Members Can Post Anonymously On This Site
-
Posts
5,864 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
NASA Deputy Administrator Pam Melroy, second from left, speaks during the third meeting of the National Space Council alongside Deputy Director of the Office of Science and Technology Policy Steve Welby, left, Deputy Director of the Office of Management and Budget Nani Coloretti, center, Deputy Secretary of Energy David Turk, second from right, and Deputy Secretary of Commerce Don Graves, right, Wednesday, Dec. 20, 2023, at the Andrew W. Mellon Auditorium in Washington. Chaired by Vice President Kamala Harris, the council’s role is to advise the President regarding national space policy and strategy, and ensuring the United States capitalizes on the opportunities presented by the country’s space activities. NASA/Joel Kowsky Vice President Kamala Harris highlighted the importance of international partnerships and the societal benefits of space exploration, including NASA’s Earth science missions and the agency’s efforts to build a responsible, sustainable human presence in space during the Biden-Harris Administration’s third National Space Council meeting Wednesday, held at the Andrew W. Mellon Auditorium in Washington. “For generations, our nation has led the world in the exploration and use of space,” said Harris. “In the coming years, one of the primary ways we will continue to extend that leadership is by strengthening our international partnerships, combining our resources, scientific capacity, and technical skill with that of our allies and partners around the world, all in furtherance of our collective vision.” During the meeting, NASA announced it will deepen its partnership with the U.S. Agency for International Development (USAID) by advancing data collection for enhanced air quality monitoring in South America and Africa. Under this effort, NASA and the Italian Space Agency will partner to build and launch the Multi-Angle Imager for Aerosols (MAIA) mission, which is expected to launch in 2025 to enable improved measurements of airborne particulate matter in large metropolitan areas. The mission marks the first time NASA has partnered with epidemiologists and health organizations on a satellite mission to study human health and improve lives. “NASA is excited to partner with the Italian Space Agency on the MAIA mission while simultaneously strengthening our support for USAID,” said NASA Deputy Administrator Pam Melroy. “Airborne particles pollute some of the world’s most populous cities and have been linked to respiratory and cardiovascular diseases, as well as adverse reproductive and birth outcomes. Results from this mission will allow us to better understand the health impacts of pollution in geographically diverse global communities, including our Southern Hemisphere.” The Vice President also underscored the importance of international partnerships enabling long-duration stays on the Moon and future human missions to Mars. “In consultation with international and industry partners, NASA has built a cohesive and robust Moon to Mars strategy to enable a responsible, sustainable presence throughout the solar system. Our future depends on partnerships,” said Melroy. “Together, we will strategically advance science, boost our national posture, and inspire a new generation to want to explore the cosmos.” NASA has welcomed significant development progress and investments by international partners for its Artemis program. The European Space Agency provides the European Service Module, the Orion spacecraft’s powerhouse. Additionally, Canada, Japan, and Europe are contributing to Gateway, a human-tended space station in lunar orbit. Europe and Japan are building the International Habitation Module, Europe is providing the European System Providing Refueling, Infrastructure and Telecommunications (ESPRIT) module, Japan will provide cargo resupply with an upgrade of its H-II Transfer Vehicle (HTV-X), and Canada is developing Canadarm3, a robotic arm to perform science utilization and maintenance. With these significant contributions, the United States intends to land an international astronaut on the lunar surface by the end of the decade. In coordination with the U.S. Department of State, the agency has also welcomed 33 signatories to the Artemis Accords since it was established in 2020, ten in the past year alone. The Artemis Accords establish practical principles to guide space exploration cooperation among nations, including those participating in NASA’s Artemis program. The Accords signatories are holding focused discussions on how best to implement the Artemis Accords principles, including transparency and deconfliction at the Moon. NASA also highlighted the April 2023 release of the initial Moon to Mars architecture, comprised of the elements needed for long-term, human-led scientific discovery in deep space. NASA recently hosted its second Architecture Concept Review in November and anticipates releasing the outcomes of the annual cycle early in 2024. NASA noted that it is seeking international partnerships for an array of elements identified in the architecture and is in conversation with international space agencies to identify future partnership opportunities. A full recording of the National Space Council meeting is available online at: https://images.nasa.gov/details/V.P. Kamala Harris Chairs National Space Council Meeting in Washington More information on the outcomes of the meeting is available at: https://go.nasa.gov/3Rya4zV https://go.nasa.gov/482FJRp Faith McKie / Amber Jacobson Headquarters, Washington 202-262-8342 / 240-298-1832 faith.d.mckie@nasa.gov / amber.c.jacobson@nasa.gov Share Details Last Updated Dec 20, 2023 LocationNASA Headquarters Related TermsGeneralPamela A. Melroy View the full article
-
32 Min Read The Marshall Star for December 20, 2023 Crew-6 Connects with Marshall Team Members During Visit By Celine Smith One week after the 25th anniversary of the International Space Station, NASA’s SpaceX Crew-6 visited the agency’s Marshall Space Flight Center to share their experience during Expedition 69. The event was held Dec. 14 in Building 4316. Expedition 69 began March 2 with Crew-6 flying on SpaceX’s Falcon 9 rocket from NASA’s Kennedy Space Center. While aboard the space station, the crew studied the behavior of flames in microgravity, grew cardiac tissue using 3-D culturing, and researched the impact of weightlessness on astronauts’ health. Expedition 69 Crew-6 astronauts smile and hold a banner for a photo with team members from the Human Exploration Development & Operations Office at NASA’s Marshall Space Flight Center. From left, the astronauts are Sultan Alneyadi, Steven Bowen, Warren “Woody” Hoburg, and Frank Rubio. NASA/Charles Beason NASA astronauts Frank Rubio (flight engineer), Stephen Bowen (flight engineer), Warren “Woody” Hoburg (flight engineer), and UAE (United Arab Emirates) astronaut Sultan Alneyadi (flight engineer) answered questions from Marshall team members after viewing a short film summarizing the research done on Expedition 69. Acting Center Director Joseph Pelfrey welcomed Marshall team members, thanking them and Crew-6 for all the effort that goes into making a mission successful. “As we wrap up 2023, I just want to say how proud I am of our team and all the accomplishments that you have helped us achieve this year,” Pelfrey said. “Crew-6 is going to talk about their amazing experience. Marshall is a part of that experience and mission with the work we do here between Payload Operations, the Environmental Control and Life Support System and payload facilities and our Commercial Crew Program support. This is a great time to hear from our guests and celebrate our successes together.” During the Q&A portion of the event, the audience learned about the strides in research being made on the station. Hoburg discussed the growing of human tissue while on the expedition. “One day Sultan worked on heart muscle cells up there and we actually got to see the cells beating under the microscope,” Hoburg said. “We’re doing work in Low Earth orbit to help people back on Earth with potential heart disease. We also did work with the BioFabrication facility where we 3D-printed biological material. We printed the first-ever section of human meniscus.” The microgravity environment of the station provides crew members with the ability to do more intricate work that cannot be done as well on Earth, Hoburg explained. Expedition 69 is particularly important because it marks the longest time an American astronaut has been in space. The end of the mission concluded Rubio’s 371-day stay in space, which began with Expedition 68. “I was excited to implement lessons learned right away,” Rubio said. “With your first mission, you’re learning. You typically don’t get to implement your better self until years later. I got that opportunity much sooner.” From left, Alneyadi, Hoburg, Bowen, and Rubio answer questions during the Marshall team member Q&A portion of their visit. NASA/Charles Beason Rubio also used his experience to detail the effects of prolonged time in space on the body. “You miss microgravity, in the sense that it’s a lot of fun to just fly around,” he said. “It takes 72 hours to 5 days to fully acclimate to microgravity. After two weeks, you’re completely used to it. When you come back to Earth, there’s a lot of aches and pains because the reality is offloading everything off your joints, especially your spine, feels good – specifically for those who are older. Like, for me, it feels like I’ve run a 5k every time I get up because my feet did nothing for a year, but your body does readjust.” Expedition 69 also marks the first time a UAE astronaut has been to the station. Alneyadi spoke about his unique experience when asked about his participation in a culturally based event. “I was presenting to the whole region, speaking Arabic, discussing the International Space Station, and showcasing the importance of its science,” Alneyadi said. “It was very impactful, and I felt honored to be a part of it as well. I see the impact on the students. They ask a lot of questions and have a lot of excitement.” The event concluded with the opportunity for attendees to get their picture taken with the Crew-6 astronauts. “People are the same everywhere, that’s the basics of humanity,” Bowen said when asked what’s the most exciting thing he’s learned from the international aspect of his work. From our perspective, we can’t see borders — it’s one Earth. At the very intimate singular level, people are people. We’re people, and we’re absolutely capable of doing amazing things.” Learn more about Crew-6. Smith, a Media Fusion employee, supports the Marshall Office of Communications. › Back to Top Take 5 with Jason Adam By Wayne Smith For Jason Adam, joining NASA wasn’t a career choice. It was a calling. “A calling to push the boundaries of human knowledge, to turn the dreams of a starry-eyed child gazing up at the sky into a reality, and to be a part of humanity’s greatest adventure – the exploration of the universe,” said Adam, who is the manager for the CFM (Cryogenic Fluid Management) Portfolio Project at NASA’s Marshall Space Flight Center. Jason Adam, manager for the CFM Portfolio Project at NASA’s Marshall Space Flight Center, holds a full-size resin model of a Thermodynamic Vent System Injector while standing in front of an Exploration Systems Test Facility within the CFM Laboratory in Building 4205.NASA/Danielle Burleson The project develops key CFM technologies used to acquire, transfer, and store cryogenic fluids in orbit. The project is within STMD (Space Technology Mission Directorate) and develops crucial technologies for STMD and other mission directorates. Adam’s role extends across 12 states and six NASA centers, managing significant contracts and a multitude of complex activities nationwide. Growing up in North Dakota, Adam said he always was captivated by the mysteries of the universe as he studied the night sky. “(I was fascinated) by the endless expanse above, with its twinkling stars and wandering planets, and boundless possibilities,” he said. “This childhood wonder laid the foundation for my journey to NASA. It was here that my dream to explore the cosmos took flight.” Working with projects like CFM enables Adam to live his dream, and he hopes to inspire others as well toward NASA’s mission of exploring the universe for the benefit of all. “Remember your journey at NASA is not just about personal achievements, but also about contributing to the greater goal of exploring and understanding our universe,” he said. “Embrace this opportunity with enthusiasm and a commitment to excellence.” Question: What excites you most about the future of human space exploration and your team’s role it? Adam: Cryogenic fluid management is a critical and exciting area of technology, particularly in relation to the exploration of Mars for several reasons. One of the primary uses of cryogenic fluids in space exploration is as rocket fuel, specifically liquid hydrogen and liquid oxygen. These cryogenically stored fuels are highly efficient but must be kept at extremely low temperatures. Effective cryogenic fluid management is crucial for months or years-long missions to Mars, as it ensures that the spacecraft has enough fuel for the journey there, operations on the Martian surface, and the return trip. Mars missions are looking into using ISRU (in-situ resource utilization) to generate fuel from Martian resources. For example, water ice from Mars can be processed into liquid hydrogen and oxygen. Managing these cryogenic fluids effectively is essential for this process to be viable, enabling longer and more sustainable missions. Cryogenic fluid management is not only a cornerstone to enable Mars exploration but also a catalyst for broader innovations in space travel and various terrestrial applications. Question: What has been the proudest moment of your career and why? Adam: There have been many proud moments in my 20-plus years at Marshall that originated at Stennis Space Center. Some of those moments include helping the shuttle return to safe flight through testing SSMEs (space shuttle main engines) at Stennis, to flying the Mighty Eagle Lander with a small team in the Marshall West Test Area, to now having the privilege of leading the CFM project with a group of spectacular individuals. In each case, I have been proudest when the team was accountable, authentic, passionate, inclusive, and highly competent. Those are the teams I cherish most and the type of environment I try to create as a leader. Question: Who or what drives/motivates you? Adam: Working at Marshall, my motivation is deeply rooted in the pioneering spirit of technological innovation and the quest for knowledge beyond Earth. Marshall, known for its groundbreaking work in developing systems that push the boundaries of space technology, serves as a constant source of inspiration for me. My drive is fueled by a profound passion for space exploration. The idea of contributing to missions that reach into the unknown, that test the limits of human ingenuity and reveal the mysteries of the cosmos, is what gets me up in the morning. I’m driven by the knowledge that the systems and technologies you’re helping to develop at Marshall will one day make space more accessible and safer for astronauts. This drive isn’t just about the technology itself, it’s about what that technology represents – the human desire to explore, to learn, and to constantly push forward. My motivation comes from wanting to contribute in a meaningful way to this grand endeavor. Each day at Marshall offers a new opportunity to be a part of something larger than yourself – to contribute to a legacy of exploration that benefits not just the present generation but also the future ones. In my role, I’m not just a witness to history in the making; I’m an active participant in shaping it. Question: What advice do you have for employees early in their NASA career or those in new leadership roles? Adam: First, follow your passion. Begin by immersing yourself in a field that truly fascinates you. NASA’s diverse missions span from the depths of the oceans to the far reaches of space, so align your work with what genuinely excites you. This passion will be your driving force and will keep you motivated through challenges. Second, build a strong foundation. Whether your focus is technical, scientific, or administrative, strive to develop a robust base of knowledge and skills. Seek opportunities to learn from different projects and teams. This diverse experience will be invaluable as you progress in your career, providing a well-rounded perspective and a toolkit of solutions. Third, nurture your team. As you advance into leadership roles, remember that your success is intricately linked to the well-being and performance of your team. Invest in understanding their strengths, aspirations, and challenges. Encourage an environment where everyone feels valued and motivated. Strive to create an environment where employees can bring their full self to work. Question: What do you enjoy doing with your time while away from work? Adam: Outside of work, I enjoy spending time with my family. My wife and I have three children and two dogs. We like to spend time outdoors and enjoy camping around the region in our camper on some weekends. My wife and I also like to watch our alma mater, North Dakota State University, play football. Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications. › Back to Top Pamela Bourque Named Chief Counsel at Marshall Pamela Bourque has been named as chief counsel at NASA’s Marshall Space Flight Center. She has served as the center’s acting chief counsel since May, leading Marshall’s Office of the General Counsel team and overseeing the legal practice areas of procurement and contract law, partnerships and agreements, personnel law, ethics, fiscal law, employment law, intellectual property, and litigation. Marshall’s chief counsel is responsible for coordinating a full range of legal operations affecting the center and its organizations. The chief counsel also serves as a senior member of the NASA Office of the General Counsel’s enterprise leadership team. Pamela Bourque, chief counsel at NASA’s Marshall Space Flight Center. NASA From 2022 to April 2023, Bourque was Marshall’s deputy chief counsel, assisting the chief counsel with managing the legal operations of the center. She also supported the NASA legal enterprise on various senior teams, including the Legal Leadership Board, the Ethics Best Practices Working Group, the Deputy Counsel Forum, and participated as a mentor in NASA’s attorney mentoring program. From 2005 to 2022, Bourque was the center’s assistant chief counsel for general law and litigation. She was the functional lead for litigation matters and provided Marshall management with legal advice and representation in the areas of personnel law, federal ethics standards, agreements, and other matters. Under her leadership, Marshall’s Ethics Program was recognized by the U.S. Office of Government Ethics with an Ethics Program Award. From 1993 to 2005, Bourque was an attorney-adviser at Marshall. She has previously served as president of the North Alabama Chapter of the FBA (Federal Bar Association), as well as the chair of FBA’s Labor Law Symposium for multiple years. Bourque has been recognized with numerous NASA awards during her career, including the NASA Office of the General Counsel’s Meritorious Service Award, the NASA Exceptional Service Medal, the NASA Silver Achievement Medal, the NASA Space Flight Awareness Launch Honoree Award, the NASA Space Flight Awareness Silver Snoopy Award, the Marshall Engineering Directorate’s Service to Engineering Award, and other performance, on-the-spot, and peer awards. She has been profiled in Women at NASA. A native of Broussard, Louisiana, Bourque is a graduate of the U.S. Army Aviation and Missile Command’s Leadership Investment for Tomorrow (LIFT-II) Program, the Simmons Executive Leadership for Women/NASA Fellowship at Simmons College, the Department of Defense Mediator Certification Program, and she is currently enrolled in the Leadership of Greater Huntsville’s Connect Emerging Leaders Program. Bourque earned a Juris Doctor degree from Tulane University School of Law in New Orleans, Louisiana, where she was a senior fellow. She received her honors baccalaureate degree from the University of Louisiana at Lafayette. She lives in Madison with her husband, Max Patin. They have two children. › Back to Top Thomas Percy Named Systems Engineering and Integration Manager for Human Landing System Program Thomas Percy has been named as the SE&I (Systems Engineering and Integration) manager for the HLS (Human Landing System) Program at NASA’s Marshall Space Flight Center. The SE&I office oversees the development and verification of requirements, cross-discipline insight into commercial lander providers, and cross-program integration. The HLS SE&I team is also responsible for integration with the Moon to Mars Program in the areas of mission development, general analyses, and requirements management. Thomas Percy, Systems Engineering and Integration manager for the Human Landing System Program at NASA’s Marshall Space Flight Center. Credit: NASA/Danielle Burleson Since 2021, Percy has been the deputy SE&I manager for HLS. From 2020 to 2021, he was the integrated performance lead for HLS, managing the team within SE&I responsible for trajectory analysis, environments, performance assessment, mission development, and metric tracking. From 2016 to 2020, Percy was a space systems analyst prior to his role as chief architect of the Advanced Concepts Office at Marshall, where he supported the formulation of the HLS Program as well as transportation architecture studies for human Mars missions and the development of various robotic spacecraft concepts. Prior to joining NASA in 2016, Percy spent 13 years working in private industry at SAIC as a section manager and support contractor to Marshall and Johnson Space Center. He also was a part-time instructor in the Mechanical and Aerospace Engineering Department at the University of Alabama in Huntsville off and on from 2006-2021. His honors include a NASA Group Achievement Award: Human Landing System Source Evaluation Panel; NASA Exceptional Service medal; NASA Silver Achievement Medal Group: Human Landing System Source Evaluation Panel; and a NASA Group Achievement Award: Mars Basis of Comparison Reference Team. A native of Easton, Massachusetts, Percy received a bachelor’s degree in mechanical engineering from Rochester Institute of Technology in Rochester, New York, a master’s in aerospace engineering from the Georgia Institute of Technology in Atlanta, Georgia, and a doctorate in aerospace systems engineering from the University of Alabama in Huntsville. He and his wife, Erin, live in Madison. They have three children. › Back to Top Mission Success is in Our Hands: Chelsi Cassilly Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs. As part of the initiative, eight Marshall team members are featured in new testimonial banners placed around the center. This is the second in a Marshall Star series profiling team members featured in the testimonial banners. Chelsi Cassilly is a planetary protection microbiologist working for Jacobs at Marshall, where she’s been for almost three years. A native of Tennessee, she previously worked at Harvard Medical School in Boston, Massachusetts, as a postdoctoral fellow prior to joining Jacobs. She’s a graduate of Lipscomb University in Nashville, Tennessee, where she earned a bachelor’s degree in molecular biology, and of the University of Tennessee, Knoxville, where she earned a doctoral degree in microbiology. Chelsi Cassilly is a planetary protection microbiologist working at NASA’s Marshall Space Flight Center. NASA/Charles Beason “It’s an honor and privilege to work for Jacobs and NASA,” Cassilly said. “I look forward to work every single day and consider myself exceptionally blessed with this opportunity I’ve been afforded.” Question: What are some of your key responsibilities? Cassilly: I support many different projects at Marshall. Primarily I help projects implement planetary protection. This includes the Mars Ascent Vehicle, which is part of the Mars Sample Retrieval Lander; a mission concept for a Europa Lander; and the lunar Human Landing System. I also manage the Planetary Protection Lab at Marshall, which is a fully functional biosafety level 2 lab. Funded by multiple sources, including NASA ROSES (Research Opportunities in Space and Earth Science), Marshall Cooperative Agreement Notices, Marshall Technical Excellence funding, and Jacobs Innovation Grants, I have both completed and continue to support multiple smaller experiments to determine microbial abundance within materials as well as sterilization methods. Question: How does your work support the safety and success of NASA and Marshall missions? Cassilly: NASA missions must meet the requirements laid out by headquarters. One subset of requirements on some missions is planetary protection, that is, preventing forward and backward microbial contamination. Marshall is involved with several missions where there are planetary protection requirements to meet. I help the center interpret and implement techniques to meet the requirements. I am currently the only point of contact for this discipline at Marshall, so I take seriously the responsibility of helping engineers understand unfamiliar terminology while also ensuring we are compliant with requirements, therefore helping achieve the goals of our missions. Question: What does the Mission Success is in Our Hands initiative mean to you? Cassilly: It means that success is personal. It means every single one of us can contribute in large ways to mission success simply by being ethical and maintaining our integrity as workers and as individuals. Question: How can we work together better to achieve mission success? Cassilly: We can support one another by encouraging safety, ethics, a culture of learning, ownership, and integrity within our teams. We can foster an environment where ownership is lauded and correction is not seen as negative, but rather as learning opportunities and areas of improvement. Benchmarking such progress of both individuals and teams, using mistakes and problems to propel us forward, will serve to strengthen teams, develop a sense of pride in our collective mission, and provide clear trajectory for our long-term efforts and goals. › Back to Top I am Artemis: Bruce Askins Growing up, Bruce Askins was passionate about space and oceanography. His desire to explore other worlds always made him want to be an astronaut. Though he did not become an astronaut, Askins has built a 42-year career at NASA, and, as the infrastructure management lead for NASA’s SLS (Space Launch System) Program at the agency’s Marshall Space Flight Center, Askins is an integral part for the next generation of explorers. Askins and his team are the gatekeepers and protectors of data and responsible for both cyber- security and physical security for the SLS Program. Under Askins’ leadership, his team ensures all data is stored properly, that information about the rocket shared outside NASA is done with proper data markings, and access is given to those that need it. Bruce Askins is the infrastructure management lead for NASA’s SLS (Space Launch System) Program at the agency’s Marshall Space Flight Center.NASA/Sam Lott Askins wasn’t always familiar with the world of infrastructure and cyber security. As a mechanical engineering graduate from the University of Alabama in Huntsville, Askins began his career as part of NASA’s internship program. He considered himself imaginative, or “creatively driven,” which is why Askins originally pursued a career at NASA. “I always loved the design aspect of my early position in special test equipment,” Askins says. “Back then I drew everything by hand with a pencil before eventually transitioning to computers.” His creativity and interest in underwater worlds, along with his scuba diver certification, led him to have a hand in designing early test elements for NASA’s Hubble Space Telescope. At the Neutral Buoyancy Simulator, a former underwater training facility at Marshall, Askins interacted with a crew of astronauts supporting Hubble and designed the flight simulation hardware used for crew training on the Canadarm2 robotic arm that is still a part of the International Space Station today. Askins has been a part of the NASA family for almost half a century and is thrilled to be a part of the next era of space exploration to the Moon under Artemis. “To explore is one of the greatest things that we can all do, and with the Artemis Generation the sky’s the limit,” Askins said. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. › Back to Top NASA’s Tech Demo Streams First Video from Deep Space via Laser NASA’s Deep Space Optical Communications experiment beamed an ultra-high definition streaming video on Dec. 11 from a record-setting 19 million miles away (or about 80 times the Earth-Moon distance). The milestone is part of a NASA technology demonstration aimed at streaming very high-bandwidth video and other data from deep space – enabling future human missions beyond Earth orbit. “This accomplishment underscores our commitment to advancing optical communications as a key element to meeting our future data transmission needs,” said NASA Deputy Administrator Pam Melroy. “Increasing our bandwidth is essential to achieving our future exploration and science goals, and we look forward to the continued advancement of this technology and the transformation of how we communicate during future interplanetary missions.” Members of the DSOC (Deep Space Optical Communications) team react to the first high-definition streaming video to be sent via laser from deep space Dec. 11 at NASA’s Jet Propulsion Laboratory. Sent by the DSOC transceiver aboard the Psyche spacecraft nearly 19 million miles from Earth, the video features a cat named Taters.NASA/JPL-Caltech The demo transmitted the 15-second test video via a cutting-edge instrument called a flight laser transceiver. The video signal took 101 seconds to reach Earth, sent at the system’s maximum bit rate of 267 Mbps (megabits per second). Capable of sending and receiving near-infrared signals, the instrument beamed an encoded near-infrared laser to the Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California, where it was downloaded. Each frame from the looping video was then sent “live” to NASA’s Jet Propulsion Laboratory in Southern California, where the video was played in real time. Deep Space Optical Communications, or DSOC, a NASA technology demonstration riding aboard the Psyche space craft, is using advanced laser communication technology to transmit large amounts of data back to earth. DSOC is the latest in a series of optical communication demonstrations funded by the agency’s TDM (Technology Demonstration Missions) program office at NASA’s Marshall Space Flight Center. “We just demonstrated a highly advanced data transmission capability that will play an instrumental role in NASA’s boldest missions to deep space, and it shows that DSOC is functioning successfully in a relevant environment,” said Tawnya Laughinghouse, manager of the TDM program office at Marshall. “Streaming an ultra-high definition video from millions of miles away in deep space is no small feat.” The laser communications demo, which launched with NASA’s Psyche mission Oct. 13, is designed to transmit data from deep space at rates 10 to 100 times greater than the state-of-the-art radio frequency systems used by deep space missions today. As Psyche travels to the main asteroid belt between Mars and Jupiter, the technology demonstration will send high-data-rate signals as far out as the Red Planet’s greatest distance from Earth. In doing so, it paves the way for higher-data-rate communications capable of sending complex scientific information, high-definition imagery, and video in support of humanity’s next giant leap: sending humans to Mars. “One of the goals is to demonstrate the ability to transmit broadband video across millions of miles. Nothing on Psyche generates video data, so we usually send packets of randomly generated test data,” said Bill Klipstein, the tech demo’s project manager at JPL. “But to make this significant event more memorable, we decided to work with designers at JPL to create a fun video, which captures the essence of the demo as part of the Psyche mission.” Uploaded before launch, the short ultra-high definition video features an orange tabby cat named Taters, the pet of a JPL employee, chasing a laser pointer, with overlayed graphics. The graphics illustrate several features from the tech demo, such as Psyche’s orbital path, Palomar’s telescope dome, and technical information about the laser and its data bit rate. Tater’s heart rate, color, and breed are also on display. This 15-second clip shows the first ultra-high-definition video sent via laser from deep space, featuring a cat named Taters chasing a laser with test graphics overlayed. (NASA/JPL-Caltech) “Despite transmitting from millions of miles away, it was able to send the video faster than most broadband internet connections,” said Ryan Rogalin, the project’s receiver electronics lead at JPL. “In fact, after receiving the video at Palomar, it was sent to JPL over the internet, and that connection was slower than the signal coming from deep space. JPL’s DesignLab did an amazing job helping us showcase this technology – everyone loves Taters.” There’s also a historical link: Beginning in 1928, a small statue of the popular cartoon character Felix the Cat was featured in television test broadcast transmissions. Today, cat videos and memes are some of the most popular content online. This latest milestone comes after “first light” was achieved on Nov. 14. Since then, the system has demonstrated faster data downlink speeds and increased pointing accuracy during its weekly checkouts. On the night of Dec. 4, the project demonstrated downlink bit rates of 62.5 Mbps, 100 Mbps, and 267 Mbps, which is comparable to broadband internet download speeds. The team was able to download a total of 1.3 terabits of data during that time. As a comparison, NASA’s Magellan mission to Venus downlinked 1.2 terabits during its entire mission from 1990 to 1994. “When we achieved first light, we were excited, but also cautious. This is a new technology, and we are experimenting with how it works,” said Ken Andrews, project flight operations lead at JPL. “But now, with the help of our Psyche colleagues, we are getting used to working with the system and can lock onto the spacecraft and ground terminals for longer than we could previously. We are learning something new during each checkout.” The Deep Space Optical Communications demonstration is the latest in a series of optical communication demonstrations funded by the TDM program under NASA’s Space Technology Mission Directorate and supported by NASA’s SCaN (Space Communications and Navigation) program within the agency’s Space Operations Mission Directorate. The Psyche mission is led by Arizona State University. JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Psyche is the 14th mission selected as part of NASA’s Discovery Program under the Science Mission Directorate, managed by the agency’s Marshall Space Flight Center. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center, managed the launch service. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. › Back to Top NASA Geologist Paves Way for Building on the Moon By Jessica Barnett For many at NASA’s Marshall Space Flight Center, a love – be it for space, science, or something else – drew them to the career they’re in today. For geologist Jennifer Edmunson, there were multiple reasons. Her love for geology dates back to her childhood in Arizona, playing in the mud, fascinated by the green river rocks she would find and how they fit together. As she grew older, her love for astronomy led her to study the regolith and geology of the Moon and Mars in graduate school. Jennifer Edmunson, geologist and MMPACT project manager at NASA’s Marshall Space Flight Center.NASA That, in turn, led her to Marshall for her post-doctorate, where she studied how shock processes from meteorite impacts potentially affect scientists’ work to determine the age of rocks using different radioisotope systems. On her first day, she needed help from the center’s IT department, which is how she met Joel Miller, the man she now calls her husband. “I met him on April Fools’ Day, and he asked me out on Friday the 13th,” Edmunson recalled. “I knew I needed to get a stable job, so I got a job as the junior geologist on the simulant team here at Marshall. That was back in 2009.” Fourteen years later, they still work at Marshall. He’s now the center’s acting spectrum manager, and she manages the MMPACT (Moon-to-Mars Planetary Autonomous Construction Technology) project. Through MMPACT, Marshall is working with commercial partners and academia to develop and test robotic technology that will one day use lunar soil and 3-D printing technology to build structures on the Moon. “It’s phenomenal to see the development of the different materials we’ve been working on,” Edmunson said. “We started with this whole array of materials, and now we’re like, ‘OK, what’s the best one for our proof of concept?’” NASA aims for a proof-of-concept mission to validate the technology and capability by the end of this decade. This mission would involve traveling to the Moon to create a representative element of a landing pad. MMPACT aims to build lunar infrastructure using the materials readily available on the Moon. This process, known as in-situ resource utilization, allows NASA engineers to use lunar regolith, fine-grained silicate minerals thought to be available in a layer between 10 to 70 feet deep on the lunar surface, to build different structures and infrastructure elements. Marshall geologist and MMPACT project manager Jennifer Edmunson, fourth from right, joined several other scientists for a trip to Stillwater, Montana, earlier this year. Stillwater is known to have rocks like those found on the Moon.NASA However, regolith can’t be used like cement here on Earth, as it wouldn’t solidify in the low-pressure environment. So, Edmunson and her team are now looking at microwaves and laser technology to heat the regolith to create solid building materials. After successfully building a full-scale landing pad on the Moon, MMPACT will likely focus on a vertical structure, like a garage, habitat, or safe haven for astronauts. “The possibilities are endless,” she said. “There is so much potential for using different materials for different applications. There’s just a wealth of opportunity for anyone who wants to play in the field, really.” Edmunson hopes to get more lunar regolith first, as NASA is still working with samples from the Apollo missions and simulants based on those samples. She’s also looking forward to Artemis bringing back samples from different parts of the lunar surface because it will provide her team with a wider pool of regolith samples to analyze. “We want to learn more about different locations on the Moon,” she said. “We have to understand the differences and how that might affect our processes.” Knowing this will make it easier not just to build landing pads and habitats but to build roadways and the start of a lunar economy, Edmunson said. Some minerals are rare on Earth but abundant on the Moon. To study how those minerals could be used for building, scientists rely on simulants, like the synthetic anorthite pictured here.NASA “I want there to be sufficient structures there to make things safe for crew, so if we want to build a hotel on the Moon, we could,” she said. “We could have tourists going there, mining districts pulling rare Earth elements from the Moon. We could do that and get a lot of resources that way. I want science to progress, things like building a radio telescope on the far side of the Moon. I want more information on more of the different sites around the Moon, so we can get a be`tter understanding of how the Moon formed and the history of the Moon. We’ve only scratched the surface there.” There are parts of the Moon that can only be explored in detail by visiting in person, Edmunson explained, and she’s excited to be working at Marshall as that exploration is made possible. “It’s awesome to be part of this. Honestly, it’s the reason I get out of bed in the morning,” she said. “I was born in ’77, so I missed the Apollo lunar landings. I would love to see humans on the Moon in my lifetime, and on Mars would just be amazing.” Her advice is simple to anyone considering a career like hers: Just go for it. “A lot of it comes down to passion and tenacity,” she said. “If you really love what you do and you get to do it every day, you find more enjoyment in your career. I feel like I’m making a difference, and with surface construction at such an infant kind of stage right now, I feel like it’s a contribution that will last for a very long time.” Barnett, a Media Fusion employee, supports the Marshall Office of Communications. › Back to Top Sprightly Stars Illuminate ‘Christmas Tree Cluster’ A new image of NGC 2264, also known as the “Christmas Tree Cluster,” shows the shape of a cosmic tree with the glow of stellar lights. NGC 2264 is, in fact, a cluster of young stars – with ages between about one and five million years old – in our Milky Way about 2,500 light-years away from Earth. The stars in NGC 2264 are both smaller and larger than the Sun, ranging from some with less than a tenth the mass of the Sun to others containing about seven solar masses. This new image of NGC 2264, also known as the “Christmas Tree Cluster,” shows the shape of a cosmic tree with the glow of stellar lights.X-ray: NASA/CXC/SAO; Optical: T.A. Rector (NRAO/AUI/NSF and NOIRLab/NSF/AURA) and B.A. Wolpa (NOIRLab/NSF/AURA); Infrared: NASA/NSF/IPAC/CalTech/Univ. of Massachusetts; Image Processing: NASA/CXC/SAO/L. Frattare & J.Major This new composite image enhances the resemblance to a Christmas tree through choices of color and rotation. The blue and white lights (which blink in the animated version of this image) are young stars that give off X-rays detected by NASA’s Chandra X-ray Observatory. Optical data from the National Science Foundation’s WIYN 0.9-meter telescope on Kitt Peak shows gas in the nebula in green, corresponding to the “pine needles” of the tree, and infrared data from the Two Micron All Sky Survey shows foreground and background stars in white. This image has been rotated clockwise by about 160 degrees from the astronomer’s standard of North pointing upward, so that it appears like the top of the tree is toward the top of the image. Young stars, like those in NGC 2264, are volatile and undergo strong flares in X-rays and other types of variations seen in different types of light. The coordinated, blinking variations shown in this animation, however, are artificial, to emphasize the locations of the stars seen in X-rays and highlight the similarity of this object to a Christmas tree. In reality, the variations of the stars are not synchronized. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This composite image shows the Christmas Tree Cluster. The blue and white lights (which blink in the animated version of this image) are young stars that give off X-rays detected by NASA’s Chandra X-ray Observatory. Optical data from the National Science Foundation’s WIYN 0.9-meter telescope on Kitt Peak shows gas in the nebula in green, corresponding to the “pine needles” of the tree, and infrared data from the Two Micron All Sky Survey shows foreground and background stars in white. This image has been rotated clockwise by about 160 degrees from the astronomer’s standard of North pointing upward, so that it appears like the top of the tree is toward the top of the image. The variations observed by Chandra and other telescopes are caused by several different processes. Some of these are related to activity involving magnetic fields, including flares like those undergone by the Sun – but much more powerful – and hot spots and dark regions on the surfaces of the stars that go in and out of view as the stars rotate. There can also be changes in the thickness of gas obscuring the stars, and changes in the amount of material still falling onto the stars from disks of surrounding gas. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts. › Back to Top NASA’s 3D-printed Rotating Detonation Rocket Engine Test a Success NASA has achieved a new benchmark in developing an innovative propulsion system called the Rotating Detonation Rocket Engine (RDRE). Engineers at NASA’s Marshall Space Flight Center successfully tested a novel, 3D-printed RDRE for 251 seconds (or longer than four minutes), producing more than 5,800 pounds of thrust. That kind of sustained burn emulates typical requirements for a lander touchdown or a deep-space burn that could set a spacecraft on course from the Moon to Mars, said Marshall combustion devices engineer Thomas Teasley, who leads the RDRE test effort at the center. Engineers at NASA’s Marshall Space Flight Center conduct a successful, 251-second hot fire test of a full-scale Rotating Detonation Rocket Engine combustor in fall 2023, achieving more than 5,800 pounds of thrust.NASA RDRE’s first hot fire test was performed at Marshall in the summer of 2022 in partnership with In Space LLC and Purdue University, both of Lafayette, Indiana. That test produced more than 4,000 pounds of thrust for nearly a minute. The primary goal of the latest test, Teasley noted, is to better understand how to scale the combustor to different thrust classes, supporting engine systems of all types and maximizing the variety of missions it could serve, from landers to upper stage engines to supersonic retropropulsion, a deceleration technique that could land larger payloads – or even humans – on the surface of Mars. Test stand video captured at Marshall shows ignition of a full-scale Rotating Detonation Rocket Engine combustor, which was fired for a record 251 seconds and achieved more than 5,800 pounds of thrust. (NASA) “The RDRE enables a huge leap in design efficiency,” he said. “It demonstrates we are closer to making lightweight propulsion systems that will allow us to send more mass and payload further into deep space, a critical component to NASA’s Moon to Mars vision.” Engineers at NASA’s Glenn Research Center and Venus Aerospace of Houston, Texas, are working with Marshall to identify how to scale the technology for higher performance. RDRE is managed and funded by the Game Changing Development Program within NASA’s Space Technology Mission Directorate. › Back to Top View the full article
-
Northrop Grumman’s Cygnus cargo craft is pictured moments away from being captured by the Canadarm2 robotic arm controlled by NASA astronaut and Expedition 69 Flight Engineer Woody Hoburg from inside the International Space Station. Northrop Grumman’s uncrewed Cygnus spacecraft is scheduled to depart the International Space Station on Friday, Dec. 22, four months after delivering more than 8,200 pounds of supplies, scientific investigations, commercial products, hardware, and other cargo to the orbiting laboratory for NASA and its international partners. Live coverage of the spacecraft’s departure will begin at 7:45 a.m. EST on the NASA+ streaming service via the web or NASA app. Coverage also will air live on NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media. Flight controllers on the ground will send commands for the space station’s Canadarm2 robotic arm to detach Cygnus from the Unity module’s Earth-facing port, then maneuver the spacecraft into position for its release at 8:05 a.m. NASA astronaut Loral O’Hara will monitor Cygnus’ systems upon its departure from the space station. Following a deorbit engine firing in early January, Cygnus will begin a planned destructive re-entry, in which the spacecraft – filled with trash packed by the station crew – will safely burn up in Earth’s atmosphere. Cygnus arrived at the space station Aug. 4 following a launch on Northrop Grumman’s Antares rocket from NASA’s Wallops Flight Facility on Wallops Island, Virginia. It was the company’s 19th commercial resupply services mission to the space station for NASA. Northrop Grumman named the spacecraft after the late NASA astronaut Laurel Clark. Get breaking news, images and features from the space station on Instagram, Facebook, and X. Learn more about Cygnus’ mission and the International Space Station at: https://www.nasa.gov/station -end- Joshua Finch Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov View the full article
-
NASA has awarded the Glenn-Langley Administrative Support Services (GLASS) contract to PBG FedSync JV LLC of McLean, Virginia, to provide administrative support services to various organizations, programs, and projects at the agency’s Glenn Research Center in Cleveland and Langley Research Center in Hampton, Virginia. GLASS is a firm-fixed-price, indefinite-delivery/indefinite-quantity contract that includes a 60-day phase-in period beginning Jan. 1, 2024, followed by a two-year base period and three one-year option periods. The total award value is $41.4 million over a five-year potential performance period. The services include, but are not limited to, general office operations, meeting and event planning, correspondence and information delivery, information technology services coordination, training tasks support, office move coordination, property coordination, and general reporting and data collection. For information about NASA and agency programs, visit: https://www.nasa.gov -end- Abbey Donaldson NASA Headquarters, Washington 202-358-1600 abbey.a.donaldson@nasa.gov View the full article
-
1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA astronauts Christina Koch and Andrew Morgan stow biological research samples into a science freezer located inside the U.S. Destiny laboratory module. In September 2022, the National Space Council directed NASA to “develop a plan for the next generation microgravity national lab in a commercial space station world.” NASA has been working to develop this strategy, to include considerations for establishing robust international partner pathways outlined in a report from NASA’s Office of Technology, Policy, and Strategy titled “Models for Facilitating Government-Funded Activities in the Post-International Space Station (ISS) Low-Earth Orbit (LEO) Ecosystem,” as one step in NASA’s effort to define and develop a comprehensive strategy. Share Details Last Updated Dec 20, 2023 EditorBill Keeter Related TermsOffice of Technology, Policy and Strategy (OTPS) View the full article
-
Image credit: NASA As part of NASA’s ongoing commitment to supporting American innovators and advancing new aerospace technologies the agency announced its second round of Phase I awards for Small Business Innovation Research (SBIR) Ignite. The 10 selected small businesses will each receive up to $150,000 and have six months to establish the scientific, technical, and commercial merit and feasibility of their proposed innovation – the same timeframe as the program’s main SBIR Phase I awards. Astral Forge, LLC, Palo Alto, California: Development of a High-temperature (>1200 C) Crystal Growth Furnace toward Semiconductor In-Space Production Applications in LEO for Terrestrial Use Astrobotic Technology Inc., Pittsburgh: Photon Counting Sensor for In-space Debris Detection Benchmark Space Systems, Burlington, Vermont: Resilient Independent Propulsive Controlled On-orbit Recovery Device (RIPCORD) Brayton Energy, LLC, Hampton, New Hampshire: High Efficiency Solid Oxide Fuel Cell / Turbogenerator Hybrid Electric Propulsion System Channel-Logistics LLC dba Space-Eyes, Miami: Fire Watch: Prediction and Detection of Wildfires Through Advanced AI/ML GeoVisual Analytics, Westminster, Colorado: Decision Support for Water Management in the Agriculture Sector Lunar Resources, Inc., Houston: Silicon and Iron Regolith Extraction on the Moon (SIRE) Space Lab Technologies, LLC, Boulder, Colorado: EcoMine – Bioregenerative Mineral Mining from Lunar Regolith Space Tango, Lexington, Kentucky: TangoBox: Next Generation Infrastructure for In-Space Production on Commercial Space Stations VerdeGo Aero, De Leon Springs, Florida: VerdeGo Aero VH-3 Hybrid Electric Powerplant This three-year pilot Ignite initiative, housed under NASA’s SBIR program, provides funding and other support to commercialization-focused small businesses, startups, and entrepreneurs as they seek to develop their early-stage technology ideas. “The investments we’re able to offer through SBIR Ignite give us the ability to de-risk technologies that have a strong commercial pull, helping make them more attractive to outside investors, customers, and partners,” said Jason L. Kessler, program executive for the NASA SBIR program at the agency’s headquarters in Washington. “We also hope it advances the sometimes-overlooked goal of all SBIR programs to increase private-sector commercialization of the innovations derived from federal research and development funding.” NASA’s SBIR Ignite targets product-driven companies which seek to commercialize products instead of targeting the agency as a primary customer. This commercialization focus is a key differentiator from the NASA SBIR program’s traditional solicitations that, in addition to considering commercial potential, have historically sought technologies to address specific NASA needs and have a goal of getting infused into a NASA mission. The SBIR Ignite solicitation contains only a few topics relevant to emerging commercial markets in aerospace; these topics are refined based on market insights gained in the interactive NASA SBIR Ignite Catalyst events that precede the solicitation release. One of the topics in the 2023 SBIR Ignite Phase I solicitation sought technologies to accelerate in-space production applications in low Earth orbit (LEO). In support of this topic, NASA selected Astral Forge – a women-owned small business and first-time SBIR recipient – to advance semiconductor crystal production by developing a high-temperature crystal growth furnace for in-space operation in LEO, with applications on Earth as well. This furnace could enable efficient and scalable synthesis of semiconductor materials with a specific initial focus on Gallium Nitride (GaN). With silicon performance plateauing and devices demanding more efficient processors, GaN – considered a next-generation semiconductor compound – holds immense promise, offering enhanced performance characteristics, particularly in terms of power efficiency and thermal tolerance, compared to conventional silicon technology. The NASA SBIR Ignite initiative and its parent program, NASA SBIR, are a part of NASA’s Space Technology Mission Directorate and are managed by the agency’s Ames Research Center in California’s Silicon Valley. To learn more about the NASA SBIR program and apply to future opportunities, visit: https://sbir.nasa.gov/ View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) La Movilidad Aérea Avanzada conectará a los habitantes de las ciudades con los residentes de las zonas rurales ofreciendo una nueva forma de viajar en avión. Como se muestra en este arte conceptual, los pasajeros podrían viajar de las zonas rurales a la ciudad más rápidamente que en coche para subir a un avión comercial, recibir atención médica o comprar mercancías.NASA/Kyle Jenkins Read this feature in English here. Imagina pedir un taxi aéreo por app, como haces ahora con Uber o Lyft, para viajar a tu aeropuerto local: podrías elevarte por encima del tráfico de carretera y llegar mucho más rápido que si fueras en coche. Los creativos de la industria aeronáutica ya están diseñando servicios aéreos de viaje compartido entre casa y el aeropuerto. Las nuevas aeronaves autónomas y pilotadas por control remoto harán que los viajes aéreos sean más accesibles al público de lo que lo han sido hasta ahora. La NASA está investigando cómo estas aeronaves pueden integrarse con seguridad en el espacio aéreo existente y explorando la tecnología que este nuevo espacio aéreo futurista y altamente digital necesitará para tener éxito. Los datos de este trabajo, realizado por la misión de Movilidad Aérea Avanzada, se está compartiendo con la Administración Federal de Aviación. La Administración Federal de Aviación regula y certifica estas aeronaves para garantizar que puedan volar con seguridad en el espacio aéreo nacional. La NASA está investigando opciones de diseño y operación para situaciones en las que las aeronaves aterrizarán y despegarán, y cómo se construirán, propulsarán y mantendrán las aeronaves. Esta y otras investigaciones aportarán ideas para ayudar a la industria a crear un entorno de accesibilidad óptimo. Hay más de 5000 aeropuertos públicos en los Estados Unidos. La Movilidad Aérea Avanzada ofrecería a los pasajeros nuevas vías de acceso a estos aeropuertos. Los pasajeros podrían desplazarse rápidamente desde zonas rurales o ciudades para subir en aviones comerciales, y estos mismos servicios de taxi aéreo le darían un mayor acceso a la atención médica o a la compra de mercancías. Los drones de reparto también podrían facilitar el acceso a la mercancía y los servicios. La Movilidad Aérea Avanzada intenta de crear recursos de aviación económicos y eficientes para el público en general con el fin de permitir que más personas pudieran disfrutar fácilmente de nuevos servicios por demanda. Al igual que ocurre con el transporte aéreo comercial hoy en día, habrá que hacer adaptaciones en estas aeronaves para atender a todos los niveles de capacidad. Esto podría incluir la instalación de rampas de acceso para sillas de ruedas, asientos y cinturones de seguridad especiales y ayudas visuales y auditivas adicionales para que el avión cumpla la Ley de Estadounidenses con Discapacidades. Las áreas de investigación de la NASA sobre el control del tráfico aéreo, la automatización, el ruido y la seguridad tendrán que combinarse para hacer realidad estas operaciones. Las agencias gubernamentales, la industria y el público tendrán que combinar sus esfuerzos para integrar con seguridad esta nueva clase de aviones. La visión de la NASA es diseñar un nuevo sistema de transporte aéreo seguro, accesible y económico junto con socios de la industria y la comunidad y la Administración Federal de Aviación. Estas nuevas capacidades permitirían a los pasajeros y a la carga viajar a pedido en aeronaves innovadoras y automatizadas a través de la ciudad, entre ciudades vecinas o a otros lugares a los que hoy se suele acceder en automóvil. La visión de la NASA para la Movilidad Aérea Avanzada, o AAM por sus siglas en inglés, es trazar un nuevo sistema de transporte aéreo seguro, accesible y económico junto con socios de la industria, socios comunitarios y la Administración Federal de Aviación (FAA por sus siglas en inglés). En este episodio del Manual de Movilidad Aérea Avanzada de la NASA, explicamos cómo AAM permitirá formas más accesibles de viajar de ciudad a ciudad y de ciudad a zonas rurales. Artículo Traducido por: Elena Aguirre Share Details Last Updated Dec 20, 2023 EditorJim BankeContactJessica Arreolajessica.arreola@nasa.gov Related TermsNASA en españolAeronáuticaNASA Home & CitySmall Business Innovation Research / Small Business Explore More 4 min read NASA: Una jugosa historia de tomates en la Estación Espacial Internacional Article 6 days ago 4 min read La Movilidad Aérea Avanzada Ayuda al Transporte de Mercancías Article 4 weeks ago 4 min read Mira cómo la NASA construye su primer vehículo lunar robótico Article 2 months ago Facebook logo @NASA@NASAArmstrong@NASAaero@NASA_es @NASA@NASAArmstrong@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Keep Exploring Discover Related Topics Armstrong Flight Research Center Armstrong Aeronautics Projects Airspace Operations and Safety Program Drones & You View the full article
-
Savvy Verma, left, and Huy Tran, director of aeronautics at NASA’s Ames Research Center in California’s Silicon Valley, center, explain a recent air traffic management simulation to guests at Ames’ FutureFlight Central simulator on Sept. 26. Credit: NASA/Jesse Carpenter Researchers are one step closer to integrating air taxis and other electric vertical takeoff and landing (eVTOL) vehicles into the country’s busiest airports, thanks to a new air traffic simulation developed by NASA’s Ames Research Center in California’s Silicon Valley and Joby Aviation. These zero-operating-emission aircraft use electric power to take off, cruise, and land, and provide an appealing option for commercial industry interested in more sustainable transportation. NASA and Joby researchers recently invited representatives from the Federal Aviation Administration (FAA), the National Association of Air Traffic Controllers, and stakeholders to view the simulation in the Ames’ air traffic control simulation facility, called FutureFlight Central. The two-story facility offers a 360-degree, full-scale simulation of an airport, where controllers, pilots and airport personnel can test operating procedures and evaluate new technologies. “We’re trying to enable a better quality of life,” said Savvy Verma, urban air mobility researcher at NASA Ames. “Some people are stuck in traffic for hours on the way to the airport. A 12-mile trip can take 45 minutes. Imagine being able to do that same trip in 15 minutes.” In preparation for air taxis and other aircraft flying passengers in and out of airports, NASA and industry partners are working with the FAA to demonstrate how creative use of existing tools and airspace procedures can support safe integration of air taxi operations into the national airspace. The groups are also exploring potential changes to the current airspace system to enable an even greater scale of flights. The recent air traffic management integration simulation developed by NASA with Joby will provide useful air traffic controller data to the FAA and industry for integrating these aircraft into operations. “There is so much momentum across the world for advanced air mobility,” Verma said. “We’ve been talking about integrating these kinds of vehicles into the airspace, but to be able to show it in high-fidelity simulation is very promising.” Inside the facility, visitors saw eVTOL pilots flying safely along NASA-developed, predetermined routes at Dallas-Fort Worth International Airport and Dallas Love Field Airport. The eVTOL pilots operated seamlessly through the airports, with the facility simulating weather conditions, live flight data, and airport operational data. The simulation showed how NASA-developed air traffic control procedures and airspace concepts would significantly reduce the workload on air traffic controllers for eVTOL operations in airports. “This simulation validates the idea that we can find a way to safely integrate these vehicles into the airspace at scale,” said NASA researcher Ken Freeman. The human-in-the-loop simulation, which featured active and retired air traffic controllers, evaluated a series of traffic schedules developed by Joby based on the company’s market analysis and expectations of future demand. NASA’s initial analysis of the simulation indicates that researchers could scale these procedures for operating eVTOLs in other airports throughout the country, which could reduce the associated workload on air traffic controllers. NASA plans to publish a complete analysis of the simulation results in 2024. The brand-new data will be provided to the FAA, commercial industry, and airports to help identify the air traffic controller tools and procedures could enable high-tempo integration of eVTOLs into near-term and future operations in airports. Enabling eVTOLs as a taxi service for passengers to and from airports in the future could begin to reduce carbon emissions and greatly improve the commute experience for passengers. This project work supports NASA’s Advanced Air Mobility mission, which focuses on air taxi and drone research with industry and government partners View the full article
-
NASA / Grace Weikert Flames burn orange through green conifers and golden aspen on the slopes of Monroe Mountain in Utah’s Fishlake National Forest, sending gray and brown smoke billowing into the sky in this image from Oct. 9, 2023. This fire was intentionally set with a fire-dripping device suspended from a helicopter. The burn aimed to reintroduce fire to the Monroe Mountain region. Fire promotes aspen regeneration and reduces accumulated brush and dead vegetation that could fuel a larger uncontrolled fire. Scientists from NASA’s FireSense project, along with dozens of others from the Forest Service and other organizations and universities, collected data from the ground and from the sky as part of the Forest Service’s Fire and Smoke Model Evaluation Experiment. Observing a prescribed high-intensity fire gave NASA an opportunity to test technologies and demonstrate their effectiveness in supporting wildland fire management across the life cycle of a fire. Read more about fire’s effect on this region and what we can learn from studying fires. Image Credit: NASA/Grace Weikert View the full article
-
Nov. 11, 2023 — Thrusters on the SpaceX Dragon cargo spacecraft fire automatically while adjusting the vehicle’s slow, methodical approach toward the International Space Station for a docking to the Harmony module’s forward port.NASA NASA and its international partners are set to receive scientific research samples and hardware as a SpaceX Dragon cargo resupply spacecraft departs the International Space Station on Wednesday, Dec. 20. The agency will provide live coverage of Dragon’s undocking and departure starting at 8:45 p.m. EST on the NASA+ streaming service via the web or the NASA app. Coverage also will air live on NASA Television, YouTube, and on the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media. Dragon will undock from the station’s Harmony module at 9:05 p.m. and fire its thrusters to move a safe distance away from the station after receiving a command from ground controllers at SpaceX in Hawthorne, California. After re-entering Earth’s atmosphere, the spacecraft will splash down off the coast of Florida. NASA will not broadcast the splashdown, but updates will be posted on the agency’s space station blog. Dragon will carry back to Earth more than 4,300 pounds of supplies and scientific experiments designed to take advantage of the space station’s microgravity environment. Splashing down off the coast of Florida enables quick transportation of the experiments to NASA’s Space Station Processing Facility at Kennedy Space Center in Florida, allowing researchers to collect data with minimal sample exposure to Earth’s gravity. Scientific hardware and samples returning to Earth include Planet Habitat-03, which assesses whether genetic adaptations in one generation of plants grown in space can transfer to the next generation. This is one of the first multi-generation plant biology studies in orbit. Other studies include JAXA’s (Japan Aerospace Exploration Agency) Cell Gravisensing, an investigation that looks at how cells sense and respond to the effects of gravity. Results could promote drug development for treating muscle atrophy and osteoporosis. Also returning on Dragon is Genes in Space-10, a student-led project that tests a method for in-orbit measurement of the length of telomeres, cap-like structures at the end of DNA strands that shorten with age, but have been found to lengthen in space. Additionally, samples from MaRVIn-PCIM (Microgravity Research for Versatile Investigations-Phase Change in Mixtures) and Neuronix (Innovative Paralysis Therapy Enabling Neuroregeneration) also are returning to Earth for scientific analysis. Dragon arrived at the station Nov. 11 as SpaceX’s 29th commercial resupply services mission for NASA, delivering about 6,500 pounds of research investigations, crew supplies, and station hardware. The spacecraft launched Nov. 9 on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA Kennedy. These are just a few of the hundreds of investigations currently being conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Advances in these areas will help keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low Earth orbit to the Moon and Mars through NASA’s Artemis program. Get breaking news, images and features from the space station on Instagram, Facebook, and X. Learn more about SpaceX’s mission for NASA at: https://www.nasa.gov/spacex -end- Julian Coltre Headquarters, Washington 202-358-1100 julian.n.coltre@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Dec 20, 2023 EditorRoxana BardanLocationNASA Headquarters Related TermsCommercial SpaceCommercial ResupplyInternational Space Station (ISS)SpaceX Commercial Resupply View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, conduct a successful, 251-second hot fire test of a full-scale Rotating Detonation Rocket Engine combustor in fall 2023, achieving more than 5,800 pounds of thrust. NASA NASA has achieved a new benchmark in developing an innovative propulsion system called the Rotating Detonation Rocket Engine (RDRE). Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, successfully tested a novel, 3D-printed RDRE for 251 seconds (or longer than four minutes), producing more than 5,800 pounds of thrust. That kind of sustained burn emulates typical requirements for a lander touchdown or a deep-space burn that could set a spacecraft on course from the Moon to Mars, said Marshall combustion devices engineer Thomas Teasley, who leads the RDRE test effort at the center. RDRE’s first hot fire test was performed at Marshall in the summer of 2022 in partnership with In Space LLC and Purdue University, both of Lafayette, Indiana. That test produced more than 4,000 pounds of thrust for nearly a minute. The primary goal of the latest test, Teasley noted, is to better understand how to scale the combustor to different thrust classes, supporting engine systems of all types and maximizing the variety of missions it could serve, from landers to upper stage engines to supersonic retropropulsion, a deceleration technique that could land larger payloads – or even humans – on the surface of Mars. Test stand video captured at NASA’s Marshall Space Flight Center in Huntsville, Alabama, shows ignition of a full-scale Rotating Detonation Rocket Engine combustor, which was fired for a record 251 seconds and achieved more than 5,800 pounds of thrust. Click here for full video “The RDRE enables a huge leap in design efficiency,” he said. “It demonstrates we are closer to making lightweight propulsion systems that will allow us to send more mass and payload further into deep space, a critical component to NASA’s Moon to Mars vision.” Engineers at NASA’s Glenn Research Center in Cleveland and researchers at Venus Aerospace of Houston, Texas, are working with NASA Marshall to identify how to scale the technology for higher performance. RDRE is managed and funded by the Game Changing Development Program within NASA’s Space Technology Mission Directorate. Ramon J. Osorio NASA’s Marshall Space Flight Center ramon.j.osorio@nasa.gov 256-544-0034 Share Details Last Updated Dec 20, 2023 EditorBeth RidgewayLocationMarshall Space Flight Center Related TermsMarshall Space Flight CenterGame Changing Development Program Explore More 2 min read NASA Validates Revolutionary Propulsion Design for Deep Space Missions Article 11 months ago 4 min read Intern Contributes ‘Sizably’ to Marshall’s Advanced Propulsion Project Article 3 months ago 1 min read Hypergolic Rotating Detonation Rocket Propulsion with Low Pressure-loss Injection and Advanced Thermal Management Article 4 years ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
4 min read NASA’s Fermi Mission Creates 14-Year Time-Lapse of the Gamma-Ray Sky The cosmos comes alive in an all-sky time-lapse movie made from 14 years of data acquired by NASA’s Fermi Gamma-ray Space Telescope. Our Sun, occasionally flaring into prominence, serenely traces a path though the sky against the backdrop of high-energy sources within our galaxy and beyond. From solar flares to black hole jets: NASA’s Fermi Gamma-ray Space Telescope team has produced a unique time-lapse tour of the dynamic high-energy sky. Fermi Deputy Project Scientist Judy Racusin narrates the movie, which compresses 14 years of gamma-ray observations into 6 minutes. Download high-resolution video and images from NASA’s Scientific Visualization Studio. Credit: NASA’s Goddard Space Flight Center and NASA/DOE/LAT Collaboration “The bright, steady gamma-ray glow of the Milky Way is punctuated by intense, days-long flares of near-light-speed jets powered by supermassive black holes in the cores of distant galaxies,” said Seth Digel, a senior staff scientist at SLAC National Accelerator Laboratory in Menlo Park, California, who created the images. “These dramatic eruptions, which can appear anywhere in the sky, occurred millions to billions of years ago, and their light is just reaching Fermi as we watch.” Gamma rays are the highest-energy form of light. The movie shows the intensity of gamma rays with energies above 200 million electron volts detected by Fermi’s Large Area Telescope (LAT) between August 2008 and August 2022. For comparison, visible light has energies between 2 and 3 electron volts. Brighter colors mark the locations of more intense gamma-ray sources. “One of the first things to strike your eye in the movie is a source that steadily arcs across the screen. That’s our Sun, whose apparent movement reflects Earth’s yearly orbital motion around it,” said Fermi Deputy Project Scientist Judy Racusin, who narrates a tour of the movie, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Most of the time, the LAT detects the Sun faintly due to the impact of accelerated particles called cosmic rays – atomic nuclei traveling close to the speed of light. When they strike the Sun’s gas or even the light it emits, gamma rays result. At times, though, the Sun suddenly brightens with powerful eruptions called solar flares, which can briefly make our star one of the sky’s brightest gamma-ray sources. The movie shows the sky in two different views. The rectangular view shows the entire sky with the center of our galaxy in the middle. This highlights the central plane of the Milky Way, which glows in gamma rays produced from cosmic rays striking interstellar gas and starlight. It’s also flecked with many other sources, including neutron stars and supernova remnants. Above and below this central band, we’re looking out of our galaxy and into the wider universe, peppered with bright, rapidly changing sources. Most of these are actually distant galaxies, and they’re better seen in a different view centered on our galaxy’s north and south poles. Each of these galaxies, called blazars, hosts a central black hole with a mass of a million or more Suns. Somehow, the black holes produce extremely fast-moving jets of matter, and with blazars we’re looking almost directly down one of these jets, a view that enhances their brightness and variability. “The variations tell us that something about these jets has changed,” Racusin said. “We routinely watch these sources and alert other telescopes, in space and on the ground, when something interesting is going on. We have to be quick to catch these flares before they fade away, and the more observations we can collect, the better we’ll be able to understand these events.” Fermi plays a key role in the growing network of missions working together to capture these changes in the universe as they unfold. Many of these galaxies are extremely far away. For example, the light from a blazar known as 4C +21.35 has been traveling for 4.6 billion years, which means that a flare up we see today actually occurred as our Sun and solar system were beginning to form. Other bright blazars are more than twice as distant, and together provide striking snapshots of black hole activity throughout cosmic time. Not seen in the time-lapse are many short-duration events that Fermi studies, such as gamma-ray bursts, the most powerful cosmic explosions. This is a result of processing data across several days to sharpen the images. The Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership managed by Goddard. Fermi was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States. By Francis Reddy NASA’s Goddard Space Flight Center, Greenbelt, Md. Media contact: Claire Andreoli claire.andreoli@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. (301) 286-1940 Share Details Last Updated Dec 20, 2023 Related Terms Astrophysics Black Holes Fermi Gamma-Ray Space Telescope Galaxies, Stars, & Black Holes Goddard Space Flight Center Origin & Evolution of the Universe Supermassive Black Holes The Sun The Universe Explore More 2 min read NASA’s Hubble Presents a Holiday Globe of Stars Article 1 hour ago 2 min read Cosmic Companionship Quest Marks Major Milestone Article 2 days ago 3 min read NASA’s BurstCube Passes Milestones on Journey to Launch Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
Science in Space: December 2023 Imagine someone needs a heart transplant and scientists take cells from that person to create an entire new heart for them. Research on the International Space Station is helping to bring that dream closer to reality. The process of 3D printing (also known as additive manufacturing) enables the design and production of one-of-a-kind items made of plastic, metal, and other materials, including tools, equipment, and even buildings. Biological printing or bioprinting uses living cells, proteins, and nutrients as raw materials and has the potential to produce human tissues for treating injury and disease and to create entire organs for transplants. In Earth’s gravity, bioprinting requires a scaffold or other type of structure to support tissues, but in the near-weightlessness of the space station’s orbit, tissues grow in three dimensions without such support. Redwire Corporation developed the BioFabrication Facility (BFF) as a part of the larger goal of using microgravity to bioprint human organs. Popular Science magazine recently awarded the BFF a 2023 Best of What’s New Award in the Health Category. These awards, handed out since 1988, recognize “groundbreaking innovations changing our world,” according to Popular Science, and “radical ideas that are improving our everyday lives and our futures.” NASA astronaut Jasmin Moghbeli swaps components inside the BioFabrication Facility (BFF).NASA A current investigation, BFF-Cardiac, uses the BFF to evaluate the printing and processing of cardiac tissue samples. Cardiovascular disease is the number one cause of death in the United States. Adult heart tissue is unable to regenerate, so damaged heart tissue is mostly replaced with scar tissue, which can block electrical signals and prevent proper cardiac contractions. This investigation could support the development of patches to replace damaged tissue – and eventually the creation of replacement hearts. The work represents a big step toward addressing the significant gap between the number of transplant organs needed and available donors. The first human knee meniscus successfully 3D bioprinted in orbit using the BioFabrication Facility.NASA The BFF-Meniscus investigation and the follow-up BFF-Meniscus-2 investigation resulted in the first successful bioprinting of a human knee meniscus in orbit using the space station’s BioFabrication Facility, announced in September 2023. Musculoskeletal injuries, including tears in the meniscus, are one of the most common injuries for the U.S. military and this milestone is a step toward developing improved treatments on the ground and for crew members who experience musculoskeletal injuries on future space missions. After initial printing and a period of growth in microgravity, the tissues returned to Earth for additional analysis and testing. The Russian state space agency ROSCOSMOS launched equipment in 2018, 3D MBP, that included a magnetic printer called Organ.Aut. A series of experiments from 2018 through 2020 showed that this approach could create tissue constructs, helping to pave the way for additional research on producing artificial organs. Bioprinting technology also could create artificial retinas to help restore sight for the 30 million people worldwide who suffer from degenerative retinal diseases. One way to manufacture artificial retinas is a technique that alternates layers of a light-activated protein and a binder on a film. On Earth, gravity affects the quality of these films, but researchers suspected that films created in microgravity would be more stable and have higher optical clarity. Protein-Based Artificial Retina Manufacturing is one of several investigations by LambdaVision Inc. in partnership with developer Space Tango Inc. to develop and validate space-based manufacturing methods for artificial retinas. The company has consistently manufactured multiple 200-layer artificial retina films in microgravity and now is working to commercialize its hardware and strategies for development of other therapies and drugs. The Protein-Based Artificial Retina Manufacturing experiment hardware on the space station. NASA Bioprint FirstAid, a study from ESA (European Space Agency) and the German Space Agency (DLR), demonstrated the function of a prototype for a portable handheld bioprinter that creates a patch from a patient’s own skin cells. Space causes changes in the wound healing process, and such customized bandages could accelerate healing on future missions to the Moon and Mars. Using cultured cells from the patient reduces the risk of rejection by the immune system, and the device offers greater flexibility to address wound size and position. Because the device is small and portable, health care workers could take it almost anywhere on Earth. The investigation showed that the device works as intended in microgravity, and researchers are studying the space-printed patches and comparing them with samples printed on the ground before taking the next step. Sample patches printed using simulant inks and the hand-held tool for Bioprint FirstAid. NASA Bioprinting in microgravity also could make it possible to produce food and medicine on demand on future space missions. Such capabilities would reduce the mass and cost of materials needed at launch and help maintain the health and safety of crew members throughout a mission. The 3D Printing In Zero-G investigation, which started in 2014, demonstrated that the process of 3D printing with inorganic materials such as plastic worked normally in microgravity.1 3D printing could reduce the need to pack costly spare parts on future long-term missions and help solve the problem of trying to predict every tool or object that might be needed on a mission. With the addition of bioprinting capabilities, crews eventually may be able to 3D print almost anything they need – from a replacement screwdriver to a replacement knee. John Love, ISS Research Planning Integration Scientist Expedition 70 Search this database of scientific experiments to learn more about those mentioned above. Citations: 1 Prater TJ, Bean QA, Werkheiser N, Grguel R, Beshears RD, Rolin TD, Huff T, Ryan RM, Ledbetter III FE, Ordonez EA. Analysis of specimens from phase I of the 3D Printing in Zero G Technology demonstration mission. Rapid Prototyping Journal. 2017 October 6; 23(6): 1212-1225. DOI: 10.1108/RPJ-09-2016-0142. Keep Exploring Discover More Topics Latest News from Space Station Research Living in Space Station Science 101: Human Research Humans In Space View the full article
-
Vice President Kamala Harris delivers opening remarks at the first meeting of the National Space Council, Wednesday, Dec. 1, 2021, at the United States Institute of Peace in Washington. Chaired by Vice President Harris, the council’s role is to advise the President regarding national space policy and strategy, and ensuring the United States capitalizes on the opportunities presented by the country’s space activities. NASA/Joel Kowsky NASA is participating in a meeting of the National Space Council on Wednesday, Dec. 20, in Washington. The meeting, chaired by Vice President Kamala Harris, will focus on international partnerships and is the third council meeting held by the Biden-Harris Administration. NASA Deputy Administrator Pam Melroy and Artemis II and CSA (Canadian Space Agency) astronaut Jeremy Hansen will represent the agency at the meeting, which also includes other federal government agencies. NASA will provide coverage of the meeting at 2 p.m. EST on the NASA+ streaming service via the web or NASA app. Coverage also will air live on NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media. Deputy Administrator Melroy will provide remarks that will focus on the societal benefits of NASA’s space exploration, including the agency’s Earth science missions that provide open and transparent climate data for all people. Melroy also will discuss NASA’s space exploration with international partners to build a responsible and sustainable human presence in space. For more information on the National Space Council visit: https://www.whitehouse.gov/spacecouncil/ -end- Amber Jacobson / Jennifer Dooren Headquarters, Washington 202-358-1600 amber.c.jacobson@nasa.gov / jennifer.m.dooren@nasa.gov Share Details Last Updated Dec 20, 2023 LocationNASA Headquarters Related TermsPamela A. MelroyEarthNASA Headquarters View the full article
-
2 min read NASA’s Hubble Presents a Holiday Globe of Stars This image of the dwarf irregular galaxy, UGC 8091, was created using data from the Wide Field Camera 3 and the Advanced Camera for Surveys on NASA’s Hubble Space Telescope. ESA/Hubble, NASA, ESA, Yumi Choi (NSF’s NOIRLab), Karoline Gilbert (STScI), Julianne Dalcanton (Center for Computational Astrophysics/Flatiron Inst., UWashington) The billion stars in galaxy UGC 8091 resemble a sparkling snow globe in this festive Hubble Space Telescope image from NASA and ESA (European Space Agency). The dwarf galaxy is approximately 7 million light-years from Earth in the constellation Virgo. It is considered an “irregular galaxy” because it does not have an orderly spiral or elliptical appearance. Instead, the stars that make up this celestial gathering look more like a brightly shining tangle of string lights than a galaxy. Some irregular galaxies may have become tangled by tumultuous internal activity, while others have formed by interactions with neighboring galaxies. The result is a class of galaxies with a diverse array of sizes and shapes, including the diffuse scatter of stars that is this galaxy. Twelve camera filters were combined to produce this image, with light from the mid-ultraviolet through to the red end of the visible spectrum. The red patches are likely interstellar hydrogen molecules that are glowing because they have been excited by the light from hot, energetic stars. The other sparkles on show in this image are a mix of older stars. An array of distant, diverse galaxies appear in the background, captured by Hubble’s sharp view. The data used in this image were taken by Hubble’s Wide Field Camera 3 and the Advanced Camera for Surveys from 2006 to 2021. Among other things, the observing programs involved in this image sought to investigate the role that dwarf galaxies many billions of years ago had in re-heating the hydrogen that had cooled as the universe expanded after the big bang. Astronomers are also investigating the composition of dwarf galaxies and their stars to uncover the evolutionary links between these ancient galaxies and more modern galaxies like our own. The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C. Media Contacts: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Ray Villard Space Telescope Science Institute, Baltimore, MD Bethany Downer ESA/Hubble Share Details Last Updated Dec 19, 2023 Editor Andrea Gianopoulos Related Terms Galaxies Goddard Space Flight Center Hubble Space Telescope Irregular Galaxies Missions The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories Stars Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A visitor operates the new exhibit at the NASA Glenn Visitor Center that features motion sensors, touch screens, and videos.Credit: NASA/Christopher Hartenstine The Fluids and Combustion Facility, or FCF, on the International Space Station was designed and built at NASA’s Glenn Research Center in Cleveland and has been supporting microgravity research for over a decade. A new exhibit at the NASA Glenn Visitor Center, located in the Great Lakes Science Center, brings that research down to Earth in a fun and user-friendly way. The exhibit replicates the FCF, which houses two research facilities—the Combustion Integrated Rack, or CIR, and the Fluids Integrated Rack, or FIR. Both were developed at NASA Glenn with prime contractor ZIN Technologies and are operated remotely from Glenn’s ISS Payloads Operation Center. The FCF supports physical and biological experiments to advance technology development while bringing many benefits back here to Earth. “Gravity on Earth affects everything from flames to fluids,” said Kelly Bailey, Physical Sciences Research Program manager at NASA Glenn. “Because gravity can mask other forces in play on Earth, it’s important to conduct science on the space station and remove gravity as a variable.” A new interactive exhibit at the NASA Glenn Visitor Center replicates the Fluids and Combustion Facility on the International Space Station, enabling users to see how microgravity experiments operate.Credit: NASA/Christopher Hartenstine Bailey worked with a design team to create an interactive educational tool for the new exhibit that features motion sensors, touch screens, and videos. Colorful graphic characters depicting fire and water guide users through many Glenn-developed experiments successfully operated within the FCF. Each rack on the exhibit contains an introduction along with two to three experiments for visitors to learn about. The CIR rack focuses on combustion (fire) research. Users can pick from Flames in Space (Flame Extinguishment Experiment) and Cool Flames (Advanced Combustion via Microgravity Experiments) modules. The FIR focuses on fluids research and highlights the Light Microscopy Module, or LMM, a light imaging microscope facility that provides researchers with powerful diagnostic hardware and software. Within the FIR rack, users receive an introduction to LMM and can choose from Plants in Space (Advanced Plant Experiment), Bubbles in Space (Constrained Vapor Bubble), and Particles in Space (Advanced Colloids Experiments) modules. “People may not realize the volume of science performed daily in space, and the importance of that research truly impacts their lives,” Bailey said. “This interactive exhibit offers an immersive experience into the world of microgravity science research and the important work happening at NASA.” Explore More 2 min read NASA’s Artemis II Crew Meet with President, VP at White House Article 16 hours ago 1 min read Dream Chaser Undergoes Testing at NASA Test Facility in Ohio Article 4 days ago 5 min read Sierra Space’s Dream Chaser New Station Resupply Spacecraft for NASA Article 5 days ago View the full article
-
December 1968 ended a year more turbulent than most. For the American space program, however, it brought the Moon landing one giant step closer. The successful first lunar orbital flight by Apollo 8 astronauts Frank Borman, James A. Lovell, and William A. Anders proved the space worthiness of the Apollo Command and Service Modules (CSM) at lunar distances and demonstrated navigation beyond low Earth orbit. Preparations continued for the next two missions – Apollo 9 to test the Lunar Module (LM) in Earth orbit in February or March 1969, and Apollo 10 to repeat the test in lunar orbit in May. If those missions proved successful, NASA hoped to achieve the first Moon landing by the summer of 1969. Left: Apollo 8 astronauts James A. Lovell, left, Frank Borman, and William A. Anders during the preflight crew press conference. Middle: At the White House, Apollo 7 astronauts R. Walter Cunningham, left, Donn F. Eisele, and Walter M. Schirra, Apollo 8 astronauts Anders, Lovell, and Borman, standing at right, watch aviation pioneer Charles A. Lindberg sign a commemorative document, as First Lady “Lady Bird” Johnson, President Lyndon B. Johnson, former NASA Administrator James E. Webb, and Vice President Hubert H. Humphrey look on. Right: During the countdown demonstration test, Borman, standing left, Lovell, and Anders pose with their backups Neil A. Armstrong, kneeling left, Edwin E. “Buzz” Aldrin, and Fred W. Haise. On Dec. 2, Borman, Lovell, and Anders held their preflight press conference at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Borman summed up the crew’s readiness, “I think we can say we’re ready two weeks before” the flight. President Lyndon B. Johnson invited Apollo 7 astronauts Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham to a state dinner at the White House on Dec. 9, 1968. He also invited Apollo 8 astronauts Borman, Lovell, and Anders, just 12 days from their historic launch to the Moon, as well as aviation pioneer Charles A. Lindberg to sign a commemorative document to hang in the White House Treaty Room. Two days later, Borman, Lovell, and Anders and their backups Neil A. Armstrong, Edwin E. “Buzz” Aldrin, and Fred W. Haise participated in the countdown demonstration test at NASA’s Kennedy Space Center (KSC) in Florida. Left: The Apollo 8 launch vehicle at Launch Pad 39A during the countdown demonstration test. Middle: Apollo 8 crew of William A. Anders, left, Frank Borman, and James A. Lovell at the Command Module simulator at NASA’s Kennedy Space Center in Florida. Right: Lovell, left, Borman, and Anders enjoy some pre-holiday cheer on the eve of their launch to the Moon. Engineers at KSC’s Launch Complex 39 completed the Apollo 8 Countdown Demonstration Test (CDDT) between Dec. 5 and 11, consisting of “wet” and “dry” phases. In the first wet phase, they simulated the entire countdown including the loading of propellant in the rocket’s three stages, down to T minus 8.9 seconds, the time when the first stage’s five F-1 engines ignite. For safety reasons, the crew did not participate in the wet countdown. At the end of the wet phase on Dec. 10, workers drained the fuel from the rocket and recycled the countdown. The next day, the countdown again proceeded to the point of first stage ignition, but for this dry phase the astronauts suited up and strapped into the capsule as they would on launch day. The CDDT also tied in the Mission Control Center (MCC) at MSC, and the Manned Space Flight Network, a series of tracking stations around the world used to monitor the mission. With the CDDT completed, the countdown for Apollo 8 began on Dec. 15. Left: Liftoff of Apollo 8. Middle: A rapidly receding Earth shortly after Trans-Lunar Injection. Right: The spent S-IVB third stage with the Lunar Module (LM) Test Article-B (LTA-B) visible where a LM would normally reside. On Dec. 21, 1968, at precisely 7:51 a.m. EST, at Launch Pad 39A the five engines of the Saturn V’s first stage came to life, powering up to their full 7.5 million pounds of thrust. The brilliance of the flame rivaled the sunrise. At the top of the rocket, strapped inside their Command Module (CM), Borman, Lovell, and Anders experienced firsthand the power of a Saturn V launch. As soon as the rocket cleared the launch tower, control of the mission transferred from the Launch Control Center at Launch Complex 39 to MCC at MSC. From there, three teams of controllers, led by Lead Flight Director Clifford E. Charlesworth and Flight Directors Glynn S. Lunney and Milton L. Windler, working in eight-hour shifts, monitored the mission until splashdown. During the launch and early phases of the flight, Michael Collins served as the capsule communicator, or capcom, the astronaut in MCC who spoke directly with the crew. Within 11 and a half minutes, the three stages of the Saturn V placed Apollo 8 into Earth orbit. For the next 90 minutes, MCC and the astronauts thoroughly checked out the spacecraft’s systems, and capcom Collins informed the crew, “You are go for TLI,” or Trans-Lunar Injection, a less than dramatic way of saying “You’re off to the Moon!” Those words committed the mission to break the bonds of Earth’s gravity and set a course for the Moon. Near the end of the second revolution around the Earth, the rocket’s third stage engine fired for a second time, for more than five minutes, increasing Apollo 8’s speed from 17,400 miles per hour to 24,226 miles per hour, enough to overcome Earth’s gravity and send it on a Moonward trajectory. Soon after the burn ended, the astronauts separated their spacecraft from the spent stage and began their three-day cruise to the Moon. The famous Earthrise photograph from Apollo 8. During the journey, Borman, Lovell, and Anders passed through the Earth’s Van Allen radiation belts and crossed into the Moon’s gravitational sphere of influence. About 69 hours after launch, Apollo 8 passed the leading edge of the Moon and disappeared behind it, all communications with Earth cut off. While behind the Moon, the astronauts performed the Lunar Orbit Insertion maneuver, but for a few anxious minutes, only they knew that their spacecraft’s engine had performed as expected. As they emerged on the Moon’s other side precisely at the predicted time, MCC confirmed that Apollo 8 had achieved lunar orbit. The astronauts began to describe the Moon as no other humans had seen it before. Left: The Tsiolkovski Crater on the Moon’s farside, seen directly by human eyes for the first time during Apollo 8. Middle: Apollo 8 shortly after splashdown, with the astronauts in the life raft awaiting pick up by the recovery helicopter. Right: Apollo 8 astronauts arrive on the prime recovery ship U.S.S. Yorktown. For the next 20 hours, they orbited the Moon 10 times. On their ninth revolution, knowing that Christmas Eve had turned to Christmas Day, Borman, Lovell, and Anders read from The Bible’s Book of Genesis and wished everyone on “the good Earth” a Merry Christmas. On their final revolution, they disappeared behind the Moon one last time and fired their spacecraft’s engine to propel them out of lunar orbit to head back toward Earth. Once they reestablished contact at the predicted time, Lovell proclaimed, “Please be informed there is a Santa Claus,” his way of saying that the engine burned as expected. The astronauts spent the next three days coasting back toward Earth, ending their historic six-day mission with a predawn splashdown in the Pacific Ocean. Teams from the prime recovery ship U.S.S. Yorktown (CV-10) recovered them from the water and brought them aboard the carrier. Left: Apollo 8 astronauts (wearing leis) William A. Anders, left, James A. Lovell, and Frank Borman listen to Hawaii Governor John A. Burns during their brief stopover at Hickam Air Force Base (AFB) in Honolulu. Middle: Anders, left, Borman, and Lovell give short speeches to the crowd gathered to welcome them home at Ellington AFB in Houston. Right: The Apollo 8 Command Module on display at the Museum of Science and Industry in Chicago. Image credit: courtesy Museum of Science and Industry. From the Yorktown, Borman, Lovell, and Anders flew to Hickam Air Force Base (AFB) in Honolulu. Following a brief welcome ceremony hosted by Hawaii Governor John A. Burns, their boarded a transport jet bound for Texas. Upon their arrival back in Houston on Dec. 29, more than 2,000 people greeted them at Ellington AFB despite the pre-dawn chill. Meanwhile, after the Yorktown arrived in Honolulu on Dec. 29, workers removed the CM to begin safing its systems. They flew it to Long Beach, California, and from there trucked it to its manufacturer, the North American Rockwell Space Division in Downey, California, where it arrived on Jan. 1, 1969, for a thorough postflight inspection. Since 1971, the Apollo 8 CM has been on display at the Museum of Science and Industry in Chicago. TIME magazine named Borman, Lovell, and Anders Men of the Year for 1968. Apollo 8 brought the Moon landing one giant step closer. Apollo 9 astronauts James A. McDivitt, left, David R. Scott, and Russell L. Schweickart pose in front of the Apollo 8 Saturn V during its terminal countdown demonstration test at Launch Pad 39A at NASA’s Kennedy Space Center in Florida. Due to delays in its development, the LM remained one component of the lunar mission architecture that Apollo 8 did not test. The task of conducting the first crewed evaluation of the LM fell to Apollo 9, scheduled for late February 1969. As the prime crew for the 10-day Earth orbital mission, NASA assigned James A. McDivitt, David R. Scott, and Russell L. Schweickart, with Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean as their backups. McDivitt and Schweickart planned to enter the LM while Scott remained in the CM. Before the two spacecraft undocked, Schweickart planned to conduct a roughly 2-hour spacewalk, using prepositioned handholds to translate from the LM to the CM, where Scott awaited him in the open hatch. The dual spacewalk served to demonstrate a backup transfer capability should a problem arise with the internal transfer tunnel. The spacewalk would also serve as the only in-space test of the new Apollo A7L spacesuit before the Moon landing. Following the spacewalk, McDivitt and Schweickart planned to undock the LM and conduct an independent flight up to a distance of 100 miles, and test both the descent and ascent stage engines, before rejoining Scott in the CM. Apollo 9 prime and backup astronauts test the new Apollo A7L spacesuit in the Space Environment Simulation Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. David R. Scott, left, Russell L. Schweickart, and Alan L. Bean. International Latex Corporation (ILC) of Dover, Delaware, developed two versions of the Apollo A7L space suit for NASA – one for use exclusively inside the spacecraft, such as during launch, and the other that astronauts can also use during spacewalks, using the Portable Life Support System (PLSS) backpack. Both types of the suit could operate under vacuum conditions, but crew members wearing the inside version remained attached to the spacecraft via hoses that provided life support such as oxygen. The external version’s PLSS provided the required oxygen and communications during spacewalks outside the vehicle, for example on the lunar surface. For Apollo 9, McDivitt and Schweickart wore the external versions (even though McDivitt did not plan to do a spacewalk) while Scott wore the internal version. McDivitt, Scott, Schweickart, and Bean tested their A7L spacesuits with the PLSS under vacuum conditions in Chamber A of the Space Environment Simulation Laboratory at MSC. In the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Left: The assembled Apollo 9 spacecraft arrives from the Manned Spacecraft Operations Building, and shares space in the transfer aisle with the recently arrived Apollo 10 first stage. Middle: Workers hoist the Apollo 9 spacecraft in preparation for stacking onto the Saturn V rocket, with the Lunar Module’s landing gear visible. Right: Workers stack the Apollo 9 spacecraft onto its Saturn V rocket. On Nov. 30, workers in KSC’s Manned Spacecraft Operations Building (MSOB) installed the Apollo 9 LM in its Spacecraft LM Adapter (SLA) and then stacked the CSM on top. They transferred the assembled spacecraft to the Vehicle Assembly Building (VAB) three days later where engineers stacked it atop its Saturn V rocket in High Bay 3. Rollout to Launch Pad 39A occurred in early January 1969. Left: Workers ready the Apollo 10 S-IC first stage for stacking onto the Mobile Launcher in the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers stack the Apollo 10 S-II second stage. Right: The S-IVB third stage for Apollo 10 arrives at KSC. Preparations continued for Apollo 10, the mission planned for May 1969 to test all the spacecraft components in lunar orbit as a possible dress rehearsal for the Moon landing. The Apollo 10 prime crew consisted of Thomas P. Stafford, John W. Young, and Eugene A. Cernan, the first all-veteran three-person crew, with L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell assigned as their backups. Stafford and Cernan planned to undock their LM and fly it to within nine miles of the lunar surface before rejoining Young in the CM. At KSC, in the VAB’s High Bay 2, by Dec. 7 workers had stacked the first two stages of the Apollo 10 Saturn V. The third stage arrived at KSC on Dec. 10 and workers stacked it atop the rocket on Dec. 29. Apollo 9 spacecraft testing in the Manned Spacecraft Operations Building at NASA’s Kennedy Space Center in Florida. Left and middle: Simulated docking test between the Apollo 10 Lunar Module (LM), top, and Command Module. Right: Joining the LM’s ascent stage to the descent stage. In the nearby MSOB, engineers performed a docking test of the Apollo 10 CSM and LM on Dec. 11. Following the test, workers mated the LM’s ascent and descent stages in a vacuum chamber in preparation for altitude tests in January 1969. In parallel, engineers conducted altitude tests with the CM, with prime and backup crews participating. Left: Chief test pilot Joseph S. “Joe” Algranti ejects from the Lunar Landing Training Vehicle-1 (LLTV-1) with seconds to spare. Middle: The LLTV-1 explodes as it crashes to the ground. Right: Algranti floats safely to the ground under his parachute. Apollo commanders used the Lunar Landing Training Vehicle (LLTV) to simulate flying the LM, especially the final 200 feet of the descent. Following Armstrong’s May 6, 1968, crash in an earlier version of the training aircraft, NASA grounded the fleet until engineers could take corrective action. Flights with LLTV-1 resumed at Ellington on Oct. 3, 1968, with MSC chief test pilot Joseph S. “Joe” Algranti at the controls. During the next two months, Algranti and fellow MSC pilot H.E. “Bud” Ream completed 14 test flights with LLTV-1 to check out the vehicle. Ream also piloted LLTV-2’s first two flights beginning Dec. 5. During LLTV-1’s 15th flight on Dec. 8, the final certification flight before resuming astronaut training, Algranti took the vehicle to 680 feet altitude and began a lunar landing simulation run. The vehicle began to oscillate in all three axes, which Algranti tried to control. But unexpected wind gusts exceeded the craft’s aerodynamic control limits and it began a sudden descent. At 100 feet altitude, and with less than a second to spare, Algranti ejected and safely parachuted to the ground with only minor bruises, but LLTV-1 crashed and burned beyond repair. Left: At Houston’s Ellington Air Force Base, workers prepare the LLTV-3 for packing into the Super Guppy cargo plane. Right: Workers at Ellington load the LLTV-3 into the Super Guppy for shipping to NASA’s Langley Research Center in Hampton, Virginia, for wind tunnel tests. Once again, NASA grounded the LLTVs and MSC Director Robert R. Gilruth set up an investigation board, chaired by NASA astronaut Walter M. Schirra. To better understand the vehicle’s aerodynamic characteristics, in late December NASA shipped LLTV-3 to the Langley Research Center in Hampton, Virginia, where engineers tested it in the wind tunnel. Findings from the board and from the Langley tests indicated that a gust of wind that overwhelmed the vehicle’s control limits caused the LLTV-1 crash, unrelated to Armstrong’s accident. Recommendations included increasing the level of thrust in the craft’s thrusters by 50 percent to provide an additional margin of safety. News from around the world in December 1968: Dec. 6 – The Rolling Stones release their album “Beggars Banquet.” Dec. 7 – The United States launches the Orbiting Astronomical Observatory-2 space telescope. Dec. 11 – President-elect Richard M. Nixon introduces his 12 Cabinet nominees. Dec. 11 – The film “Oliver!” opens in the U.S. Dec. 16 – Musical-fantasy film “Chitty Chitty Bang Bang” premieres in London and two days later in New York City. Dec. 16 – Led Zeppelin’s concert debut in Denver, as opener for Vanilla Fudge. Dec. 30 – Frank Sinatra first records “My Way.” Share Details Last Updated Dec 19, 2023 Related TermsNASA HistoryApollo Explore More 8 min read 50 Years Ago: Skylab 4 Astronauts Push Past the One-Month Mark Article 2 days ago 7 min read 120 Years Ago: The First Powered Flight at Kitty Hawk Article 6 days ago 3 min read Contributions of the DC-8 to Earth System Science at NASA: A Workshop Article 1 week ago View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) New Shepard, Blue Origin’s reusable suborbital rocket, rising from the company’s Launch Site One in West Texas, on a previous flight in 2021. The vehicle returned to flight on Dec. 19, 2023, carrying payloads supported by NASA’s Flight Opportunities, enabling researchers to test disruptive solutions for space applications.Blue Origin Living and working in space requires getting ready a bit closer to Earth. Through a suborbital flight test on Dec. 19, 2023 with industry provider Blue Origin, NASA’s Flight Opportunities program is helping 14 research payloads move one step toward future space missions and commercial applications. The flown technologies aim to address some of the opportunities and obstacles presented by humanity’s sustained presence in space. Launched aboard Blue Origin’s New Shepard reusable suborbital rocket from the company’s Launch Site One in West Texas, the payloads reached an altitude of 351,248 feet. During the flight, those payloads experienced about three minutes of microgravity, providing insight into the effect of reduced gravity on both technologies and living things. “NASA relies on emerging commercial spaceflight capabilities to rapidly test disruptive solutions for space applications,” said Danielle McCulloch, program manager for Flight Opportunities at NASA’s Armstrong Flight Research Center in Edwards, California. “Working with commercial flight providers like Blue Origin allows the agency to make space exploration and commerce more accessible to a broader range of researchers.” A strong commercial space industry also helps NASA move forward with scientific exploration of the moon, Mars, and beyond. In addition to the NASA supported research teams, this flight was also a significant milestone for Blue Origin, serving as the return to flight with their New Shepard rocket. NASA-Supported Technologies Aboard New Shepard Sometimes, everyday products can be the key to advancing space objectives. For example, paraffin and beeswax aren’t just for cosmetics and candles. Researchers are using this flight to evaluate these common materials to determine if they might be keys to safer and cheaper fuel for spacecraft. Researchers from the Massachusetts Institute of Technology are evaluating in-space manufacturing techniques to turn these wax-based products into alternative options for propelling small spacecraft. Also aboard the flight was a project from small business Ecoatoms Inc. in Reno, Nevada, designed to advance the production of biosensors in low Earth orbit. Earth’s gravity often causes the sensors to have rough and uneven layers that adversely affect performance. Fabrication in microgravity could allow for smoother and more uniform development, resulting in improved sensing. The startup expects the flight test with Blue Origin will be a step toward space-based manufacturing of health care tools for patients on Earth and astronauts on long-duration missions, improving crew safety while also leveraging the expanding space economy to benefit life on Earth. “We are excited to test at-scale manufacturing of biosensors in space. Coating hundreds of sensors in microgravity will provide us with extremely valuable information to advance our technology,” said Solange Massa, Ecoatoms founder and CEO. “Preparing for suborbital flight with Flight Opportunities gave us experience we will apply to future flights for our clients.” In another example of how a common substance can help pave the way to our understanding of space, researchers at Montana State University and the University of Colorado Boulder will use a yeast variant (Candida albicans) as a stepping stone to further understand how microgravity affects humans. Observations of how several minutes of microgravity affect this simple biological organism, made possible by the team’s unique sampling system, may provide a window into the cellular and physiological adaptations of the human body, which will be critical knowledge for planning extended human space missions. Other technologies benefiting from this flight testing include: An electrophysiological measurement system and lens-free imaging system from imec USA in Kissimmee, Florida as well as two student payloads managed by imec examining gravity’s effect on ultrasonic sound waves and on a variety of sensors An experiment from the University of Central Florida in Orlando to apply electric fields to a dust simulant A tool for evaluating the geophysical properties of soil on near-Earth asteroids developed by Honeybee Robotics Ltd., in Altadena, California A system from NASA’s Jet Propulsion Laboratory in Southern California to assess multiphase reservoirs for sample mixing and bubble migration A system for propellant gauging during on-orbit refueling and transfer operations from Carthage College in Kenosha, Wisconsin A technology from Purdue University in West Lafayette, Indiana for modeling propellant slosh in microgravity The DMEN multi-environment navigator from Draper in Cambridge, Massachusetts An experiment from the University of Alabama in Huntsville to collect thermal data of fluids in microgravity A sensor to measure the volume of water used to keep an astronaut cool in an exploration spacesuit, developed by Creare in Hanover, New Hampshire and funded by NASA’s STTR (Small Business Technology Transfer) program A regenerative technology to provide energy storage for spaceflight applications, developed by Infinity Fuel Cell in Windsor, Connecticut and funded by a NASA Tipping Point award through NASA’s Game Changing Development program Flight Opportunities is managed at NASA Armstrong and funded by NASA’s Space Technology Mission Directorate. This program provides funding for flight tests and technology payload development as well as subject matter expertise to help researchers maximize the impact of their commercial flight tests. The program enables innovators to gather the data they need to advance their work ahead of larger, more expensive missions and applications. Share Details Last Updated Dec 19, 2023 EditorCody S. LydonContactSarah Mannsarah.mann@nasa.govLocationArmstrong Flight Research Center Related TermsFlight Opportunities ProgramArmstrong Flight Research CenterGame Changing Development ProgramSpace Technology Mission Directorate Explore More 5 min read NASA’s Tech Demo Streams First Video From Deep Space via Laser Article 1 day ago 4 min read Armstrong Flight Research Center: A Year in Review Article 5 days ago 1 min read NASA MSI Incubator: Wildfire Climate Tech Challenge Article 1 week ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Space Technology Mission Directorate STMD Flight Opportunities Game Changing Development View the full article
-
Artemis II crew members: NASA astronauts Christina Koch, left, Victor Glover, Reid Wiseman, and Canadian Space Agency (CSA) astronaut Jeremy Hansen, right, pose for a group photograph with U.S. President Joe Biden, center, in the White House Oval Office in Washington, Thursday, Dec. 14, 2023.Official White House Photo by Adam Schultz The first astronauts to fly around the Moon under NASA’s Artemis program visited the White House in Washington Thursday, and met with President Joe Biden in the Oval Office to thank him for his leadership and discuss their upcoming flight test. Artemis II crew members are NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen. The mission is currently targeted for late 2024. After launching on NASA’s SLS (Space Launch System) rocket from the agency’s Kennedy Space Center in Florida, the crew will travel aboard the Orion spacecraft on a 10-day mission around the Moon, testing its systems for the first time with astronauts for long-term exploration and scientific discovery through Artemis. Driving both human and robotic exploration at the Moon and Mars, science is a key foundation of NASA’s work. The astronauts also discussed training and plans for their mission with the President, as well as lunar science, including a Moon rock on display in the Oval Office. That rock was collected in 1972 by Apollo astronauts Harrison Schmitt and Eugene Cernan, the last humans to step foot on the lunar surface. Samples collected on future Artemis missions will continue to help humanity shed light on how the Moon formed and evolved, how it interacts with the Sun, and how water and other resources arrived at the Moon and are preserved. While at the White House, the astronauts also met separately with Vice President Kamala Harris, who serves as the chair of the National Space Council. They discussed how Artemis represents the power of technological innovation and international collaboration. Through Artemis, the U.S. is leading, innovating, discovering, and inspiring humanity for the benefit of all. For more information about NASA’s mission, visit: https://www.nasa.gov -end- View the full article
-
Credit: NASA/James Blair The four Artemis II astronauts practiced procedures to exit the Orion spacecraft in an emergency during training at NASA’s Johnson Space Center in Houston on Dec. 15. NASA astronaut Christina Koch (foreground) and CSA (Canadian Space Agency) astronaut Jeremy Hansen were assisted by Bill Owens, Artemis II spacesuit technician. The training included exiting both the side and top hatches of the spacecraft to ensure the crew will be ready for potential emergency scenarios upon splashdown in the Pacific Ocean that would require them to leave the capsule before the recovery team arrives. The Artemis II mission will send the crew on an approximately 10-day flight test around the Moon. Under Artemis, NASA will return humans to the Moon for long-term exploration and scientific discovery. View the full article
-
1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Notice of Availability. The Draft Site-Wide Environmental Assessment (EA) for Marshall Space Flight Center is complete and NASA determined the project will not result in significant environmental impacts. Therefore, a Draft Finding of No Significant Impact (FONSI) has been prepared. Both documents are available for public review and comment for the next thirty (30) days. Downloads Draft Site-Wide Environmental Assessment for Marshall Space Flight Center Dec 13, 2023 PDF (31.04 MB) Share Details Last Updated Dec 19, 2023 EditorMSFC Environmental Engineering and Occupational Health OfficeContactHannah McCartyLocationMarshall Space Flight Center Related TermsMarshall Space Flight Center Explore More 5 min read NASA Geologist Paves the Way for Building on the Moon Article 4 days ago 16 min read The Marshall Star for December 13, 2023 Article 6 days ago 3 min read NASA Stennis Continues Preparations for Future Artemis Testing Article 6 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System Read More Share Details Last Updated Dec 19, 2023 EditorMSFC Environmental Engineering and Occupational Health OfficeContactHannah McCartyLocationMarshall Space Flight Center Related TermsMarshall Space Flight Center View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A NASA-developed wind tunnel research tool known as the Common Research Model is seen mounted in the 12-Foot Low-Speed Tunnel at the agency’s Langley Research Center in Virginia. NASA / Lee Pollard NASA will co-host the two-day Stability and Control Prediction Workshop II (S&CPW2) during the American Institute of Aeronautics and Astronautics’ (AIAA) annual SciTech Forum in January 2025. A kickoff meeting for the 2025 gathering is scheduled for Jan. 8, 2024, during the AIAA SciTech 2024 Forum in Orlando, Fla. The Stability and Control Prediction Workshop series seeks to establish best practices for the prediction of stability and control derivatives with computational fluid dynamics (CFD). The workshops provide an impartial forum for evaluating the effectiveness of existing CFD codes and modeling techniques, as well as identifying areas in need of additional research and development. The focus of S&CPW2 is prediction of static and dynamic stability derivatives for the NASA/Boeing Common Research Model (CRM). NASA’s Langley Research Center in Virginia collected static and force oscillation data for a 2.4-percent scale version of the CRM in the Langley 12-Foot Low-Speed Tunnel during the Fall of 2023. The wind tunnel data will be used to provide a blind comparison to CFD predictions. The data will not be publicly released until CFD predictions for the workshop have been completed. S&CPW2 will be open to participants worldwide, and representation from industry, academia, and government will be present. The workshop will consist of individual presentations, open discussions, and a subsequent paper by the planning committee to document workshop results. Participation in the prediction studies and AIAA membership are not required to attend the workshop. The Organizing Committee consists of the following members: Andrew Lofthouse – Air Force Lifecycle Management Center Dan Vicroy – Adaptive Aerospace Group, Inc. Benjamin Simmons – NASA Langley Research Center Norman Princen – The Boeing Company Matthew Prior – The Boeing Company Adam Clark – The Boeing Company Brett Johnson – The Boeing Company Steve Klausmeyer – Textron Aviation Kelly Laflin – Textron Aviation William Vogel – Air Force Lifecycle Management Center Charlie Harrison – Gulfstream Aerospace Corporation The workshop’s planning is affiliated with NASA’s Transformational Tools and Technologies project. For more information and to receive links to CFD geometry files in advance of the workshop, please contact Benjamin Simmons at benjamin.m.simmons@nasa.gov. About the AuthorJohn GouldAeronautics Research Misson Directorate Read More Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 2 min read NASA Selects Awardees for New Aviation Maintenance Challenge Article 1 month ago 2 min read NASA Celebrates Hispanic Heritage Month 2023: Azlin Biaggi-Labiosa Article 2 months ago 2 min read NASA Research Challenge Selects Two New Student-Led Teams Article 3 months ago Keep Exploring Discover More Topics From NASA Missions Humans In Space Solar System Exploration Solar System Overview The solar system has one star, eight planets, five officially recognized dwarf planets, at least 290 moons,… Explore NASA’s History Share Details Last Updated Dec 19, 2023 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related TermsTransformational Tools TechnologiesTransformative Aeronautics Concepts Program View the full article
-
X-ray: NASA/CXC/SAO; Optical: T.A. Rector (NRAO/AUI/NSF and NOIRLab/NSF/AURA) and B.A. Wolpa (NOIRLab/NSF/AURA); Infrared: NASA/NSF/IPAC/CalTech/Univ. of Massachusetts; Image Processing: NASA/CXC/SAO/L. Frattare & J.Major This new image of NGC 2264, also known as the “Christmas Tree Cluster,” shows the shape of a cosmic tree with the glow of stellar lights. NGC 2264 is, in fact, a cluster of young stars — with ages between about one and five million years old — in our Milky Way about 2,500 light-years away from Earth. The stars in NGC 2264 are both smaller and larger than the Sun, ranging from some with less than a tenth the mass of the Sun to others containing about seven solar masses. This new composite image enhances the resemblance to a Christmas tree through choices of color and rotation. The blue and white lights (which blink in the animated version of this image) are young stars that give off X-rays detected by NASA’s Chandra X-ray Observatory. Optical data from the National Science Foundation’s WIYN 0.9-meter telescope on Kitt Peak shows gas in the nebula in green, corresponding to the “pine needles” of the tree, and infrared data from the Two Micron All Sky Survey shows foreground and background stars in white. This image has been rotated clockwise by about 160 degrees from the astronomer’s standard of North pointing upward, so that it appears like the top of the tree is toward the top of the image. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This composite image shows the Christmas Tree Cluster. The blue and white lights (which blink in the animated version of this image) are young stars that give off X-rays detected by NASA’s Chandra X-ray Observatory. Optical data from the National Science Foundation’s WIYN 0.9-meter telescope on Kitt Peak shows gas in the nebula in green, corresponding to the “pine needles” of the tree, and infrared data from the Two Micron All Sky Survey shows foreground and background stars in white. This image has been rotated clockwise by about 160 degrees from the astronomer’s standard of North pointing upward, so that it appears like the top of the tree is toward the top of the image. Young stars, like those in NGC 2264, are volatile and undergo strong flares in X-rays and other types of variations seen in different types of light. The coordinated, blinking variations shown in this animation, however, are artificial, to emphasize the locations of the stars seen in X-rays and highlight the similarity of this object to a Christmas tree. In reality the variations of the stars are not synchronized. The variations observed by Chandra and other telescopes are caused by several different processes. Some of these are related to activity involving magnetic fields, including flares like those undergone by the Sun — but much more powerful — and hot spots and dark regions on the surfaces of the stars that go in and out of view as the stars rotate. There can also be changes in the thickness of gas obscuring the stars, and changes in the amount of material still falling onto the stars from disks of surrounding gas. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. For more Chandra images, multimedia and related materials, visit: https://www.nasa.gov/mission/chandra-x-ray-observatory/ Visual Description: This release features a composite image of a cluster of young stars looking decidedly like a cosmic Christmas tree! The cluster, known as NGC 2264, is in our Milky Way Galaxy, about 2,500 light-years from Earth. Some of the stars in the cluster are relatively small, and some are relatively large, ranging from one tenth to seven times the mass of our Sun. In this composite image, the cluster’s resemblance to a Christmas tree has been enhanced through image rotation and color choices. Optical data is represented by wispy green lines and shapes, which creates the boughs and needles of the tree shape. X-rays detected by Chandra are presented as blue and white lights, and resemble glowing dots of light on the tree. Infrared data show foreground and background stars as gleaming specks of white against the blackness of space. The image has been rotated by about 150 degrees from the astronomer’s standard of North pointing upwards. This puts the peak of the roughly conical tree shape near the top of the image, though it doesn’t address the slight bare patch in the tree’s branches, at our lower right, which should probably be turned to the corner. In this release, the festive cluster is presented as both a static image, and as a short animation. In the animation, blue and white X-ray dots from Chandra flicker and twinkle on the tree, like the lights on a Christmas tree. News Media Contact Megan Watzke Chandra X-ray Center Cambridge, Mass. 617-496-7998 Jonathan Deal Marshall Space Flight Center Huntsville, Ala. 256-544-0034 View the full article
-
Teams with Astrobotic install the NASA meatball decal on Astrobotic’s Peregrine lunar lander on Tuesday, Nov. 14, 2023, at the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida.NASA/Isaac Watson NASA is inviting the public to take part in virtual activities ahead of Astrobotic’s Peregrine Mission One, launching on a United Launch Alliance (ULA) Vulcan rocket as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative. The mission is slated to be one of the first United States commercial robotic landers launching to the Moon’s surface as part of the agency’s Artemis program. Carrying NASA and commercial payloads, the Peregrine lander is scheduled to lift off no earlier than Monday, Jan. 8, from Space Launch Complex 41 at the Cape Canaveral Space Force Station in Florida. Members of the public can register to attend the launch virtually. As a virtual guest, you have access to curated resources, schedule changes, and mission-specific information delivered straight to your inbox. Following each activity, virtual guests will receive a commemorative stamp for their virtual guest passport. The live launch broadcast will air on Monday, Jan. 8, and will air on NASA+, NASA Television, the NASA app, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media. For more information about CLPS activities, follow the CLPS blog. View the full article