astronauts’ physical bodies more than shorter missions? Do changes to certain systems plateau after a certain amount of time in space? Do any changes feed back to affect different biological systems? NASA needs such data to best prepare astronauts to achieve agency exploration goals. Through CIPHER, NASA can conduct the same research over missions of different durations. This allows scientists to extrapolate to multi-year missions, such as a three-year round trip to Mars. Findings could be key to developing protective strategies and safeguarding crew members for exploration missions to the Moon and Mars. Studying bone and muscle loss aboard the space station is advancing the development of strategies that keep space travelers safe and treatments for people on Earth with disease-related and age-related bone and muscle atrophy. Resources for Additional Learning Search this database of scientific experiments to learn more about those mentioned above: Space Station Research Explorer Citations: Belyaev MY, Babkin EV, Ryabukha SB, Ryazantsev AV. Microperturbations on the International Space Station during physical exercises of the crew. Cosmic Research. 2011 April 16; 49(2): 160-174. DOI: 10.1134/S0010952511010011. Lambrecht G, Petersen N, Weerts G, Pruett CJ, Evetts SN, Stokes M, Hides JA. The role of physiotherapy in the European Space Agency strategy for preparation and reconditioning of astronauts before and after long duration space flight. Musculoskeletal Science & Practice. 2017 January; 27 Suppl 1S15-S22. DOI: 10.1016/j.math.2016.10.009 Lee S, Lehar A, Meir JU, Koch C, Morgan A, Warren L, Rydzik R, Youngstrom DW, Chandok H, George J, Gogain J, Michaud M, Stoklasek TA, Liu Y, Germain-Lee EL. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight. Proceedings of the National Academy of Sciences of the United States of America. 2020 September 2; 117(38): 23942-23951. DOI: 10.1073/pnas.2014716117. PMID: 32900939. Parafati M, Giza S, Shenoy T, Mojica-Santiago JA, Hopf M, Malany LK, Platt D, Moore I, Jacobs ZA, Kuehl P, Rexroat JT, Barnett G, Schmidt CE, McLamb WT, Clements TS, Coen P, Malany S. Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight. npj Microgravity. 2023 September 15; 9(1): 77. DOI: 10.1038/s41526-023-00322-y. In this STEMonstration, NASA Astronaut Joe Acaba stresses the importance of exercising in orbit, and dives into the science behind what happens to bones and muscles in microgravity. Keep Exploring Discover More Topics Station Science 101: Human Research Living in Space Humans In Space Latest News from Space Station Research View the full article
  20. 2 min read Hubble Views a Double Cluster of Glowing Galaxies This NASA Hubble Space Telescope image of Abell 3192 holds two independent galaxy clusters. ESA/Hubble & NASA, G. Smith, H. Ebeling, D. Coe This Hubble image features a massive cluster of brightly glowing galaxies, first identified as Abell 3192. Like all galaxy clusters, this one is suffused with hot gas that emits powerful X-rays, and it is enveloped in a halo of invisible dark matter. All this unseen material – not to mention the many galaxies visible in this image – comprises such a huge amount of mass that the galaxy cluster noticeably curves spacetime around it, making it into a gravitational lens. Smaller galaxies behind the cluster appear distorted into long, warped arcs around the cluster’s edges. The galaxy cluster is in the constellation Eridanus, but the question of its distance from Earth is a more complicated one. Abell 3192 was originally documented in the 1989 update of the Abell catalog of galaxy clusters that was first published in 1958. At that time, Abell 3192 was thought to comprise a single cluster of galaxies, concentrated at a single distance. However, further research revealed something surprising: the cluster’s mass seemed to be densest at two distinct points rather than one. It was subsequently shown that the original Abell cluster is actually comprised of two independent galaxy clusters – a foreground group around 2.3 billion light-years from Earth, and another group at the greater distance of about 5.4 billion light-years from our planet. The more distant galaxy cluster, included in the Massive Cluster Survey as MCS J0358.8-2955, is central in this image. The two galaxy groups are thought to have masses equivalent to around 30 trillion and 120 trillion times the mass of the Sun, respectively. Both of the two largest galaxies at the center of this image are part of MCS J0358.8-2955; the smaller galaxies you see here, however, are a mixture of the two groups within Abell 3192. Text credit: European Space Agency Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Dec 01, 2023 Editor Andrea Gianopoulos Contact Location Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Science Mission Directorate The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories Stars Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
  21. 3 min read December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula Orion constellation Stellarium Web by Kat Troche of the Astronomical Society of the Pacific It’s that time of year again: Winter! Here in the Northern Hemisphere, the clear, crisp sky offers spectacular views of various objects, the most famous of all being Orion the Hunter. As we’ve previously mentioned, Orion is a great way to test your sky darkness. With the naked eye, you can easily spot this hourglass-shaped constellation. Known as an epic hunter in Greco-Roman antiqity, Orion and all its parts have many names and meanings across many cultures. In Egyptian mythology, this constellation represented the god Sah. The Babylonians referred to it as The Heavenly Shepard. In most cultures, it is Orion’s Belt that has many stories: Shen in Chinese folklore, or Tayamnicankhu in Lakota storytelling. But the Maya of Mesoamerica believed that part of Orion contained The Cosmic Hearth – the fire of creation. 1,500 light years away from Earth sits the star-forming region, and crown jewel of Orion – Messier 42 (M42), the Orion Nebula. Part of the “sword” of Orion, this 24 light year wide cloud of dust and gas sits below the first star in Orion’s Belt, Alnitak, and can easily be spotted with the naked eye under moderate dark skies. You can also use binoculars or a telescope to resolve more details, such as the Trapezium: four stars in the shape of a keystone (or baseball diamond). These young stars make up the core of this magnificent object. Of course, it’s not just for looking at! M42 is easily one of the most photographed nebulae around, imaged by amateur astrophotographers, professional observatories and space telescopes alike. It has long been a place of interest for the Hubble, Spitzer, and Chandra X-ray Space Telescopes, with James Webb Space Telescope now joining the list in February 2023. Earlier this year, NASA and the European Space Agency released a new photo of the Orion Nebula taken from JWST’s NIRCam (Near-Infrared Camera), which allowed scientists to image this early star forming region in both short and long wavelengths. These Webb images show a part of the Orion Nebula known as the Orion Bar. It is a region where energetic ultraviolet light from the Trapezium Cluster — located off the upper-left corner — interacts with dense molecular clouds. The energy of the stellar radiation is slowly eroding the Orion Bar, and this has a profound effect on the molecules and chemistry in the protoplanetary disks that have formed around newborn stars here. The largest image, on the left, is from Webb’s NIRCam (Near-Infrared Camera) instrument. At upper right, the telescope is focused on a smaller area using Webb’s MIRI (Mid-Infrared Instrument). A total of eighteen filters across both the MIRI and NIRCam instruments were used in these images, covering a range of wavelengths from 1.4 microns in the near-infrared to 25.5 microns in the mid-infrared. At the very center of the MIRI area is a young star system with a planet-forming disk named d203-506. The pullout at the bottom right displays a combined NIRCam and MIRI image of this young system. Its extended shape is due to pressure from the harsh ultraviolet radiation striking it. An international team of astronomers detected a new carbon molecule known as methyl cation for the first time in d203-506. ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), PDRs4ALL ERS Team But stars aren’t the only items visible here. In June 2023, JWST’s NIRCam and MIRI (mid-infrared instrument) imaged a developing star system with a protoplanetary disk forming around it. That’s right – a solar system happening in real time – located within the edges of a section called the Orion Bar. Scientists have named this planet-forming disk d203-506, and you can learn more about the chemistry found here. By capturing these objects in multiple wavelengths of light, astronomers now have even greater insight into what other objects might be hiding within these hazy hydrogen regions of our night sky. This technique is called Multi-spectral Imaging, made possible by numerous new space based telescopes. In addition to the Night Sky Network Dark Sky Wheel, a fun activity you can share with your astronomy club would be Universe Discovery Guide: Orion Nebula, Nursery of Newborn Stars. This will allow you to explain to audiences how infrared astronomy, like JWST, helps to reveal the secrets of nebulae. Or you can use public projects like the NASA-funded MicroObservatory to capture M42 and other objects. Stay tuned to learn more about what to spy in the Winter sky with our upcoming mid-month article! 3 min read December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula View the full article
  22. The CubeSats from NASA’s ELaNa 38 mission were deployed from the International Space Station on Jan. 26, 2022. Seen here is the deployment of The Aerospace Corporation’s Daily Atmospheric and Ionospheric Limb Imager (DAILI).NASA Despite their small size, the satellites launching through NASA’s CubeSat Launch Initiative (CSLI) missions have a big impact, creating access to space for many who might not otherwise have the opportunity. One recent mission tells the story of four teams of researchers and engineers who conceived, built, launched, and collected data from these shoebox-sized satellites, helping them answer a host of questions about our planet and the universe. The teams’ CubeSats launched as part of the ELaNa 38 (Educational Launch of Nanosatellites) mission, selected by CSLI and assigned to the mission by NASA’s Launch Services Program. A little more than a month after launching aboard SpaceX’s 24th commercial resupply services mission from NASA’s Kennedy Space Center in Florida, the CubeSats were deployed from the International Space Station on Jan. 26, 2022. Being selected by CSLI was an inspirational once-in-a-lifetime opportunity for more than 100 undergraduate students who worked on ELaNA 38’s Get Away Special Passive Attitude Control Satellite (GASPACS) CubeSat. “None of us had ever worked on a project like this, much less built a satellite on our own,” said Jack Danos, team coordinator of Utah State University’s Get Away Special, or GAS Team. “When we first heard the audio beacon from our satellite in orbit, we all cheered.” It took the GAS Team nearly a decade to develop and build GASPACS – the team’s first CubeSat – with many team members graduating in the process. But the team’s focus remained the same – to deploy and photograph a meter-long inflatable boom, known as the AeroBoom, from its CubeSat in Low Earth orbit. A photograph taken by the GASPACS CubeSat shows the AeroBoom fully deployed. Utah State University “When we saw that first photo come through, we were blown away, speechless,” Danos said. “This had been a decade of work and learning everything required for a real satellite mission – a lot of us got skills that we never could have gotten in a normal school environment.” The team of college students who built Georgia Tech’s Tethering and Ranging mission (TARGIT) developed it to test an imaging LiDAR system capable of detailed topographic mapping from orbit. TARGIT’s students machined the CubeSat components themselves and integrated several new technologies into the final flight system. “CSLI was a great window into how NASA works and the formal processes to ensure the hardware that gets launched meets requirements,” said Dr. Brian Gunter, principal investigator on the Georgia Institute of Technology TARGIT CubeSat. “Our spacecraft would not have made it to orbit without this program.” Georgia Tech’s Tethering and Ranging CubeSat engaged over 100 students at the university and overcame obstacles presented by the global pandemic to get to launch.Georgia Institute of Technology Prior to launch, the Georgia Tech team worked closely with NASA’s CSLI team, gained considerable industry experience, and delivered a flight-ready spacecraft, even after COVID forced a full shutdown of activity for an extended period, during which many key team members graduated. “Just getting the spacecraft ready and delivered was the greatest achievement for the group and was a nice example of teamwork and resiliency from the students,” Gunter said. Not all ELaNa 38’s CubeSats were student-built. With the goal of studying processes affecting Earth’s upper atmosphere and ionosphere, The Aerospace Corporation’s Daily Atmospheric and Ionospheric Limb Imager (DAILI) CubeSat employed an ambitious forward sunshade that was key to DAILI’s ability to examine atmospheric variations during daytime. As perhaps the most sophisticated sunshade ever flown on a CubeSat, it reduced intense scattered light from the Sun, the Earth’s surface, and low-altitude clouds by a factor of almost a trillion. The Aerospace Corporation’s DAILI featured an ambitious sunshade that helped the CubeSat examine minute variations in the atmosphere. The Aerospace Corporation “Not only did we have a shade that occupied over half of the space we had on the CubeSat – we also needed room for the optics, the detector, and for the CubeSat bus,” said Dr. James Hecht, senior scientist at Ionospheric and Atmospheric Sciences at Aerospace and DAILI principal investigator. “The effectiveness of the shade depended greatly on the length of the shade to the angular field of view of DAILI. It was a challenge, but it worked.” Rounding out the ELaNa 38 flight was the Passive Thermal Coating Observatory Operating in Low Earth Orbit (PATCOOL) satellite, sponsored by NASA’s Launch Services Program and developed by the Advanced Autonomous Multiple Spacecraft Laboratory at the University of Florida. PATCOOL tested a highly reflective surface coating called “solar white” to measure its efficiency as way to passively cool components in space. PATCOOL during its development at the Advanced Autonomous Multiple Spacecraft Laboratory at the University of FloridaUniversity of Florida Through ELaNa 38’s four small satellites, hundreds of individuals – many developing and launching spacecraft for the first time – achieved access to space. For NASA, increasing access to space and making data and innovations accessible to all also serves to reinforce the future of the country’s space industry. “This is an opportunity that you just can’t get anywhere else – the ability to send something into space, get the ride paid for, and form relationships within the industry,” Danos said. “There are so many members of the team that went into the space industry after the mission – a mission we literally couldn’t have done without NASA’s CSLI.” View the full article
  23. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA Stennis Test Operations Chief Maury Vander speaks with a young visitor to the NASA booth during the 2023 Bayou Classic Fan Fest event in New Orleans on Nov. 25.NASA / C. Lacy Thompson NASA was on full display during the 50th Annual Bayou Classic Fan Fest activity in New Orleans on Nov. 25, hosting an informational booth and interacting with event participants to deliver a clear message – There’s Space for Everybody at NASA. In addition to event signage and messaging, NASA representatives were out in force during the morning-long Fan Fest event, providing attendees with memorabilia and sharing information about student internship and employment opportunities with the agency. The annual Bayou Classic event attracts tens of thousands of visitors each year and features several days of activities, including a Battle of the Bands showcase Nov. 24 and a nationally broadcast football game Nov. 25, all involving two Historically Black Colleges and Universities in Louisiana – Southern University in Baton Rouge and Grambling State University in Grambling. Almost 65,000 people attended this year’s game. The NASA outreach and engagement effort was part of an ongoing agency-wide commitment to advance equity and reach deeper into underrepresented and underserved segments of society and was in support of the Biden-Harris Administration’s efforts to advance racial equity in the federal government. NASA at the Bayou Classic Fan Fest video Share Details Last Updated Nov 30, 2023 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 3 min read NASA to Highlight Inclusion During Bayou Classic Event Article 1 week ago Keep Exploring Discover Related Topics About NASA Stennis STEM Engagement at Stennis Space Center Minority University Research & Education Project SMD Bridge Program Planning Information Science Mission Directorate Bridge Program Call for ProposalsAnticipated ROSES-22 Amendment or ROSES-23 New Program This page contains Planning… View the full article
  24. Architecture Concept Review attendees listen to welcome remarks from NASA leadership on Nov. 14, 2023, at NASA’s Kennedy Space Center in Florida. Attendees included representatives from all of NASA’s centers, leaders from all of NASA’s mission directorates, various technical authorities, and other stakeholders across the agency. NASA/Kim Shifflett NASA hosted its second annual Architecture Concept Review in mid-November, bringing together leaders from across the agency to discuss progress on and updates to NASA’s Moon to Mars architecture since NASA released outcomes from its first such review in April. As NASA builds a blueprint for human exploration throughout the solar system for the benefit of humanity, the agency has established the internal Architecture Concept Review process to help align NASA’s Moon to Mars exploration strategy and codify the supporting architecture through robust analysis. Through this evolutionary process, NASA continuously updates its roadmap for crewed exploration, setting humanity on a path to the Moon, Mars, and beyond. NASA leadership gives opening remarks at the review. From left to right: Casey Swails, deputy associate administrator; Catherine Koerner, deputy associate administrator for the Exploration Systems Development Mission Directorate; Jim Free, associate administrator for the Exploration Systems Development Mission Directorate; and Pam Melroy, deputy administrator. NASA/Kim Shifflett “Our yearly strategic analysis cycle informs architecture decisions by identifying technology gaps, performing trade studies, and soliciting feedback from industry, academia, and the international community,” said Catherine Koerner, deputy associate administrator for NASA’s Exploration Systems Development Mission Directorate. “This year’s review focused on identifying the foundational decisions needed for a crewed mission to Mars and adding more detail to how we break down our objectives for long-term lunar exploration into specific architectural elements.” During the review, NASA also began to define potentially viable and affordable opportunities for new programs and projects that close capability gaps. NASA will share the results of this year’s Architecture Concept Review cycle early next year. This will include an update to the agency’s Architecture Definition Document and associated white papers, which provide additional detail on results from this year’s strategic analysis cycle. Both the updated Architecture Definition Document and white papers will be made available on NASA’s Moon to Mars architecture webpages. View the full article
  25. NASA Explorers Season 6, Episode 3: TAG
×
×
  • Create New...