Jump to content

NASA

Publishers
  • Posts

    5,864
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. An artist’s concept of the completed design of NASA’s VIPER, or Volatiles Investigating Polar Exploration Rover. VIPER will get a close-up view of the location and concentration of ice and other resources at the Moon’s South Pole, bringing us a significant step closer to NASA’s ultimate goal of a long-term presence on the Moon – making it possible to eventually explore Mars and beyond. NASA/Daniel Rutter NASA is inviting people to send their names to the surface of the Moon aboard the agency’s first robotic lunar rover, VIPER – short for Volatiles Investigating Polar Exploration Rover. The rover will embark on a mission to the lunar South Pole to unravel the mysteries of the Moon’s water and better understand the environment where NASA plans to land the first woman and first person of color under its Artemis program. As part of the “Send Your Name with VIPER” campaign, NASA will accept names received before 11:59 p.m. EST, March 15. Once collected, the agency will take the names and attach them to the rover. To add your name, visit: https://www.nasa.gov/send-your-name-with-viper The site also enables participants to create and download a virtual souvenir – a boarding pass to the VIPER mission featuring their name – to commemorate the experience. Participants are encouraged to share their requests on social media using the hashtag #SendYourName. “With VIPER, we are going to study and explore parts of the Moon’s surface no one has ever been to before – and with this campaign, we are inviting the world to be part of that risky yet rewarding journey,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Just think: Our names will ride along as VIPER navigates across the rugged terrain of the lunar South Pole and gathers valuable data that will help us better understand the history of the Moon and the environment where we plan to send Artemis astronauts.” This campaign is like other NASA projects that have enabled tens of millions of people to send their names to ride along with Artemis I, several Mars spacecraft, and the agency’s upcoming Europa Clipper mission. It draws from the agency’s long tradition of shipping inspirational messages on spacecraft that have explored our solar system and beyond. “Our VIPER is a game-changer,” said Daniel Andrews, VIPER’s project manager at NASA’s Ames Research Center in California’s Silicon Valley. “It’s the first mission of its kind, expanding our understanding of where lunar resources could be harvested to support a long-term human presence on the Moon.” In late 2024, Astrobotic Technologies’ Griffin Mission One is scheduled to deliver VIPER to the lunar surface after launching aboard a SpaceX Falcon Heavy from Cape Canaveral Space Force Station in Florida. Once there, VIPER will rely on its solar panels and batteries for its roughly 100-day mission to survive extreme temperatures and challenging lighting conditions, while powering a suite of science instruments designed to gather data about the characteristics and concentrations of lunar ice and other possible resources. NASA’s VIPER delivery is part of its CLPS (Commercial Lunar Payload Services) initiative under the Artemis program. With CLPS, as well as with human exploration near the lunar South Pole, NASA will establish a long-term cadence of Moon missions in preparation for sending the first astronauts to Mars. The rover is part of the LDEP (Lunar Discovery and Exploration Program), managed by the Science Mission Directorate at the agency’s headquarters and is executed through the Exploration Science Strategy and Integration Office. In addition to managing the mission, NASA Ames leads the mission’s science, systems engineering, real-time rover surface operations, and flight software. The rover hardware is designed and built by NASA’s Johnson Space Center in Houston, while the instruments are provided by NASA Ames, the agency’s Kennedy Space Center in Florida, and commercial partner Honeybee Robotics in Altadena, California. For more information about VIPER, visit: https://www.nasa.gov/viper -end- Karen Fox / Alise Fisher Headquarters, Washington 202-358-1275 / 202-358-2546 karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov Rachel Hoover Ames Research Center, Silicon Valley 650-604-4789 rachel.hoover@nasa.gov Share Details Last Updated Jan 04, 2024 Related TermsVIPER (Volatiles Investigating Polar Exploration Rover)Missions View the full article
  2. 4 min read NASA’s Hubble Observes Exoplanet Atmosphere Changing Over 3 Years By combining several years of observations from NASA’s Hubble Space Telescope along with conducting computer modelling, astronomers have found evidence for massive cyclones and other dynamic weather activity swirling on a hot, Jupiter-sized planet 880 light-years away. The planet, called WASP-121 b, is not habitable. But this result is an important early step in studying weather patterns on distant worlds, and perhaps eventually finding potentially habitable exoplanets with stable, long-term climates. This is an artist’s concept of the exoplanet WASP-121 b, also known as Tylos. The exoplanet’s appearance is based on Hubble simulation data of the object. Using Hubble observations, another team of scientists had previously reported the detection of heavy metals such as magnesium and iron escaping from the upper atmosphere of the ultra-hot Jupiter exoplanet; marking it as the first of such detection. The exoplanet is orbiting dangerously close to its host star, roughly 2.6% of the distance of Earth to the Sun, placing it on the verge of being ripped apart by the star’s tidal forces. The powerful gravitational forces have altered the planet’s shape. An international team of astronomers assembled and reprocessed Hubble observations of the exoplanet in the years 2016, 2018 and 2019. This provided them with a unique data-set that allowed them to not only analyze the atmosphere of WASP-121 b, but also to compare the state of the exoplanet’s atmosphere across several years. They found clear evidence that the observations of WASP-121 b were varying in time. The team then used sophisticated modelling techniques to demonstrate that these temporal variations could be explained by weather patterns in the exoplanet’s atmosphere. NASA, ESA, Quentin Changeat (ESA/STScI), Mahdi Zamani (ESA/Hubble) For the past few decades, detailed telescopic and spacecraft observations of neighboring planets in our solar system show that their turbulent atmospheres are not static but constantly changing, just like weather on Earth. This variability should also apply to planets around other stars, too. But it takes lots of detailed observing and computational modelling to actually measure such changes. To make the discovery, an international team of astronomers assembled and reprocessed Hubble observations of WASP-121 b taken in 2016, 2018, and 2019. They found that the planet has a dynamic atmosphere, changing over time. The team used sophisticated modelling techniques to demonstrate that these dramatic temporal variations could be explained by weather patterns in the exoplanet’s atmosphere. The team found that WASP-121 b’s atmosphere shows notable differences between observations. Most dramatically, there could be massive weather fronts, storms, and massive cyclones that are repeatedly created and destroyed due to the large temperature difference between the star-facing side and dark side of the exoplanet. They also detected an apparent offset between the exoplanet’s hottest region and the point on the planet closest to the star, as well as variability in the chemical composition of the exoplanet’s atmosphere (as measured via spectroscopy). The team reached these conclusions by using computational models to help explain observed changes in the exoplanet’s atmosphere. “The remarkable details of our exoplanet atmosphere simulations allows us to accurately model the weather on ultra-hot planets like WASP-121 b,” explained Jack Skinner, a postdoctoral fellow at the California Institute of Technology in Pasadena, California, and co-leader of this study. “Here we make a significant step forward by combining observational constraints with atmosphere simulations to understand the time-varying weather on these planets.” To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This visualization shows the temperature forecast spanning 130 exoplanet-days, across sunrise, noon, sunset, and midnight for the exoplanet WASP-121 b, also known as Tylos. The brighter yellow regions depict areas in the day side of the exoplanet where temperatures soar well above 2,100 degrees Kelvin (3,320 degrees Fahrenheit); due to the close proximity to its host star, roughly 2.6% of the distance of Earth to the Sun. Due to the extreme temperature difference between the day and night sides, astronomers suspect evaporated iron and other heavy metals escaping into the higher layers of atmosphere on the day side partially fall back onto lower layers, making it rain iron at night. Some of the heavy metals also escape the planet’s gravity from the upper atmosphere. It only takes WASP-121 b roughly 31 hours to complete an orbit around its star. An international team of astronomers assembled and reprocessed Hubble observations of the exoplanet in the years 2016, 2018, and 2019. This provided them with a unique data-set that allowed them to not only analyze the atmosphere of WASP-121 b, but also to compare the state of the exoplanet’s atmosphere across several years. They found clear evidence that the observations of WASP-121 b were varying in time. The team then used sophisticated modelling techniques to demonstrate that these temporal variations could be explained by weather patterns in the exoplanet’s atmosphere, as seen here. The international team of astronomers in this study consists of: Q. Changeat (European Space Agency (ESA), Space Telescope Science Institute (STScI), University College London); J.W. Skinner (California Institute of Technology, Brandeis University); J. Y-K. Cho, (Brandeis University, Center for Computational Astrophysics/Flatiron Institute); J. Nättilä (Center for Computational Astrophysics/ Flatiron Institute, Columbia University); I.P. Waldmann (University College London); A.F. Al-Refaie (University College London); A. Dyrek (Université Paris Cité, Université Paris-Saclay); B. Edwards (Netherlands Institute for Space Research, University College London); T. Mikal-Evans (Max Planck Institute for Astronomy); M. Joshua (Blue Skies Space Ltd.); G. Morello (Chalmers University of Technology, Instituto de Astrofísica de Canarias); N. Skaf (National Astronomical Observatory of Japan, Université de Paris, University College London); A. Tsiaras (University College London); O. Venot (Université de Paris Cité, Université Paris Est Creteil); and K.H. Yip (University College London). Credit: NASA, ESA, Quentin Changeat (ESA/STScI), Mahdi Zamani (ESA/Hubble) “This is a hugely exciting result as we move forward for observing weather patterns on exoplanets,” said one of the principal investigators of the team, Quentin Changeat, a European Space Agency Research Fellow at the Space Telescope Science Institute in Baltimore, Maryland. “Studying exoplanets’ weather is vital to understanding the complexity of exoplanet atmospheres on other worlds, especially in the search for exoplanets with habitable conditions.” WASP-121 b is so close to its parent star that the orbital period is only 1.27 days. This close proximity means that the planet is tidally locked so that the same hemisphere always faces the star, in the same way that our Moon always has the same side pointed at Earth. Daytime temperatures approach 3,450 degrees Fahrenheit (2,150 degrees Kelvin) on the star-facing side of the planet. The team used four sets of Hubble archival observations of WASP-121 b. The complete data-set included observations of WASP-121 b transiting in front of its star (taken in June 2016); WASP-121 b passing behind its star, also known as a secondary eclipse (taken in November 2016); and the brightness of WASP-121 b as a function of its phase angle to the star (the varying amount of light received at Earth from an exoplanet as it orbits its parent star, similar to our Moon’s phase-cycle). These data were taken in March 2018 and February 2019, respectively. “The assembled data-set represents a significant amount of observing time for a single planet and is currently the only consistent set of such repeated observations,” said Changeat. The information that we extracted from those observations was used to infer the chemistry, temperature, and clouds of the atmosphere of WASP-121 b at different times. This provided us with an exquisite picture of the planet changing over time.” Hubble’s capabilities also are evident in the broad expanse of science programs it will enable through its Cycle 31 observations, which began on December 1. About two-thirds of Hubble’s time will be devoted to imaging studies, while the remainder is allotted to spectroscopy studies, like those used for WASP-121 b. More details about Cycle 31 science are in a recent announcement. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This visualization shows the weather patterns on the exoplanet WASP-121 b, also known as Tylos. This video has been slowed to observe the patterns in the exoplanet’s atmosphere in closer detail. An international team of astronomers assembled and reprocessed Hubble observations of the exoplanet in the years 2016, 2018, and 2019. This provided them with a unique data-set that allowed them to not only analyze the atmosphere of WASP-121 b, but also to compare the state of the exoplanet’s atmosphere across several years. They found clear evidence that the observations of WASP-121 b were varying in time. The team then used sophisticated modelling techniques to demonstrate that these temporal variations could be explained by weather patterns in the exoplanet’s atmosphere, as seen here. The science team’s models found that their results could be explained by quasi-periodic weather patterns: specifically, massive cyclones that are repeatedly created and destroyed due to the huge temperature difference between the star-facing and dark side of the exoplanet. This result represents a significant step forward in potentially observing weather patterns on exoplanets. The international team of astronomers in this study consists of: Q. Changeat (European Space Agency (ESA), Space Telescope Science Institute (STScI), University College London); J.W. Skinner (California Institute of Technology, Brandeis University); J. Y-K. Cho, (Brandeis University, Center for Computational Astrophysics/Flatiron Institute); J. Nättilä (Center for Computational Astrophysics/ Flatiron Institute, Columbia University); I.P. Waldmann (University College London); A.F. Al-Refaie (University College London); A. Dyrek (Université Paris Cité, Université Paris-Saclay); B. Edwards (Netherlands Institute for Space Research, University College London); T. Mikal-Evans (Max Planck Institute for Astronomy); M. Joshua (Blue Skies Space Ltd.); G. Morello (Chalmers University of Technology, Instituto de Astrofísica de Canarias); N. Skaf (National Astronomical Observatory of Japan, Université de Paris, University College London); A. Tsiaras (University College London); O. Venot (Université de Paris Cité, Université Paris Est Creteil); and K.H. Yip (University College London). Credit: NASA, ESA, Quentin Changeat (ESA/STScI), Mahdi Zamani (ESA/Hubble) LEARN MORE: Recognizing Worlds Beyond Our Sun Finding Planetary Construction Zones The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C. Media Contacts: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Ray Villard Space Telescope Science Institute, Baltimore, MD Bethany Downer ESA/Hubble Science Contact: Quentin Changeat ESA/STScI Share Details Last Updated Jan 04, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms Astrophysics Exoplanets Goddard Space Flight Center Hubble Space Telescope Missions Studying Exoplanets The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Exoplanet Stories Exoplanets Solar System Exploration View the full article
  3. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The International Space Station is a hub for scientific research and technology demonstration. Currently, in its third decade of human-tended operations, the orbiting lab is building on previous research to produce pivotal results while conducting cutting-edge science. Read highlights of some of the groundbreaking space station science conducted in 2023 that is benefiting humanity on Earth and preparing humans for journeys to the Moon and beyond. Bringing Back the Benefits to People on Earth The first human knee meniscus successfully 3D bioprinted in orbit using the BioFabrication Facility. Redwire The first human knee meniscus was successfully bioprinted in orbit using the space station’s BioFabrication Facility. BFF-Meniscus-2 evaluates 3D printing knee cartilage tissue using bioinks and cells. Demonstration of this capability in space supports continued and expanded commercial use of the space station for fabricating tissues and organs for transplant on the ground. NASA astronauts Jasmin Moghbeli and Loral O’Hara pose in front of the International Space Station’s Cold Atom Lab. NASA For the first time in space, scientists produced a quantum gas containing two types of atoms using station’s Cold Atom Laboratory. This new capability could allow researchers to study the quantum properties of individual atoms as well as quantum chemistry, which focuses on how different types of atoms interact and combine in a quantum state. This research could enable a wider range of Cold Atom Lab experiments, harnessing the facility to develop new space-based quantum technologies. Quantum tools are used in everything, from cell phones to medical devices, and could deepen our understanding of the fundamental laws of nature. Monitoring Climate Change from Above On Sept. 14, 2023, NASA announced that July 2023 was the hottest recorded month since 1880. The space station is helping monitor climate change by collecting data using multiple Earth-observing instruments mounted on its exterior. The Canadarm2 robotic arm maneuvers NASA’s EMIT after retrieving it from the trunk of the SpaceX Dragon. NASA Since launching in 2022, NASA’s EMIT (Earth Surface Mineral Dust Source Investigation) has detected more than surface minerals. The imaging spectrometer is now identifying point-source emissions of greenhouse gases with a proficiency that surprises even its designers. Detecting methane was not part of EMIT’s primary mission, but with more than 750 emissions sources now identified, the instrument has proven effective at spotting sources both big and small. This is an important factor in identifying “super-emitters” – sources that produce disproportionate shares of total emissions. Tracking human-caused emissions could offer a low-cost, rapid approach to reducing greenhouse gases. Evaporative Stress Index over San Joaquin Valley, CA.NASA Models using NASA’s ECOSTRESS data found that photosynthesis in plants begins to fail at 116 degrees Fahrenheit (F) (46.7 degrees Celsius (C)). ECOSTRESS is helping to explore the implications of climate change within tropical rainforests. According to this study, average temperatures have increased 0.5 C per decade in some tropical regions, and temperature extremes are becoming more pronounced. It is unknown whether tropical vegetation temperatures could soon approach this threshold, but this result raises awareness of the need to mitigate climate change effects on rainforests, a primary producer of the world’s oxygen. Studying for the Journey Beyond Low Earth Orbit NASA now has the ability to recycle 98% of the water collected from the US segment on the space station – meeting the threshold necessary for water recovery on long-duration space exploration missions. Credit: NASA/ ScienceCasts NASA has achieved 98% water recovery aboard the U.S. segment of the space station, a necessary milestone for space missions that venture to distant destinations. NASA uses the station to develop and test life support systems that can regenerate or recycle consumables such as food, air, and water. Ideally, life support systems need to recover close to 98% of the water that crews bring along at the start of a long journey. In 2023, the space station’s Environmental Control and Life Support System demonstrated this ability NASA’s Laser Communications Roadmap – proving the technology’s validity in a variety of environments. NASA / Dave Ryan NASA’s ILLUMA-T, a laser communications demonstration, completed its first link — a critical milestone for the agency’s first two-way laser relay system. Laser communications send and receive information at higher rates, providing spacecraft with the capability to send more data back to Earth in a single transmission. Testing operational laser communications in a variety of scenarios could refine the capability for future missions to the Moon and Mars. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video NASA astronaut Frank Rubio harvests tomatoes for the Veg-05 experiment. Credit: NASA NASA astronaut Frank Rubio completed a record-breaking science mission, spending 371 days in space. During his time in orbit, Rubio was the first astronaut to participate in a study examining how exercising with limited gym equipment affects the human body and is one of a handful of astronauts to help researchers test whether an enhanced diet can improve adaptation to life in space. Rubio’s contributions help researchers understand how spaceflight affects human physiology and psychology and prepare for long-duration missions. UAE (United Arab Emirates) astronaut Sultan Alneyadi harvests leaves from thale cress plants for the Plant Habitat-03 experiment.NASA The completion of one of the first multi-generational plant studies aboard the space station could help researchers assess whether genetic adaptations in one generation of plants grown in space can transfer to the next. Plant Habitat-03 results could provide insight into how to grow repeated generations of crops to provide fresh food and other services on future space missions. A sample of fabric burns inside an uncrewed Cygnus cargo spacecraft for the Saffire-IV experiment. NASA Saffire-VI (Spacecraft Fire Experiment-IV) marked the completion of a series of combustion experiments helping researchers understand the risks and behaviors of fire in space. Because flame-related experiments are difficult to conduct aboard an occupied spacecraft, Saffire (Spacecraft Fire Experiments) use the unmanned Cygnus resupply vehicle after it departs from the space station to test flammability at different oxygen levels and to demonstrate fire detection and monitoring capabilities. Christine Giraldo International Space Station Program Research Office Johnson Space Center Search this database of scientific experiments to learn more about those mentioned above. Keep Exploring Discover More Topics From NASA Latest News from Space Station Research International Space Station Gallery Humans In Space Climate Change NASA is a global leader in studying Earth’s changing climate. View the full article
  4. 23 Min Read The Next Full Moon is the Cold, Frost or Winter Moon A full moon rises about California’s Vasquez Rocks Credits: NASA/Preston Dyches January 2024 The Next Full Moon is the Cold, Frost, or Winter Moon; the Long Night Moon; the Moon after Yule; the Datta Jayanti and Thiruvathira Festival Moon; Unduvap Poya; and the Chang’e Moon. The next full Moon will be Tuesday evening, December 26, 2023, appearing opposite the Sun (in Earth-based longitude) at 7:33 PM EST. This will be on Wednesday in Coordinated Universal Time (UTC) and for most of Eurasia, Africa, and Australia. Many commercial calendars use UTC and will show this full Moon on Wednesday. The Moon will appear full for 3 days, from Monday evening to Thursday morning. The Maine Farmers’ Almanac began publishing “Indian” names for full Moons in the 1930s. Over time these names have become widely known and used. According to this almanac, as the full Moon in December this is the Cold Moon, due to the long, cold nights. Other names are the Frost Moon, for the frosts as winter nears or the Winter Moon. As the full Moon closest to the winter solstice, this is the Long Night Moon. The plane of the Moon’s orbit around the Earth nearly matches the plane of the Earth’s orbit around the Sun. When the path of the Sun appears lowest in the sky for the year, the path of the full Moon opposite the Sun appears near its highest. For the Washington, DC, area, on Tuesday evening into Wednesday morning, December 7 to 8, 2023, the Moon will be in the sky for a total of 15 hours 57 minutes, with 14 hours 33 minutes of this when the Sun is down, making this the longest full Moon night of the year. The Moon will reach a maximum altitude of 79.0 degrees at 24 minutes after midnight. As the full Moon after the winter solstice, some consider this the Moon after Yule. Yule was a 3- to 12-day festival near the winter solstice in pre-Christian Europe. In the tenth century King Haakon I associated Yule with Christmas as part of the Christianization of Norway, and this association spread throughout Europe. However, when Yule was celebrated is unclear. Some sources associate it with the 12 days of Christmas, which puts the Moon after Yule in January. Other sources suggest that Yule is an old name for the month of January, so the Moon after Yule is in February. In the absence of better information, I’m going with the full Moon after the winter solstice as the Moon after Yule. This full Moon corresponds with Datta Jayanti, also known as Dattatreya Jayanti, a Hindu festival commemorating the birth day of the Hindu god Dattatreya (Datta). This full Moon corresponds with the Thiruvathira festival celebrated by Hindus in the Indian states of Kerala and Tamil Nadu. For the Buddhists of Sri Lanka, this is Unduvap Poya. In the third century BCE, Sanghamitta Theri, the daughter of Emperor Asoka of India and founder of an order of Buddhist nuns in Sri Lanka, brought a branch of the Bodhi Tree to Sri Lanka. This sapling was planted in 288 BCE by King Devanampiya Tissa in the Mahamevnāwa Park in Anuradhapura, Sri Lanka, where it still grows today, making it the oldest living human-planted tree with a known planting date. We could also call this the Chang’e Moon, after the three Chinese lunar landers that launched and landed on the Moon this time of year. These missions get their name from the Chinese goddess of the Moon, Chang’e, who lived on the Moon with her pet rabbit, Yutu. The Chang’e 3 lander and its companion Yutu-1 rover launched on December 1 and landed on the Moon on December 14, 2013. The Chang’e 4 lander and Yutu-2 rover launched December 7, 2018, and landed on the Moon on January 3, 2019. The Chang’e 5 lunar sample return mission launched on November 23 (in UTC, November 24 in China’s time zone), collected samples from the Moon, and returned them to Earth on December 16, 2020, humanity’s first lunar sample return since 1976. In many lunar and lunisolar calendars the months change with the new Moon and full Moons fall in the middle of the lunar month. This full Moon is in the middle of the eleventh month of the Chinese calendar, Tevet in the Hebrew calendar, and Jumada al-Thani in the Islamic calendar, also known as Jumada al-Akhirah or Jumada al-Akhir. As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Make sure you are ready for winter and take advantage of these early sunsets to enjoy and share the wonders of the night sky. As for other celestial events between now and the full Moon after next (with times and angles based on the location of NASA Headquarters in Washington, DC): As winter continues, the daily periods of sunlight continue lengthening. On Tuesday, December 26, 2023 (the day of the full Moon), morning twilight will begin at 6:22 AM, sunrise will be at 7:25 AM, solar noon will be at 12:09 PM when the Sun will reach its maximum altitude of 27.8 degrees, sunset will be at 4:52 PM, and evening twilight will end at 5:56 PM. Our 24-hour clock is based on the average length of the solar day. Although the day of the winter solstice is sometimes called the “shortest day of the year” (because it has the shortest period of sunlight), the solar days near the solstice are actually the longest solar days of the year. Because of this, the earliest sunset of the year occurs before the solstice and the latest sunrise of the year (ignoring Daylight Savings Time) occurs after the solstice. For the Washington, DC area and similar latitudes (I’ve not checked other latitudes), Friday, January 5, 2024, will have the latest (non-daylight-savings time) sunrise of the year (with sunrise at 7:26:56 AM EST). By Thursday, January 25 (the day of the full Moon after next), morning twilight will begin at 6:24 AM, sunrise will be at 7:27 AM, solar noon will be at 12:13 PM when the Sun will reach its maximum altitude of 28.5 degrees, sunset will be at 5:00 PM, and evening twilight will end at 6:03 PM. Meteor Showers The Quadrantids (010 QUA) meteor shower is predicted to be active from December 28, 2023 to January 12, 2024, peaking early Thursday morning, January 4. This shower can have visible meteor rates as high as the other two reliably rich meteor showers (the Perseids in August and the Geminids in December), but is harder to see because the peak is narrower (only a few hours) and these meteors are fainter. The best time to look may be the morning of January 4 for the hour or two before the Moon rises (at 2:29 AM EST), as moonlight will interfere at the time of the predicted peak at 4 AM EST. The International Meteor Organization (IMO) reports that video and radio forward scatter data from the last few years suggest the peak may be a few hours ahead of the predicted peak and that the maximum may be wider than the usually quoted 4 hours, making the time before moonrise more promising. The area of the sky that these meteors will appear to radiate out from (called the radiant) will rise above the north-northeastern horizon Wednesday night at around 10 PM EST. The higher the radiant is above the horizon the fewer meteors will be hidden, so it’s generally best to look after midnight but before moonrise. To see these meteors you will need a dark place far from the glow of city lights with a clear view of a large part of the sky, and for the weather to cooperate by providing a clear sky without clouds or haze. This is particularly important because these meteors tend to be faint. Be sure to give your eyes plenty of time to adapt to the dark. The rod cells in your eyes are more sensitive to low light levels but play little role in color vision. Your color-sensing cone cells are concentrated near the center of your view with more rod cells on the edge of your view. Since some meteors are faint, you will tend to see more meteors from the “corner of your eye” (which is why you need to view a large part of the sky). Your color vision (cone cells) will adapt to darkness in about 10 minutes, but your more sensitive night vision rod cells will continue to improve for an hour or more (with most of the improvement in the first 35 to 45 minutes). The more sensitive your eyes are, the more chance you have of seeing meteors. Even a short exposure to light (from passing car headlights, etc.) will start the adaptation over again (so no turning on a light or your cell phone to check what time it is). These meteors are caused by a stream of debris that enters the Earth’s atmosphere at 41 kilometers per second (92,000 miles per hour). The source of this debris might be the asteroid (196256) 2003 EH1, which may be an extinct comet and may be related to a comet discovered by Chinese, Japanese, and Korean astronomers in 1490 (called C/1490 Y1). Evening Sky Highlights Despite the cold weather, these still should be great evenings for Jupiter and Saturn watching, especially with a backyard telescope. Both will appear to shift westward each night. Jupiter was at its closest and brightest on November 2, 2023, and will be high in the sky as evening twilight ends. Saturn was at its closest and brightest for the year on August 27, and will be lower in the sky, gradually shifting towards the west-southwestern horizon. With clear skies and a telescope you should be able to see Jupiter’s four bright moons, Ganymede, Callisto, Europa, and Io, noticeably shifting positions in the course of an evening. For Saturn, you should be able to see Saturn’s rings as well as Saturn’s largest moon, Titan. On the evening of Tuesday, December 26 (the evening of the night of the full Moon), as evening twilight ends (at 5:56 PM EST), the rising Moon will be 15 degrees above the east-northeastern horizon. Two planets will be visible. The brightest will be Jupiter at 51 degrees above the southeastern horizon. Saturn will be 33 degrees above the south-southwestern horizon. The bright object appearing closest to overhead will be the star Deneb at 52 degrees above the west-northwestern horizon, with Jupiter a close second. Deneb is the brightest star in the constellation Cygnus the swan and is one of the three bright stars of the “Summer Triangle” (along with Vega and Altair). Deneb is about 20 times more massive than our Sun and has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of the Earth. Deneb is about 2,600 light years from us and is the 19th brightest star in our night sky. As this lunar cycle progresses, Jupiter, Saturn, and the background of stars will appear to shift westward each evening (as the Earth moves around the Sun). The still full Moon will appear near the bright star Pollux on December 27 and the waxing Moon will pass by Saturn on January 14, 2024, Jupiter on January 18, the Pleiades star cluster on January 20, and Pollux on January 24. By the evening of Thursday, January 25 (the evening of the day of the full Moon after next), as evening twilight ends (at 6:22 PM EST), the rising Moon will be 11 degrees above the east-northeastern horizon. Two planets will be visible. The brightest will be Jupiter at 64 degrees above the southern horizon, making Jupiter the bright object closest to overhead. Saturn will be 15 degrees above the west-southwestern horizon. Morning Sky Highlights On the morning of Wednesday, December 27, 2023 (the morning of the night of the full Moon), as morning twilight begins (at 6:22 AM EST), the setting full Moon will be 18 degrees above the west-northwestern horizon. The only visible planet will be bright Venus at 19 degrees above the southeastern horizon. The bright object appearing closest to overhead will be the star Arcturus at 61 degrees above the southeastern horizon. Arcturus is the brightest star in the constellation Boötes the herdsman or plowman, is the 4th brightest star in our night sky, and is 36.7 light years from us. While it has about the same mass as our Sun, it is about 2.6 billion years older and has used up its core hydrogen, becoming a red giant 25 times the size and 170 times the brightness of our Sun. As this lunar cycle progresses, the background of stars will appear to shift westward each evening, while Venus will gradually shift the other direction towards the southeastern horizon. After December 28 the planet Mercury will join Venus in the morning sky, rising on the east-southeastern horizon before morning twilight begins. Mercury will reach its highest as morning twilight begins on January 8, 2024, after which it will shift towards the horizon again. After January 20 the planet Mars will join Venus and Mercury, rising on the east-southeastern horizon before morning twilight begins. The waning Moon will pass near Pollux on December 28, Regulus on December 31, Spica on January 4 and 5, Antares and bright Venus on January 8 (with Mercury farther to the left), and Mercury on January 9. One of the three major meteor showers of the year, the Quadrantids, is predicted to peak early January 4. The best time to look may be the hour or two before the Moon rises (at 2:29 AM EST), as moonlight will interfere by the time of the predicted peak at 4 AM. By the morning of Thursday, January 25 (the morning of the day of the full Moon after next), as morning twilight begins (at 6:19 AM EST), the setting full Moon will be 13 degrees above the west-northwestern horizon. Three planets will be visible in the sky (although two will be very low on the horizon). The brightest will be Venus at 10 degrees above the southeastern horizon. Next in brightness will be Mercury at 1.5 degrees above the east-southeastern horizon. To the lower left of Mercury will be Mars, just barely above the horizon. Mercury and Mars will appear at their closest to each other two mornings later. The bright object appearing closest to overhead will still be the star Arcturus at 70 degrees above the southern horizon. Detailed Daily Guide Here for your reference is a day-by-day listing of celestial events between now and the full Moon after next. The times and angles are based on the location of NASA Headquarters in Washington, DC, and some of these details may differ for where you are (I use parentheses to indicate times specific to the DC area). Thursday evening, December 21, 2023, at 10:27 PM EST, will be the winter solstice. This will be the day with the shortest period of daylight (9 hours, 26 minutes, 13 seconds long). Worldwide there are many festivals associated with the winter solstice, including Yule and the Chinese Dongzhi Festival. Europeans have used two main ways to divide the year into seasons and define winter. The old Celtic calendar used in much of pre-Christian Europe considered winter to be the quarter of the year with the shortest periods of daylight and the longest periods of night, so that winter started around Halloween and ended around Groundhog Day (hence the origin of these traditions). However, since it takes time for our planet to cool off, the quarter year with the coldest average temperatures starts later than the quarter year with the shortest days. In our modern calendar we approximate this by having winter start on the winter solstice and end on the spring equinox. For the Washington, DC area at least, the quarter year with the coldest average temperatures actually starts the first week of December and ends the first week of March. Solar noon on Thursday, December 21, to solar noon on Friday, December 22, 2023, will be the longest solar day of the year, 24 hours 29.8 seconds long. In this sense, the “shortest day of the year” is also the “longest day of the year!” Thursday night into Friday morning, December 21 to 22, 2023, the bright planet Jupiter will appear near the waxing gibbous Moon. Jupiter will be 8 degrees to the lower left of the Moon as evening twilight ends (at 5:53 PM EST). The Moon will reach its highest in the sky for the night 2 hours later (at 7:53 PM) with Jupiter 7 degrees to the left. By the time the Moon sets on the west-northwestern horizon (at 2:50 AM) Jupiter will be 4 degrees to the upper left of the Moon. Friday afternoon, December 22, 2023, the planet Mercury will be passing between the Earth and the Sun as seen from the Earth, called inferior conjunction. Planets that orbit inside of the orbit of Earth can have two types of conjunctions with the Sun, inferior (when passing between the Earth and the Sun) and superior (when passing on the far side of the Sun as seen from Earth). Mercury will be shifting from the evening sky to the morning sky and will begin emerging from the glow of dawn on the east-southeastern horizon in late December (depending upon viewing conditions). Friday evening, December 22, 2023, the waxing gibbous Moon will have shifted to the other side of the bright planet Jupiter, with Jupiter appearing 6.5 degrees to the upper right of the Moon. Jupiter will appear to shift clockwise around the Moon, moving farther away as the night progresses. Saturday evening into Sunday morning, December 23 to 24, 2023, the Pleiades star cluster will appear near the waxing gibbous Moon. The Pleiades will be about 6 degrees to the lower left as evening twilight ends (at 5:54 PM EST) and will shift clockwise around the Moon, appearing about 4 degrees to the upper left by the time the Moon reaches its highest in the sky (at 9:34 PM). By the time the Moon sets on the west-northwestern horizon (at 5:11 AM) the Pleiades will be less than 2 degrees to the upper right of the Moon. Due to the glare of the nearly full Moon, it may be difficult to see the Pleiades without very clear and dark skies or binoculars. As mentioned above, the next full Moon will be Tuesday evening, December 26, 2023, at 7:33 PM EST. This will be on Wednesday in Coordinated Universal Time (UTC) and for most of Eurasia, Africa, and Australia. Many commercial calendars use UTC and will show this full Moon on Wednesday. The Moon will appear full for 3 days, from Monday evening to Thursday morning. Wednesday evening into Thursday morning, December 27 to 28, 2023, the bright star Pollux will appear near the still full Moon. As evening twilight ends (at 5:56 PM EST) Pollux will be 6.5 degrees to the lower left of the Moon low on the east-northeastern horizon. By the time the Moon reaches its highest in the sky for the night 7 hours later (at 1:15 AM) Pollux will be 3 degrees to the upper left. As morning twilight begins (at 6:22 AM) Pollux will be 2.5 degrees to the upper right of the Moon. Thursday morning, December 28, 2023, will be the first morning the planet Mercury will be above the east-southeastern horizon as morning twilight begins (at 6:22 AM EST). Thursday night, December 28, 2023, the waning gibbous Moon will have shifted to the other side of the bright star Pollux. As the Moon rises (at 6:22 PM EST) above the east-northeastern horizon 25 minutes after evening twilight ends, Pollux will be 7 degrees to the upper right of the Moon, and the pair will separate as the night progresses. Saturday night into Sunday morning, December 30 to 31, 2023, the bright star Regulus will appear near the waning gibbous Moon. As Regulus rises above the east-northeastern horizon (at 8:59 PM EST) it will be 5.5 degrees to the lower right of the Moon. By the time the Moon reaches its highest in the sky for the night (at 3:38 AM) Regulus will be 3.5 degrees below the Moon. As morning twilight begins (at 6:23 AM) Regulus will be 3 degrees to the lower left of the Moon. Monday morning, January 1, 2024, at 10:29 AM EST, the Moon will be at apogee, its farthest from the Earth for this orbit. Tuesday evening, January 2, 2024, the Earth will be at perihelion, the closest we get to the Sun in our orbit. Between perihelion and 6 months later at aphelion there is about a 6.7% difference in the intensity of the sunlight reaching the Earth, one of the reasons the seasons in the Southern hemisphere are more extreme than in the Northern Hemisphere. Perihelion is also when the Earth is moving the fastest in its orbit around the Sun, so if you run east at local midnight, you will be moving about as fast as you can (at least in Sun-centered coordinates) for your location. Wednesday evening, January 3, 2024, the waning Moon will appear half-full as it reaches its last quarter at 10:31 PM EST. The Quadrantids (010 QUA) meteor shower is predicted to peak early Thursday morning, January 4, 2024. The best time to look may be the hour or two before the Moon rises (at 2:29 AM EST). See the meteor shower summary above for more information. Friday morning, January 5, 2024, the bright star Spica will appear to the upper right of the waning crescent Moon. As the Moon rises on the east-southeastern horizon (at 1:25 AM EST) Spica will be 4 degrees to the upper right. By the time morning twilight begins (at 6:24 AM) Spica will be 5.5 degrees to the upper right. Ignoring Daylight Savings Time, for the Washington, DC area and similar latitudes, (I’ve not checked elsewhere), Friday, January 5, 2024, will be the morning with the latest sunrise of the year, 7:26:56 AM EST. Sunday morning, January 7, 2024, as morning twilight begins (at 6:24 AM EST), the waning crescent Moon will be 22 degrees above the south-southeastern horizon, with the bright planet Venus to the lower left at 15 degrees above the southeastern horizon, the bright star Antares to the lower right of Venus at 11 degrees above the horizon, and the planet Mercury farther to the lower left of Venus at 5 degrees above the east-southeastern horizon. The planet Mars will join this lineup 8 minutes later, rising in the glow of dawn to the lower left of Mercury. Monday morning, January 8, 2024, the Moon, Venus, and Antares will appear clustered together above the southeastern horizon, with Mercury farther to the lower left. As morning twilight begins (at 6:24 AM EST) the bright planet Venus will appear 7 degrees to the upper left of the waning crescent Moon with the bright star Antares 1.5 degrees to the lower left of the Moon. The planet Mercury will be farther to the lower left of the Moon, Venus, and Antares, this being the morning when Mercury will be at its highest as twilight begins, a little over 6 degrees above the east-southeastern horizon. Mars will rise 7 minutes later, joining this grouping. By Tuesday morning, January 9, 2024, the Moon will have shifted to 8 degrees to the lower right of Mercury, appearing only 3 degrees above the southeastern horizon as morning twilight begins (at 6:24 AM EST). The Moon will be a thin crescent and may be hard to see. Mars will rise in the glow of dawn 7 minutes later to the lower left of Mercury. Thursday morning, January 11, 2024, at 6:57 AM EST, will be the new Moon, when the Moon passes between the Earth and the Sun and will not be visible from the Earth. The day of or the day after the New Moon usually marks the start of the new month for most lunisolar calendars. Sundown on Wednesday, January 10, marks the start of Shevat in the Hebrew calendar. The twelfth month of the Chinese year of the Rabbit starts on January 11. Friday morning, January 12, 2024, will be when the planet Mercury reaches its greatest angular separation from the Sun as seen from the Earth for this apparition (called greatest elongation). Because the angle of the line between the Sun and Mercury and the horizon changes, when Mercury and the Sun appear farthest apart as seen from the Earth is not always when Mercury appears highest above the east-southeastern horizon as morning twilight begins, which occurred January 8. In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Friday evening, January 12, 2024, will probably mark the beginning of Rajab, the seventh month of the Islamic calendar. Rajab is one of the four sacred months in which warfare and fighting are forbidden. Saturday morning, January 13, 2024, at 5:36 AM EST, the Moon will be at perigee, its closest to the Earth for this orbit. Sunday evening, January 14, 2024, the planet Saturn will appear to the lower right of the waxing crescent Moon. The pair will be 7 degrees apart as evening twilight ends (at 6:11 PM EST) and Saturn will set first on the west-southwestern horizon a little over 2 hours later (at 8:26 PM). Wednesday evening, January 17, 2024, the Moon will appear half-full as it reaches its first quarter at 10:53 PM EST. Thursday evening into early Friday morning, January 18 to 19, 2024, the bright planet Jupiter will appear below the waxing gibbous Moon. Jupiter will be 3 degrees to the lower right of the Moon as evening twilight ends (at 6:15 PM EST) and will be 6 degrees below the Moon by the time Jupiter sets on the west-northwestern horizon 7 hours later (at 1:17 AM). Saturday morning, January 20, 2024, will be the first morning that the planet Mars will be above the east-southeastern horizon as morning twilight begins (at 6:22 AM EST). Saturday evening into Sunday morning, January 20 to 21, 2024, the Pleiades star cluster will appear near the waxing gibbous Moon. The Pleiades will be 5 degrees to the upper right of the Moon as evening twilight ends (at 6:17 PM EST). The Moon will reach its highest for the night 2 hours later (at 8:23 PM) with the Pleiades 6 degrees to the right. By the time the Pleiades set on the west-northwestern horizon (at around 3:25 AM) they will be 9 degrees to the lower right of the Moon. Late Tuesday night into Wednesday morning, January 23 to 24, 2024, the bright star Pollux will appear near the nearly full Moon. As evening twilight ends (at 6:20 PM EST) Jupiter will be 10 degrees to the lower left of the Moon, but will shift closer as it swings clockwise around the Moon. When the Moon reaches its highest for the night 5 hours later (at 11:08 PM) Jupiter will be 8 degrees to the left of the Moon. By the time morning twilight begins (at 6:20 AM) Jupiter will be 5 degrees above the Moon. Thursday night into Friday morning, January 24 to 25, 2024, the Moon will have shifted to the other side of the bright star Pollux. Pollux will appear 3.5 degrees above the Moon as evening twilight ends (at 6:21 PM EST) and will appear to swing clockwise around the Moon as they move apart. When the Moon reaches its highest for the night (at midnight) Pollux will be 5.5 degrees to the upper right. As morning twilight begins (at 6:19 AM) Pollux will be 8 degrees to the lower right of the Moon. The full Moon after next will be Thursday afternoon, January 25, 2024, at 12:54 PM EST. This will be on Friday morning from Myanmar time eastward to the International Dateline in the mid-Pacific. The Moon will appear full for about 3 days around this time, from around midnight Wednesday morning through about midnight Friday night. About the Author Gordon Johnston Program Executive (Retired) – NASA Headquarters Read More View the full article
  5. 8 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Name: Joshua Schlieder Title: Wide Field Instrument Scientist for the Nancy Grace Roman Space Telescope and Operations Project Scientist for the Neil Gehrels Swift Observatory Formal Job Classification: Research Astrophysicist Organization: Stellar Astrophysics and Exoplanets Laboratory, Astrophysics Division, Sciences and Exploration Directorate (Code 667) Joshua Schlieder is the Wide Field Instrument scientist for NASA’s Nancy Grace Roman Space Telescope. “I am never bored (but sometimes stressed),” he said. “Every day is a new adventure.”Courtesy of Joshua Schlieder What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission? As the Wide Field Instrument scientist for the Roman Space Telescope, I am a member of the project science team and work with other scientists, engineers, and managers to ensure that the Wide Field Instrument, the primary wide field survey camera on Roman, meets its science requirements. As the operations project scientist for NASA’s Swift Observatory, I work with the principal investigator and project team to ensure that Swift is operating efficiently and obtaining data to meet our science goals and the needs of the astrophysics community. I also do fundamental astrophysics research focusing on low-mass stars and their exoplanets. What is your educational background? From a very young age I was fascinated by the natural world and was constantly trying to understand how it worked. There wasn’t a question I wouldn’t ask or a rock I wouldn’t turn over to understand a little more. This curiosity led me to a B.S. in physics from Bloomsburg University in Pennsylvania. I then received an M.A. and Ph.D. in physics with a concentration in astrophysics from Stony Brook University in New York. How did you come to Goddard? Why do you stay? From 2014 – 2016, I had a postdoctoral fellowship at NASA’s Ames Research Center in California to develop science programs for the James Webb Space Telescope and analyze data from the exoplanet hunting K2 mission. In 2016, I went to the NASA Exoplanet Science Institute at the California Institute of Technology as a member of the Exoplanet Archive team. In 2017, I came to Goddard to work on the latest exoplanet hunting mission, TESS, the Transiting Exoplanet Survey Satellite. Goddard is truly unique compared to other academic institutions. It has an outstanding scientific environment where you can perform cutting edge astrophysics research and directly contribute to developing and implementing NASA missions. Goddard astrophysicist Joshua Schlieder helps make sure the Roman Space Telescope’s Wide Field Instrument meets its science requirements. He also gardens, spends time outdoors, and goes to minor league baseball games in his spare time.Courtesy of Joshua Schlieder What is most interesting about your role on Roman? We are working to build and test a new scientific instrument that will fly on a space telescope. I have the privilege of contributing to this effort and working with really excellent people from all disciplines. We combine our different scientific and technical backgrounds to solve difficult problems. I am never bored (but sometimes stressed). Every day is a new adventure. What is most interesting about your role on Swift? Swift has been operating for many years. I enjoy working on a team that is a well-oiled machine. The observatory is dynamic, it is always doing something new and can observe about 100 targets each day. Unlike many space telescopes, it can rapidly respond to astronomical events and re-point very quickly, delivering new science on short notice. Swift was designed in a way that enables it to observe many different types of targets over a wide range of wavelengths and it is exciting to be a part of the planning and execution of its diverse science program. What basic astrophysics research do you do? What is the one, big discovery you would like to make? I study red dwarf stars and the exoplanets that orbit them. Red dwarfs are a class of star that are generally about half the size of the Sun or smaller, very faint, and have red colors because of their relatively low temperatures. Red dwarfs are everywhere, they make up more than 70% of the stars in our galaxy! But, because they are not very bright, you cannot see them with the naked eye. I also study exoplanets. Exoplanets are planets that are outside our solar system orbiting other stars. We know of many exoplanets that orbit red dwarf stars. It is common to find a red dwarf with several Earth sized planets in a compact system that would easily fit inside the orbit of Mercury in our solar system. I hope someday that the astrophysics community will detect enough planets around red dwarf stars to truly understand the population and disentangle how such small stars can form so many planets. Since red dwarfs are the most common type of star, most planets in the galaxy orbit them. They may be our best opportunity to find planets that are similar to Earth and are close enough to study in great detail. Goddard astrophysicist Joshua Schlieder grows tropical plants indoors when he isn’t working on the Roman Space Telescope’s Wide Field Instrument. “Research is never done, but that does not mean you should be doing it all the time. Having aspects of your life that are separate from astrophysics will keep you healthy and happy.”Courtesy of Joshua Schlieder What makes a good astrophysicist? You have to be imaginative and think outside the box but also learn from criticism. You have to enjoy collaborating with many people because the best ideas come from the combined efforts of people with different backgrounds and different experiences. You need a deep desire to push forward to understand the unknown, even if you do not know what path you may follow. You need to have a drive for new knowledge and an ability to go in different directions at the same time to solve a problem. You have to embrace big ideas. What in the universe is waiting to be understood? How do I take what I know and work with other people to try to figure it out? Astrophysicists are both linear and abstract thinkers. In general, we have to be abstract in coming up with ideas and linear in solving them but many times we rely on both ways of thinking. We also have to be able to explain these ideas to others in the community and the public. Communicating our work and explaining why it is important is a critical skill. As a mentor, what is the most important advice you give? Trust in your own ideas and abilities. You will run into setbacks and difficult times when projects are slow to move forward or even regress, but every day is progress and you will get there. You have to expect, accept, and learn from constructive criticism. When someone pushses back on an idea, an approach, or a result, know that you are capable and use it as an opportunity to improve. Ask questions, meet people, and build your community. Seek out those who may have the answers you need. You are not alone. Many people will be working on similar ideas, so work with them to see how everyone can build on an idea together. Being a scientist is tough, it is very competitive and everyone, whether they admit it or not, needs support. These people will be your support network. Most importantly, take time for yourself. Research is never done, but that does not mean you should be doing it all the time. Having aspects of your life that are separate from astrophysics will keep you healthy and happy. Goddard astrophysicist Joshua Schlieder relaxes at a Bowie Baysox game. “I also really enjoy minor league baseball, I try to see the local team in every city I visit. I have several dozen minor league team hats.”Courtesy of Joshua Schlieder Who inspires you? The early career scientists that I work with. They bring huge enthusiasm and new ideas to projects and are willing and able to dive into big problems. I am always impressed with their ingenuity, capability, and resilience. It is a privilege to work with people that are bound to be future leaders in the field. What is your hobby? I like to garden and grow outdoor plants. I like plants that produce fruit. I am growing several fig trees, a plum tree, a paw paw, and raspberry, blueberry, and goji berry bushes. I also grow tropical plants indoors including orchids, which can be difficult but rewarding. I enjoy going on long distance bicycle rides and recently completed a 100 km “metric century.” I also love being outdoors hiking, camping, and fishing. I also really enjoy minor league baseball, I try to see the local team in every city I visit. I have several dozen minor league team hats. Who is your favorite author? I read a lot of science fiction and fantasy novels. I especially enjoy books by N. K. Jemisin and Alastair Reynolds. What is your “six-word memoir”? A six-word memoir describes something in just six words. Feet on the Ground, Head in the Stars. (I know this is eight words, but I was struggling to fit one to six.) Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. By Elizabeth M. Jarrell NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Jan 03, 2024 EditorJessica EvansContactRob Garnerrob.garner@nasa.gov Related TermsPeople of GoddardAstrophysicsGoddard Space Flight CenterNancy Grace Roman Space Telescope Explore More 5 min read NASA’s Juno to Get Close Look at Jupiter’s Volcanic Moon Io on Dec. 30 Article 1 week ago 6 min read A Look Through Time with NASA’s Lead Photographer for the James Webb Space Telescope Nearly two years ago in the early morning hours of Dec. 25, NASA’s James Webb… Article 2 weeks ago 6 min read Meet the Infrared Telescopes That Paved the Way for NASA’s Webb Article 2 weeks ago View the full article
  6. NASA

    Foggy Fun with STEM

    NASA / Keegan Barber On March 30, 2023, NASA astronauts Kjell Lindgren, Jessica Watkins, and Robert Hines took part in STEM demonstrations with local students in Washington. Lindgren, Hines, and Watkins spent 170 days in space as part of Expeditions 67 and 68 aboard the International Space Station. While aboard, the crew studied ways to reverse the aging of immune cells, how wounds heal in microgravity, and cardiovascular health. They also participated in spacewalks, tested new technology to diagnose medical conditions, explored the development of new construction materials in space, grew red dwarf tomatoes, and observed liquid behavior in artificial gravity to support missions to the Moon, Mars, and beyond. The NASA Headquarters photographers chose this photo as one of the best images from 2023. See the rest on Flickr. Image Credit: NASA/Keegan Barber View the full article
  7. June 5, 2015 – NASA has issued a Record of Decision (ROD) adopting the Federal Aviation Administration (FAA) Office of Commercial Space Transportation Final Environmental Impact Statement for the Spaceport America Commercial Launch Site. Click here for the NASA ROD May 4, 2015 – NASA has issued a FONSI adopting the FAA EA for the Launch & Reentry of SpaceShipTwo Resusable Suborbital Rockets at the Mojave Air & Space Port, published in May 2012. Click here for the NASA FONSI Click here for FAA’s FEA & FONSI To return to the NEPA homepage, click here. Last Updated: Aug 4, 2017 Editor: Samuel Serafini View the full article
  8. X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Optical: NASA/STScI/HST; Infrared: NASA/JPL/CalTech/SST; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand A colorful, festive image shows different types of light containing the remains of not one, but at least two, exploded stars. This supernova remnant is known as 30 Doradus B (30 Dor B for short) and is part of a larger region of space where stars have been continuously forming for the past 8 to 10 million years. It is a complex landscape of dark clouds of gas, young stars, high-energy shocks, and superheated gas, located 160,000 light-years away from Earth in the Large Magellanic Cloud, a small satellite galaxy of the Milky Way. The new image of 30 Dor B was made by combining X-ray data from NASA’s Chandra X-ray Observatory (purple), optical data from the Blanco 4-meter telescope in Chile (orange and cyan), and infrared data from NASA’s Spitzer Space Telescope (red). Optical data from NASA’s Hubble Space Telescope was also added in black and white to highlight sharp features in the image. A team of astronomers led by Wei-An Chen from the National Taiwan University in Taipei, Taiwan, have used over two million seconds of Chandra observing time of 30 Dor B and its surroundings to analyze the region. They found a faint shell of X-rays that extends about 130 light-years across. (For context, the nearest star to the Sun is about 4 light-years away). The Chandra data also reveals that 30 Dor B contains winds of particles blowing away from a pulsar, creating what is known as a pulsar wind nebula. When taken together with data from Hubble and other telescopes, the researchers determined that no single supernova explosion could explain what is being seen. Both the pulsar and the bright X-rays seen in the center of 30 Dor B likely resulted from a supernova explosion after the collapse of a massive star about 5,000 years ago. The larger, faint shell of X-rays, however, is too big to have resulted from the same supernova. Instead, the team thinks that at least two supernova explosions took place in 30 Dor B, with the X-ray shell produced by another supernova more than 5,000 years ago. It is also quite possible that even more happened in the past. This result can help astronomers learn more about the lives of massive stars, and the effects of their supernova explosions. The paper led by Wei-An Chen describing these results was recently published in the Astronomical Journal. The co-authors of the paper are Chuan-Jui Li, You-Hua Chu, Shutaro Ueda, Kuo-Song Wang, Sheng-Yuan Liu, all from the Institute of Astronomy and Astrophysics, Academia Sinica, in Taipei, Taiwan, and Bo-An Chen from National Taiwan University. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. For more Chandra images, multimedia and related materials, visit: https://www.nasa.gov/mission/chandra-x-ray-observatory/ Visual Description: Today’s release features a spectacular composite image of a large region of space where stars have been continuously forming for the past eight to ten million years. At the center of this complex landscape of brilliant, colorful gas clouds is a supernova remnant. Known as 30 Doradus B, the remnant likely contains the remains of at least two exploded stars. The entire image is awash in intricate clouds, and swathes of superheated gas. At our upper lefthand corner is a thick, coral pink and wine-colored cloud with a texture resembling cotton candy. At our lower and upper right is a network of deep red clouds that resemble streaks of thick red syrup floating in water. A layer of wispy blue cloud appears to be present across the entire image, but is most evident at our lower left which is free of overlapping gas. Glowing pink, orange, and purple specks of light, which are stars, dot the image. In the center of the frame is a bright purple and pink cloud, aglow with brilliant white dots, and streaked with lightning-like veins. This is 30 Doradus B, which is delineated by a faint shell of X-rays identified by Chandra. Within this supernova remnant are high energy shocks and winds of particles blowing away from a pulsar. News Media Contact Megan Watzke Chandra X-ray Center Cambridge, Mass. 617-496-7998 Jonathan Deal Marshall Space Flight Center Huntsville, Ala. 256-544-0034 View the full article
  9. First Commercial Moon Launch: Astrobotic Peregrine Mission 1 (Official NASA Broadcast)
  10. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) El avión de investigación X-59 de la NASA se trasladó de su lugar de construcción a la línea de vuelo -o el espacio entre el hangar y la pista- en Lockheed Martin Skunk Works, en Palmdale (California), el 16 de junio de 2023. El traslado permitió al equipo del X-59 realizar pruebas de seguridad y estructurales, pasos críticos hacia el primer vuelo.Lockheed Martin Lee esta historia en inglés aquí. La misión Quesst de la NASA ha ajustado la fecha prevista para el primer vuelo de su avión supersónico silencioso X-59 a 2024. El X-59, un avión experimental único en su clase, ha requerido una compleja labor de ingeniería por parte de los investigadores de la NASA que trabajan con el contratista principal Lockheed Martin Skunk Works. Además del diseño de la aeronave, el X-59 también combina nueva tecnología con sistemas y componentes de múltiples aeronaves ya establecidas, como su tren de aterrizaje procedente de un F-16 y su sistema de soporte vital adaptado de un F-15. Para poder desarrollar esta aeronave única, el equipo de Quesst está trabajando en varios retos técnicos identificados a lo largo de 2023, cuando estaba previsto que el X-59 realizara su primer vuelo. Se necesita más tiempo para integrar plenamente los sistemas en la aeronave y garantizar que funcionen juntos como se espera. El equipo también está resolviendo problemas intermitentes con algunos de los ordenadores redundantes de seguridad que controlan los sistemas de la aeronave. Quesst realizó progresos constantes hacia el vuelo durante el pasado año. El equipo dio los últimos toques a la estructura de la cola del X-59, lo que les permitió finalizar su cableado eléctrico y continuar con las pruebas críticas en tierra, y trasladarlo desde sus instalaciones de ensamblaje a la línea de vuelo para realizar pruebas estructurales. El X-59 demostrará la capacidad de volar supersónicamente, es decir, más rápido que la velocidad del sonido, mientras reduce el normalmente fuerte estallido sónico, a un golpe más leve o silencioso. La NASA tiene previsto volar el X-59 sobre varias comunidades para obtener datos sobre cómo notan los residentes el sonido que hace. La agencia facilitará esa información a los organismos reguladores estadounidenses e internacionales para que modifiquen las normas que actualmente prohíben los vuelos supersónicos comerciales sobre tierra. Las principales prioridades de la NASA para cualquier misión son la seguridad y garantizar el éxito. Para Quesst, eso significa no sólo estar seguro de que el X-59 es seguro antes de volar, sino seguro a largo plazo y confiable durante la fase de pruebas comunitarias. La aeronave está siendo examinada actualmente en pruebas integradas, que deben completarse antes de que vuele. En cuanto finalice esta fase, la aeronave continuará su viaje con una revisión de preparación para el vuelo, momento en el que la NASA tiene previsto publicar un calendario más específico para el primer vuelo. Quesst es una misión con el potencial de revolucionar los viajes de la aviación comercial al reducir drásticamente el tiempo de viaje. Un vuelo seguro y fiable del X-59 es fundamental para que la NASA consiga esos beneficios. La agencia está comprometida con un proceso exhaustivo de revisión y pruebas que redunde en el éxito de esa misión. Artículo Traducido por: Elena Aguirre Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 4 min read La movilidad aérea avanzada hace que los viajes sean más accesibles Article 2 weeks ago 4 min read NASA: Una jugosa historia de tomates en la Estación Espacial Internacional Article 3 weeks ago 4 min read La Movilidad Aérea Avanzada Ayuda al Transporte de Mercancías Article 1 month ago Keep Exploring Discover More Topics From NASA Missions Humans In Space NASA en español Explora el universo y descubre tu planeta natal con nosotros, en tu idioma. Explore NASA’s History Share Details Last Updated Jan 03, 2024 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related TermsNASA en españolAeronáutica View the full article
  11. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) It’s almost time for NASA’s supersonic X-59 airplane to make its red, white, and blue public debut, and you’re invited to join friends and family in taking a front-row, virtual VIP seat to the rollout ceremony in the California high desert. As a historic milestone in aviation history, NASA is encouraging people across the nation and around the world to get together and celebrate the occasion by hosting a watch party to view the rollout festivities from their classrooms, homes, or anywhere else. Although NASA won’t provide snacks and refreshments, the agency does have some ideas to help you host a successful watch party. They include printable invitations, links to STEM-related activities, and a complete X-59 Watch Party Planning Guide. The centerpiece of NASA’s Quesst mission to study sound and help reduce the sonic boom made by supersonic flight to a sonic thump, the Lockheed Martin-built X-59 is scheduled to be rolled out from the company’s Skunk Works hangar in Palmdale, California on Jan. 12. The X-59’s rollout ceremony will be broadcast live on the NASA+ streaming service beginning at 4 p.m. EST on Jan. 12, 2024. The event also will air live on the NASA app, YouTube, and on the agency’s website. Viewers can also learn how to stream NASA TV through a variety of platforms, including social media. If you’re ready to commit to hosting an X-59 rollout ceremony watch party let us know and we’ll add your location to our world map, where a growing list of dozens of sites are already signed up. All the details for signing up and more are available on our Watch Party web page. About the AuthorJim BankeManaging Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 35 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 3 min read NASA Flies Drones Autonomously for Air Taxi Research Researchers at NASA’s Langley Research Center in Hampton, Virginia recently flew multiple drones beyond visual… Article 2 weeks ago 4 min read NASA’s New Investments in Commercialization-Focused Small Businesses Article 2 weeks ago 3 min read NASA, Joby Pave the Way for Air Taxis in Busy Airports Article 2 weeks ago Keep Exploring Discover More Topics From NASA Missions Humans In Space Solar System Exploration Solar System Overview The solar system has one star, eight planets, five officially recognized dwarf planets, at least 290 moons,… Explore NASA’s History Share Details Last Updated Jan 03, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related TermsAeronauticsAeronautics Research Mission DirectorateAmes Research CenterArmstrong Flight Research CenterCommercial Supersonic TechnologyGlenn Research CenterIntegrated Aviation Systems ProgramLangley Research CenterLow Boom Flight DemonstratorQuesst (X-59)Quesst: The FlightsQuesst: The MissionQuesst: The ScienceQuesst: The TeamQuesst: The VehicleSupersonic Flight View the full article
  12. NASA / Joel Kowsky The crescent moon, along with Jupiter (top right of Moon) and Venus (below Moon) appeared over the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida Feb. 22, 2023, as preparations continued for NASA’s SpaceX Crew-6 mission. NASA astronauts Stephen Bowen and Warren “Woody” Hoburg, UAE (United Arab Emirates) astronaut Sultan Alneyadi, and Roscosmos cosmonaut Andrey Fedyaev launched to the International Space Station March 2, 2023. The NASA Headquarters photographers chose this photo as one of the best images from 2023. See the rest on Flickr. Image Credit: NASA/Joel Kowsky View the full article
  13. NASA

    Payroll

    1 Min Read Payroll The NASA Shared Services Center (NSSC) Payroll Office (NPO) reviews, validates, and delivers time and attendance data to the Department of the Interior (DOI) Interior Business Center (IBC) for NASA Centers. NPO acts as liaison between Centers, employees and IBC for other payroll related activities such as supplemental payments, prior pay period adjustments (PPPA) and settlement agreements. 2024 NASA Payroll Calendar Employment Verification POD A-12 – Non-Receipt of DD/EFT Payment Payroll Schedule Calendars View the full article
  14. 3 min read January’s Night Sky Notes: Connecting the ‘Dots’ with Asterisms by Kat Troche of the Astronomical Society of the Pacific In our December Night Sky Notes, we mentioned that the Orion constellation has a distinct hourglass shape that makes it easy to spot in the night sky. But what if we told you that this is not the complete constellation, but rather, an asterism? An asterism is a pattern of stars in the night sky, forming shapes that make picking out constellations easy. Cultures throughout history have created these patterns as part of storytelling, honoring ancestors, and timekeeping. Orion’s hourglass is just one of many examples of this, but did you know Orion’s brightest knee is part of another asterism that spans six constellations, weaving together the Winter night sky? Many asterisms feature bright stars that are easily visible to the naked eye. Identify these key stars, and then connect the dots to reveal the shape. Asterisms Through the Seasons Stars that make up the Winter Circle, as seen on January 1, 2024 Sky Safari Try looking for these asterisms this season and beyond: Winter Circle – this asterism, also known as the Winter Hexagon, makes up a large portion of the Winter sky using stars Rigel, Aldebaran, Capella, Pollux, Procyon, and Sirius as its points. Similarly, the Winter Triangle can be found using Procyon, Sirius, and Betelgeuse as points. Orion’s Belt is also considered an asterism. Diamond of Virgo – this springtime asterism consists of the following stars: Arcturus, in the constellation Boötes; Cor Caroli, in Canes Venatici; Denebola in Leo, and Spica in Virgo. Sparkling at the center of this diamond is the bright cluster Coma Berenices, or Bernice’s Hair – an ancient asterism turned constellation! Summer Triangle – as the nights warm up, the Summer Triangle dominates the heavens. Comprising the bright stars Vega in Lyra, Deneb in Cygnus, and Altair in Aquila, this prominent asterism is the inspiration behind the cultural festival Tanabata. Also found is Cygnus the Swan, which makes up the Northern Cross asterism. Great Square of Pegasus – by Autumn, the Great Square of Pegasus can be seen. This square-shaped asterism takes up a large portion of the sky, and consists of the stars: Scheat, Alpheratz, Markab and Algenib. This image shows the region around the Hyades star cluster, the nearest open cluster to us. The Hyades cluster is very well-studied due to its location, but previous searches for planets have produced only one. A new study led by Jay Farihi of the University of Cambridge, UK, has now found the atmospheres of two burnt-out stars in this cluster — known as white dwarfs — to be “polluted” by rocky debris circling the star. Inset, the locations of these white dwarf stars are indicated — stars known as WD 0421+162, and WD 0431+126. NASA, ESA, STScI, and Z. Levay (STScI) Tracing these outlines can guide you to objects like galaxies and star clusters. The Hyades, for example, is an open star cluster in the Taurus constellation with evidence of rocky planetary debris. In 2013, Hubble Space Telescope’s Cosmic Origins Spectrograph was responsible for breaking down light into individual components. This observation detected low levels of carbon and silicon – a major chemical for planetary bodies. The Hyades can be found just outside the Winter Circle and is a favorite of both amateur and professional astronomers alike. How to Spot Asterisms Use Star Maps and Star Apps – Using star maps or stargazing apps can help familiarize yourself with the constellations and asterisms of the night sky. Get Familiar with Constellations – Learning the major constellations and their broader shapes visible each season will make spotting asterisms easier. Use Celestial Landmarks –Orient yourself by using bright stars, or recognizable constellations. This will help you navigate the night sky and pinpoint specific asterisms. Vega in the Lyra constellation is a great example of this. Learn more about how to stay warm while observing this Winter with our upcoming mid-month article on the Night Sky Network page through NASA’s website! View the full article
  15. A New Name and New Journey for an Asteroid Mission on This Week @NASA – December 29, 2023
  16. NASA, STScI/AURA The Hubble Space Telescope captured this image of a stellar explosion throwing out sheets of debris in the nearby Large Magellanic Cloud galaxy on July 7, 2003. Since its 1990 launch, Hubble has changed our fundamental understanding of the universe; with over 1.5 million observations and 20,000+ papers published on its discoveries, Hubble is the most productive science mission in the history of NASA. See more stunning images from Hubble – and experience some of the images through sound. Image Credit: NASA, STScI/AURA View the full article
  17. The VIPER team is hard at work building the flight vehicle that will be going to the surface of the Moon this time next year! In fact, we’re about halfway through the build, and you can interactively watch the process and hear from experts on the team, in various livestreams throughout the process. All the science instrument teams have delivered their payloads to the VIPER Systems Integration & Test team, which will install them into the actual flight rover; in fact, all but one is already installed! This was a huge milestone over the past summer, and a frequent sticking point for many flight projects. I’m happy to have all the birds in the nest! We also have taken delivery of most of the key pieces of hardware we acquired from our various external vendors. This is a very important milestone as well, since a large number of vendors of critical components have been quite behind schedule in their deliveries to the project, due to pandemic-era supply chain issues that continue to reverberate throughout the industry in some unexpected ways. It is good to have VIPER past this point in development, where we can now focus on bringing everything together into a functioning rover. So now that we are building the flight article, we are able to see precisely how well our design plans are working in reality. There have been some reveals in the first half of the rover build, which we’ve had to navigate, including connector issues from vendors, where we’ve discovered and corrected some design and Foreign Object Debris issues, which prevented connectors from reliably working. We’ve also found some unexpected performance characteristics revealed by some vendor hardware, which we have had to then fold into our plans for how we operate VIPER…These issues and solutions are all part of the challenging process of building a flight article, and ensuring it can survive the very harsh environment of launch, landing, and operations on the lunar surface. Once the team completes the flight rover assembly, the next step will be to test that rover in the kinds of environments it will see on the mission. This activity will be our primary focus in 2024, and our final step prior to delivering VIPER for launch integration. Go VIPER! – Dan Andrews, VIPER Project Manager View the full article
  18. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Langley’s Navigation Doppler Lidar is a critical landing system on the Astrobotic Peregrine Mission 1, scheduled to launch to the Moon Jan. 8 from Cape Canaveral in Florida.Image credit: NASA Hampton, Virginia — Media is invited to learn about two technologies developed at NASA’s Langley Research Center in Hampton, Virginia, that will launch to the Moon in the coming weeks aboard two flights under NASA’s Commercial Lunar Payload Services (CLPS) initiative. During an event at Langley 9:30 a.m. Thursday, Jan. 4, researchers will discuss the following groundbreaking technologies developed at the center: • Navigation Doppler Lidar (NDL), a laser-based sensor capable of providing precision vector velocity and altitude of space vehicles. NDL data is used to precisely navigate the vehicle and execute a gentle touchdown on the surface of the Moon, Mars, or other destinations in the solar system. • Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS), an array of small cameras placed around a lunar lander to take images of the interaction between the lander’s engine plume and the Moon’s surface. This will help researchers more accurately predict the effects from landing larger, heavier payloads in proximity to one other on the Moon and eventually Mars. Media interested in attending should contact Joe Atkinson at joseph.s.atkinson@nasa.gov no later than noon, Wednesday, Jan. 3. NDL is currently scheduled to launch from Kennedy Space Center in Florida no earlier than Jan. 8 on Astrobotics’ Peregrine 1 lander aboard a United Launch Alliance Vulcan Centaur rocket. Though this launch is part of NASA’s CLPS program, NDL is a critical system provided to Astrobotic by NASA and is not considered a CLPS payload. Peregrine 1 is expected to land on the Moon in late February. NDL and SCALPSS 1.0 are currently scheduled to launch from Kennedy Space Center in Florida in February on Intuitive Machines’ Nova-C lander aboard a SpaceX Falcon 9 rocket. Both NDL and SCALPSS 1.0 are NASA CLPS payloads on this flight. Transit time to the Moon will take 4 to 5 days. These CLPS flights will mark the United States’ first return to the Moon’s surface since the Apollo era. Commercial deliveries to the lunar surface with several providers continue to be part of NASA’s exploration efforts. Future CLPS deliveries could include more science experiments and technology demonstrations that further support the agency’s Artemis program. Learn more about CLPS at: https://www.nasa.gov/CLPS Joe Atkinson Langley Research Center, Hampton, Virginia 757-755-5375 joseph.s.atkinson@nasa.gov View the full article
  19. Cientos de experimentos viajaron a bordo de la Estación Espacial Internacional en 2023, cubriendo una amplia gama de temas científicos, incluyendo biología, investigación humana y ciencias de la Tierra. Echa un vistazo a las investigaciones en la estación con esta galería de imágenes. Biología y biotecnología Desarrollo de cristalización de proteínas a temperatura moderada (MTPCG) NASA (9 de enero de 2023) — El astronauta Koichi Wakata, de la JAXA (Agencia Japonesa de Exploración Aeroespacial), extrae muestras del experimento Desarrollo de Cristalización de Proteínas a Temperatura Moderada (MTPCG, por sus siglas en inglés) de la JAXA para enviarlas a la Tierra. El personal de la estación ha desarrollado estos cristales durante más de 20 años para más de 500 experimentos relacionados. La microgravedad produce resultados de mejor calidad para investigaciones médicas. StemCellEX-H Pathfinder NASA (17 de agosto de 2023) — Los astronautas de la Expedición 69 trabajan en diversas tareas dentro del módulo del laboratorio Kibo de la estación espacial. El astronauta de la NASA Frank Rubio trabaja en el experimento StemCellEX-H Pathfinder, el cual lleva a cabo pruebas con métodos para producir células madre humanas en el espacio. La producción de estas células en microgravedad podría proporcionar mayores rendimientos que serían más adecuados para fines médicos. BioNutrientes 2 NASA (3 de enero de 2023) — La astronauta de la NASA Nicole Mann manipula bolsas de producción para el experimento BioNutrientes 2. Este experimento utiliza microbios modificados genéticamente para producir nutrientes clave a partir de productos lácteos fermentados como el yogur y el kéfir. La producción de vitaminas y otros nutrientes durante el vuelo podría ayudar a mantener la salud de los miembros de la tripulación en misiones de larga duración. Hábitat de Plantas 03 en el APH NASA (8 de agosto de 2023) — Plantas de la especie Arabidopsis thaliana germinan dentro del Hábitat Avanzado de Plantas (APH, por sus siglas en inglés). El Hábitat de Plantas 03, uno de los primeros experimentos de cultivos multigeneracionales a bordo de la estación espacial, estudia si las adaptaciones genéticas en microgravedad se transfieren a la siguiente generación. Esta investigación podría ofrecer información sobre cómo proporcionar alimentos y otros servicios para futuras misiones espaciales mediante el cultivo de generaciones repetidas de plantas. Investigación humana Evaluación de la inmunidad NASA (18 de septiembre de 2023) — El astronauta Andreas Mogensen, de la ESA (Agencia Espacial Europea), procesa muestras de sangre para el Evaluación de la inmunidad. Esta investigación de la ESA hace seguimiento al impacto de los factores estresantes de los vuelos espaciales en la actividad inmunitaria de las células en la sangre con la ayuda de una prueba inmunitaria funcional. Este novedoso experimento podría ayudar a evaluar la actividad inmunitaria celular en el espacio y en la Tierra. GRIP NASA (14 de febrero de 2023) — El astronauta de la NASA Josh Cassada realiza varias series de movimientos para GRIP, un experimento centrado en la manera como los astronautas agarran y manipulan objetos en microgravedad. Los datos de los experimentos de GRIP podrían identificar peligros potenciales para los astronautas cuando se desplazan entre entornos con diferentes niveles de gravedad. CIPHER NASA (29 de septiembre de 2023) — La astronauta de la NASA Loral O’Hara establece el ciclo de ejercicios de la máquina CEVIS en la estación con el fin de recopilar datos para el Complemento de Protocolos Integrados para la Investigación de Exploración Humana en Misiones de Diferente Duración (CIPHER, por sus siglas en inglés). Esta investigación reúne datos obtenidos de diferentes astronautas para estudiar los cambios fisiológicos y psicológicos que experimentan los miembros de la tripulación en misiones de diferente duración. Los resultados podrían proporcionar información para la creación de programas que promuevan la salud y el bienestar de los astronautas en futuras misiones. Instalación de Biomanufactura (BFF) NASA (24 de noviembre de 2023) — La astronauta de la NASA Jasmin Moghbeli intercambia componentes dentro de la Instalación de Biomanufactura (BFF, por sus siglas en inglés), la cual está diseñada para imprimir en microgravedad tejidos en 3D similares a órganos humanos. Este trabajo es un trampolín hacia la fabricación de órganos completos para trasplantes. Ciencias físicas SoFIE-GEL NASA (13 de enero de 2023) — El experimento Ignición y Extinción de Combustible Sólido: Límites de Crecimiento y Extinción (SoFIE-GEL, por sus siglas en inglés) estudia la combustión en microgravedad. Comprender cómo se desarrollan y se extinguen las llamas ayuda a mejorar la seguridad contra incendios en las naves espaciales. Los hallazgos podrían ayudar a los investigadores a identificar materiales más seguros para las naves espaciales y a desarrollar técnicas más efectivas para la extinción de incendios. FLUIDICS NASA (19 de junio de 2023) — El astronauta Sultan Alneyadi, de los Emiratos Árabes Unidos, trabaja en el experimento Dinámica de Fluidos en el Espacio (FLUIDICS, por sus siglas en inglés). El experimento analiza cómo los líquidos chapotean dentro de un recipiente en microgravedad. Esta investigación podría ayudar a optimizar el diseño de sistemas de combustible para satélites. Desarrollo de semiconductores de compuestos ternarios (GTCS) NASA (4 de septiembre de 2023) — El astronauta de la JAXA (Agencia Japonesa de Exploración Aeroespacial) Satoshi Furukawa intercambia muestras de cristales para el experimento Desarrollo de semiconductores de compuestos ternarios (GTCS, por sus siglas en inglés), el cual compara la calidad de los cristales desarrollados en microgravedad y en la Tierra. Los cristales tienen diversas aplicaciones ópticas, como los láseres infrarrojos. Tecnología Astrobee NASA (23 de junio de 2023) — El astronauta de los Emiratos Árabes Unidos Sultan Alneyadi flota junto a un sistema robótico Astrobee a bordo de la estación espacial. Estos robots de vuelo libre asisten a la tripulación en las tareas rutinarias, ayudando a conservar uno de los recursos más importantes de un astronauta: el tiempo. Sistema visible CapiSorb NASA (21 de abril de 2023) — El astronauta de la NASA Woody Hoburg lleva a cabo una prueba para el experimento Sistema Visible CapiSorb, el cual demuestra el control de material absorbente líquido en el espacio utilizando la fuerza capilar o de absorción. Los materiales absorbentes líquidos son un medio que podría eliminar de manera más eficaz el dióxido de carbono en las futuras naves espaciales. ILLUMA-T NASA (14 de noviembre de 2023) — Los brazos robóticos de la estación espacial instalan un nuevo dispositivo de comunicaciones láser: la Terminal Integrada de Amplificador y Módem de Usuario en la Órbita Terrestre Baja de la Demostración del Retransmisor de Comunicaciones Láser (ILLUMA-T, por sus siglas en inglés). Esta tecnología podría proporcionar una descarga más rápida de datos desde el espacio a la Tierra en una variedad de regímenes espaciales, incluyendo futuras misiones a la Luna y Marte. Ciencias de la Tierra y del espacio ECOSTRESS NASA/JPL-Caltech (13 de junio de 2023) — El Experimento Radiómetro Térmico Espacial ECOSystem en la Estación Espacial (ECOSTRESS, por sus siglas en inglés) registra las temperaturas del suelo y de la vegetación. Esta imagen de Houston, Texas, muestra que las superficies urbanas —como calles, carreteras y autopistas— son más cálidas, como se ve en rojo, en comparación con las afueras de la ciudad. La principal misión de ECOSTRESS es identificar el estrés hídrico en las plantas; este experimento también puede documentar otros fenómenos relacionados con el calor. NICER NASA (13 de junio de 2023) — La investigación Explorador de la Composición Interior de las Estrellas de Neutrones (NICER, por sus siglas en inglés) estudia la naturaleza y el comportamiento de las estrellas de neutrones o púlsares, los agujeros negros y otros objetivos de importancia científica. La medición de las radiaciones de rayos X recopiladas por NICER revelaron similitudes en dos estallidos separados de un púlsar en 2006 y 2020. Un mayor seguimiento y análisis de estas emisiones podría proporcionar una mejor comprensión de la naturaleza y evolución de esta estrella. Observaciones de la Tierra de la Tripulación NASA (13 de noviembre de 2023) — Las ventanas de la cúpula de la estación espacial brindan a la tripulación una vista única del planeta. Para las Observaciones de la Tierra de la Tripulación, los astronautas toman fotografías que muestran cómo los paisajes, el agua y la atmósfera de la Tierra cambian a lo largo del tiempo por causas humanas y naturales. Esta investigación es uno de los registros fotográficos más antiguos que se han hecho de la Tierra y sustenta el bienestar de la tripulación. Actividades educativas y culturales Programa de radioaficionados ARISS NASA (18 de julio de 2023) — El astronauta de la NASA Stephen Bowen realiza una sesión de radioaficionados con estudiantes de Canadá. El programa de Radioaficionados de la Estación Espacial Internacional (ARISS, por sus siglas en inglés) fue la primera iniciativa educativa a bordo de la estación espacial. El impacto de este contacto por radio puede ser revolucionario, alentando a los estudiantes a estudiar ciencias, tecnología, ingeniería y matemáticas. Genes en el Espacio 10 NASA (13 de julio de 2023) — El astronauta de la NASA Frank Rubio lleva a cabo el experimento Genes en el Espacio 10, el cual realiza pruebas con un método para medir la longitud de los telómeros, que son las estructuras en forma de punta en los extremos del ADN. Esta investigación podría proporcionar un método para integrar las mediciones del ADN y los diagnósticos médicos basados en la genética, apoyando las investigaciones biológicas en el espacio. Otros Aproximación de la nave Dragon NASA (11 de noviembre de 2023) — Con más de 2.950 kilogramos (6.500 libras) de carga, la 29.a misión comercial de reabastecimiento de SpaceX llega a la estación espacial el 11 de noviembre de 2023. Un tercio de ese peso consiste en experimentos científicos, incluyendo estudios de comunicaciones ópticas mejoradas y un dispositivo para medir las ondas atmosféricas. Canadarm2 y Dextre NASA (26 de octubre de 2023) — El brazo robótico Canadarm2, con su mano robótica Dextre acoplada a él, es fotografiado mientras la Estación Espacial Internacional orbita a 418 kilómetros (260 millas) de altura sobre las luces de las ciudades de la península arábiga. Canadarm2 es utilizado para instalar experimentos fuera de la estación espacial de forma remota. Utilizando el punto de vista del espacio, estos experimentos pueden captar información sobre nuestro planeta y nuestro papel en el sistema solar. Cygnus e iROSA NASA (1 de septiembre de 2023) — La 19.a misión comercial de reabastecimiento de Northrop Grumman llevó 3.720 kilogramos (8.200 libras) de investigaciones científicas y carga a la estación espacial, incluyendo obras de arte digital creadas por estudiantes y un estudio sobre terapia génica específica para las neuronas. El módulo Columbus NASA (29 de agosto de 2023) — El astronauta Andreas Mogensen, de la ESA (Agencia Espacial Europea), flota en el laboratorio Columbus. Este laboratorio es el principal centro de investigaciones para experimentos de la ESA en la estación espacial. Columbus es un laboratorio presurizado multifuncional que permite una amplia variedad de investigaciones en microgravedad. Descarga de las imagenes: https://www.nasa.gov/gallery/best-of-space-station-science-images-2023/ Keep Exploring Descubre más temas de la NASA Ciencia en la estación Aeronáutica en español Station Benefits for Humanity Space Station Research and Technology View the full article
  20. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) These images of asteroid Apophis were recorded in March 2021 by radio antennas at the Deep Space Network’s Goldstone complex in California and the Green Bank Telescope in West Virginia. The asteroid was 10.6 million miles (17 million kilometers) away, and each pixel has a resolution of 127 feet (38.75 meters).Credit: NASA/JPL-Caltech and NSF/AUI/GBO Save the Date Apophis 2029 Innovation (A29I) Listening Workshop February 7, 2024 Please refer to this web page for any updated information OVERVIEW: NASA’s Agency Chief Technologist (ACT) within the Office of Technology, Policy, and Strategy (OTPS) is hosting a listening workshop on February 7, 2024, on innovative approaches to conduct missions during the Earth flyby of the asteroid Apophis in 2029. This workshop is co-hosted with NASA’s Planetary Defense Coordination Office (PDCO) in the Science Mission Directorate (SMD) as well as with NASA’s Space Technology Mission Directorate (STMD). The Apophis 2029 Innovation (A29I) Listening Workshop will engage the public to explore innovative approaches for a low-cost mission to the asteroid Apophis. Specifically, the workshop seeks information from the commercial space sector, academia, researchers, technology developers, transportation providers, other government agencies, international space agencies, and other interested parties on innovative programmatic, financial, and partnership approaches. Participation by other U.S. government agencies and international space agencies is highly encouraged. The agenda will feature an overview briefing by NASA officials followed by pre-scheduled one-on-one listening sessions between NASA and interested parties. PROGRAM The listening workshop will be held on Wednesday, February 7, 2024, in Washington, D.C. The workshop is divided into two parts. The first part is a widely attended morning overview briefing that will be held at the James E. Webb Auditorium at NASA Headquarters (West Lobby, 300 E St SW, Washington, DC 20024), starting at 9:00 AM Eastern Time. Doors will open at 8:15 AM Eastern Time. The second part will be one-on-one sessions between NASA representatives and external organizations. These one-on-one sessions will begin at 11:00 AM Eastern Time. NASA will determine the final schedule of one-on-one sessions and will contact organizations directly to confirm logistics, location, and assigned session time. The location will be within close proximity to NASA headquarters. Each organization requesting a one-on-one session is limited to up to three participants per organization. The one-on-one sessions will be no more than 30 minutes in length for each organization. For the one-on-one sessions, please do not prepare a slide deck or presentation material as audio/visual equipment will not be provided nor will be permitted. NASA also will not accept any written or electronic material. Please do not provide any confidential or proprietary information during the one-on-one sessions. The one-one-one sessions will not be recorded; however, notes may be taken by NASA civil servants or its support contractor(s). For those organizations and individuals interested in participating in the overview briefing and/or the one-on-one sessions please RSVP by January 19, 2024 by providing the following for all individuals attending from your organization: Name Title (if applicable) Affiliation Email Phone number Attending overview briefing: Y/N Attending one-on-one session: Y/N Please RSVP by sending an email to taelor.n.jones@nasa.gov using the subject line “Apophis 2029 Workshop.” There are no associated activities (e.g., procurement, cooperative agreement, Space Act agreement, etc.) planned at this time. REFERENCES: NASA Apophis Overview: https://science.nasa.gov/solar-system/asteroids/apophis/ Apophis T-6 Workshop, May 10-12, 2023 (Program with Abstracts): https://www.hou.usra.edu/meetings/apophis2023/technical_program/ Small Bodies Assessment Group (SBAG) findings, July 11-13, 2023: https://www.lpi.usra.edu/sbag/findings/ NASA Planetary Defense Strategy and Action Plan: https://www.nasa.gov/directorates/smd/planetary-science-division/planetary-defense-coordination-office/nasa-releases-agency-strategy-for-planetary-defense-to-safeguard-earth/ National Preparedness Strategy and Action Plan for Near-Earth Object Hazards and Planetary Defense: https://www.whitehouse.gov/ostp/news-updates/2023/04/03/new-planetary-defense-strategy-outlines-key-us-government-goals/ National Academies’ Planetary Science and Astrobiology Decadal Survey: https://www.nationalacademies.org/our-work/planetary-science-and-astrobiology-decadal-survey-2023-2032 Share Details Last Updated Dec 28, 2023 Related TermsOffice of Technology, Policy and Strategy (OTPS)ApophisPlanetary DefensePlanetary Defense Coordination Office View the full article
  21. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Earlier this year, NASA’s Wallops Flight Facility reaffirmed a 25-year relationship with the Virginia Space Flight Academy (VASFA) through the signing of a new Space Act Agreement. This formal partnership provides outreach opportunities for youth, including a residential space adventure camp each summer. “Wallops is proud to continue our 25-year partnership with VASFA,” said Wallops Director David Pierce. “The camp programs bring local and regional youth to the facility and our subject matter experts look forward to providing behind-the-scenes tours to support the development of the next generation of aerospace professionals.” VASFA campers attend behind the scenes tours of the facility, and learn from different subject matter experts in each location- including the Range Control CenterVirginia Space Flight Academy VASFA was launched in 1998 as one of six projects initiated by the Eastern Shore Regional Partnership. The goal was to offer quality summer camp experiences for local youth by leveraging the high-tech activities being conducted at Wallops, the Virginia Spaceport Authority (then known as the Virginia Commercial Space Flight Authority), NOAA (National Oceanic and Atmospheric Administration), and the United States Navy. Based on the success of the pilot camps, the nonprofit organization was officially established in 2000 and has continued to lead the program. Two summer camp participants work together during a robotics challengeVirginia Space Flight Academy Since then, over 6,000 youth have attended summer camp, with many campers returning to camp as staff. Camp staff members have had the opportunity to leverage their camp experiences to secure internships and employment with NASA and other aerospace partners. An additional 1,000 students have been served by a new series of year-round STEM Academy programming that was launched in 2021. Virginia Space Flight Academy campers and staff celebrate being honored with a Spirit of Virginia award at the end of a camp graduation ceremony.NASA/ Jamie Adkins During the 2023 summer camp season, campers had the opportunity to participate in a few unique experiences. At the July 28 Advanced Aerospace Camp graduation ceremony, the campers and their families were joined by Virginia Governor Glenn Youngkin and First Lady Suzanne S. Youngkin as they presented VASFA with the Spirit of Virginia award. This award recognizes unique qualities and standout achievements across the Commonwealth and salutes Virginians for their uncommon contributions in private industries, education, culture, the arts, and philanthropy. The following week, Advanced Coding and Robotics campers were treated to a rocket launch viewing event during the Northrop Grumman’s 19th cargo resupply launch to the International Space Station aboard the Antares rocket from Wallops Island, Virginia. VASFA campers and staff watch as an Antares rocket launches from Wallops IslandVirginia Space Flight Academy Share Details Last Updated Dec 22, 2023 EditorAmy BarraContactAmy Barraamy.l.barra@nasa.govLocationWallops Flight Facility Related TermsWallops Flight Facility Explore More 4 min read NASA Scientific Balloons Ready for Flights Over Antarctica Article 1 month ago 1 min read NASA Wallops Supports Hypersonic Rocket Launches Article 1 month ago 1 min read NASA Wallops to Support Sounding Rocket Launches Article 1 month ago View the full article
  22. NASA

    Reflection

    NASA / Ben Smegelsky A Great Blue Heron skims its wings on a waterway at NASA’s Kennedy Space Center in Florida on Jan. 11, 2021, making an artistic reflection on the water’s surface. Kennedy shares a border with the Merritt Island National Wildlife Refuge. Merritt Island’s strategic location along the Atlantic Flyway provides a resting and feeding place for thousands of wading birds, shorebirds, and songbirds. Great Blue Herons are just one of the more than 330 native and migratory bird species that call Kennedy and the wildlife refuge home. Image Credit: NASA/Ben Smegelsky View the full article
  23. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) While stationary for two weeks during Mars solar conjunction in November 2023, NASA’s Curiosity rover used its front and rear black-and-white Hazcams to capture 12 hours of a Martian day. The rover’s shadow is visible on the surface in these images taken by the front Hazcam. Videos from the rover show its shadow moving across the Martian surface during a 12-hour sequence while Curiosity remained parked. When NASA’s Curiosity Mars rover isn’t on the move, it works pretty well as a sundial, as seen in two black-and-white videos recorded on Nov. 8, the 4,002nd Martian day, or sol, of the mission. The rover captured its own shadow shifting across the surface of Mars using its black-and-white Hazard-Avoidance Cameras, or Hazcams. Instructions to record the videos were part of the last set of commands beamed up to Curiosity just before the start of Mars solar conjunction, a period when the Sun is between Earth and Mars. Because plasma from the Sun can interfere with radio communications, missions hold off on sending commands to Mars spacecraft for several weeks during this time. (The missions weren’t totally out of contact: They still radioed back regular health check-ins throughout conjunction.) Rover drivers normally rely on Curiosity’s Hazcams to spot rocks, slopes, and other hazards that may be risky to traverse. But because the rover’s other activities were intentionally scaled back just prior to conjunction, the team decided to use the Hazcams to record 12 hours of snapshots for the first time, hoping to capture clouds or dust devils that could reveal more about the Red Planet’s weather. When the images came down to Earth after conjunction, scientists didn’t see any weather of note, but the pair of 25-frame videos they put together do capture the passage of time. Extending from 5:30 a.m. to 5:30 p.m. local time, the videos show Curiosity’s silhouette shifting as the day moves from morning to afternoon to evening. The first video, featuring images from the front Hazcam, looks southeast along Gediz Vallis, a valley found on Mount Sharp. Curiosity has been ascending the base of the 3-mile-tall (5-kilometer-tall) mountain, which sits in Gale Crater, since 2014. As the sky brightens during sunrise, the shadow of the rover’s 7-foot (2-meter) robotic arm moves to the left, and Curiosity’s front wheels emerge from the darkness on either side of the frame. Also becoming visible at left is a circular calibration target mounted on the shoulder of the robotic arm. Engineers use the target to test the accuracy of the Alpha Particle X-ray Spectrometer, an instrument that detects chemical elements on the Martian surface. In the middle of the day, the front Hazcam’s autoexposure algorithm settles on exposure times of around one-third of a second. By nightfall, that exposure time grows to more than a minute, causing the typical sensor noise known as “hot pixels” that appears as white snow across the final image. Curiosity’s rear Hazcam captured the shadow of the back of the rover in this 12-hour view looking toward the floor of Gale Crater. A variety of factors caused several image artifacts, including a black speck, the distorted appearance of the Sun, and the rows of white pixels that streak out from the Sun.NASA/JPL-Caltech The second video shows the view of the rear Hazcam as it looks northwest down the slopes of Mount Sharp to the floor of Gale Crater. The rover’s right rear wheel is visible, along with the shadow of Curiosity’s power system. A small black artifact that appears at the left midway through the video, during the 17th frame, resulted from a cosmic ray hitting the camera sensor. Likewise, the bright flashing and other noise at the end of the video are the result of heat from the spacecraft’s power system affecting the Hazcam’s image sensor. These images have been re-projected to correct the wide-angle lenses of the Hazcams. The speckled appearance of the images, especially prominent in the rear-camera video, is due to 11 years of Martian dust settling on the lenses. More About the Mission Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington. For more about Curiosity, visit: http://mars.nasa.gov/msl News Media Contacts Andrew Good Jet Propulsion Laboratory, Pasadena, Calif. 818-393-2433 andrew.c.good@jpl.nasa.gov Karen Fox / Alana Johnson NASA Headquarters, Washington 301-286-6284 / 202-358-1501 karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov 2023-189 Share Details Last Updated Dec 28, 2023 Related TermsCuriosity (Rover)MarsPlanetsThe Solar System Explore More 5 min read NASA’s Juno to Get Close Look at Jupiter’s Volcanic Moon Io on Dec. 30 Article 1 day ago 5 min read NASA Asteroid Sampling Mission Renamed OSIRIS-APEX for New Journey The former OSIRIS-REx spacecraft sets off on a journey to study asteroid Apophis and take… Article 6 days ago 4 min read NASA’s Hubble Watches ‘Spoke Season’ on Saturn This photo of Saturn was taken by NASA’s Hubble Space Telescope on October 22, 2023,… Article 1 week ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  24. Ahead of launch as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative, Astrobotic’s Peregrine lunar lander is encapsulated in the payload fairing, or nose cone, of United Launch Alliance’s Vulcan rocket on Nov. 21, 2023, at Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida. Launch of Astrobotic’s Peregrine Mission One will carry NASA and commercial payloads to the Moon in early 2024 to study the lunar exosphere, thermal properties, and hydrogen abundance of the lunar regolith, magnetic fields, and the radiation environment of the lunar surface.NASA As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis program, United Launch Alliance (ULA) and Astrobotic are targeting 2:18 a.m. EST Monday, Jan. 8, for the first commercial robotic launch to the Moon’s surface. Carrying NASA science, liftoff of ULA’s Vulcan rocket and Astrobotic’s Peregrine lunar lander will happen from Launch Complex 41 at Cape Canaveral Space Force Station in Florida. Live launch coverage will air on NASA+, NASA Television, the NASA app, and the agency’s website, with prelaunch events starting Thursday, Jan. 4. Learn how to stream NASA TV through a variety of platforms including social media. Follow events online at: https://www.nasa.gov/nasatv. Peregrine will land on the Moon on Friday, Feb. 23. The NASA payloads aboard the lander aim to help the agency develop capabilities needed to explore the Moon under Artemis and in advance of human missions on the lunar surface. Full coverage of this mission is as follows (all times Eastern): Thursday, Jan. 4 11 a.m. – Science media briefing via WebEx with the following participants: Paul Niles, CLPS project scientist, NASA Headquarters Chris Culbert, CLPS program manager, NASA’s Johnson Space Center Nic Stoffle, science and operations lead for Linear Energy Transfer Spectrometer, NASA Johnson Anthony Colaprete, principal investigator, Near-Infrared Volatile Spectrometer System, NASA’s Ames Research Center Richard Elphic, principal investigator, Neutron Spectrometer System, NASA’s Ames Research Center Barbara Cohen, principal investigator, Peregrine Ion-Trap Mass Spectrometer, NASA’s Goddard Space Flight Center Daniel Cremons, deputy principal investigator for Laser Retroreflector, NASA Goddard Niki Werkheiser, director, Technology Maturation, Space Technology Mission Directorate, NASA Headquarters Video of the teleconference will stream live on the agency’s website: https://www.nasa.gov/nasatv. Media may ask questions via WebEx. For the dial-in information, please contact the Kennedy newsroom no later than 10 a.m. on Jan. 4, at: ksc-newsroom@mail.nasa.gov. Friday, Jan. 5 3 p.m. – Lunar delivery readiness media teleconference with the following participants: Joel Kearns, deputy associate administrator for Exploration, Science Mission Directorate, NASA Headquarters Ryan Watkins, program scientist, Exploration Science Strategy and Integration Office, NASA Headquarters John Thornton, CEO, Astrobotic Gary Wentz, vice president, Government and Commercial Programs, ULA Arlena Moses, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Audio of the teleconference will stream live on the agency’s website: https://www.nasa.gov/nasatv. Media may ask questions via phone. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 1 p.m. on Jan. 5, at: ksc-newsroom@mail.nasa.gov. Monday, Jan. 8 1:30 a.m. – NASA TV launch coverage begins 2:18 a.m. – Launch NASA launch coverage Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, the full mission broadcast can be heard on -1220 and -1240, while the countdown net only can be heard on -7135 beginning approximately at 1:30 a.m. when the mission broadcast begins. On launch day, a “tech feed” showing a static shot of the launch pad without NASA TV commentary will be carried on the NASA TV media channel. NASA website launch coverage Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 1:30 a.m. on Jan. 8, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage on the Artemis blog for updates. Attend launch virtually Members of the public can register to attend this launch virtually. As a virtual guest, you have access to curated resources, schedule changes, and mission-specific information delivered straight to your inbox. Following each activity, virtual guests will receive a commemorative stamp for their virtual guest passport. Watch, engage on social media Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Artermis. You can also stay connected by following and tagging these accounts: In May 2019, NASA awarded a task order for the scientific payload delivery to Astrobotic, which is on track to be one of the first of at least eight CLPS deliveries already planned. Through Artemis, NASA is working with multiple CLPS vendors to send a regular cadence of deliveries to the Moon to perform science investigations, test technologies, and demonstrate capabilities to help NASA explore the Moon before NASA sends the first astronauts to land near the lunar South Pole. The deadline has passed for media accreditation for in-person coverage of this launch. The agency’s media accreditation policy is available online. More information about media accreditation is available by emailing: ksc-media-accreditat@mail.nasa.gov. For media inquiries relating to the launch provider, please contact ULA’s communications department by emailing: media@ulalaunch.com. For media inquiries relating to the CLPS provider, Astrobotic, please contact Astrobotic’s communication department by emailing: contact@astrobotic.com. X: @NASA, @NASAKennedy, @NASAArtemis, @NASAMoon Facebook: NASA, NASAKennedy, NASAArtemis Instagram: @NASA, @NASAKennedy, @NASAArtemis Learn more about NASA’s CLPS initiative at: https://www.nasa.gov/clps Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov. -end- Karen Fox / Alise Fisher Headquarters, Washington 202-358-1600 / 202-358-2546 karen.fox@nasa.gov / alise.m.fisher@nasa.gov Nilufar Ramji Johnson Space Center, Houston 281-483-5111 nilufar.ramji@nasa.gov Antonia Jaramillo Kennedy Space Center, Florida 321-501-8425 antonia.jaramillobotero@nasa.gov Share Details Last Updated Dec 28, 2023 LocationNASA Headquarters Related TermsCommercial Lunar Payload Services (CLPS)ArtemisMissions View the full article
  25. This image revealing the north polar region of the Jovian moon Io was taken on October 15 by NASA’s Juno. Three of the mountain peaks visible in the upper part of image, near the day-night dividing line, were observed here for the first time by the spacecraft’s JunoCam.Image data: NASA/JPL-Caltech/SwRI/MSSS, Image processing by Ted Stryk The orbiter has performed 56 flybys of Jupiter and documented close encounters with three of the gas giant’s four largest moons. NASA’s Juno spacecraft will on Tuesday, Dec. 30, make the closest flyby of Jupiter’s moon Io that any spacecraft has made in over 20 years. Coming within roughly 930 miles (1,500 kilometers) from the surface of the most volcanic world in our solar system, the pass is expected to allow Juno instruments to generate a firehose of data. “By combining data from this flyby with our previous observations, the Juno science team is studying how Io’s volcanoes vary,” said Juno’s principal investigator, Scott Bolton of the Southwest Research Institute in San Antonio, Texas. “We are looking for how often they erupt, how bright and hot they are, how the shape of the lava flow changes, and how Io’s activity is connected to the flow of charged particles in Jupiter’s magnetosphere.” A second ultra-close flyby of Io is scheduled for Feb. 3, 2024, in which Juno will again come within about 930 miles (1,500 kilometers) of the surface. The spacecraft has been monitoring Io’s volcanic activity from distances ranging from about 6,830 miles (11,000 kilometers) to over 62,100 miles (100,000 kilometers), and has provided the first views of the moon’s north and south poles. The spacecraft has also performed close flybys of Jupiter’s icy moons Ganymede and Europa. This JunoCam image of Jupiter’s moon Io captures a plume of material ejected from the (unseen) volcano Prometheus. Indicated by the red arrow, the plume is just visible in the darkness below the terminator (the line dividing day and night). The image was taken by NASA’s Juno spacecraft on October 15.NASA/JPL-Caltech/SwRI/MSSS “With our pair of close flybys in December and February, Juno will investigate the source of Io’s massive volcanic activity, whether a magma ocean exists underneath its crust, and the importance of tidal forces from Jupiter, which are relentlessly squeezing this tortured moon,” said Bolton. Now in the third year of its extended mission to investigate the origin of Jupiter, the solar-powered spacecraft will also explore the ring system where some of the gas giant’s inner moons reside. Picture This All three cameras aboard Juno will be active during the Io flyby. The Jovian Infrared Auroral Mapper (JIRAM), which takes images in infrared, will be collecting the heat signatures emitted by volcanoes and calderas covering the moon’s surface. The mission’s Stellar Reference Unit (a navigational star camera that has also provided valuable science) will obtain the highest-resolution image of the surface to date. And the JunoCam imager will take visible-light color images. JunoCam was included on the spacecraft for the public’s engagement and was designed to operate for up to eight flybys of Jupiter. The upcoming flyby of Io will be Juno’s 57th orbit around Jupiter, where the spacecraft and cameras have endured one of the solar system’s most punishing radiation environments. “The cumulative effects of all that radiation has begun to show on JunoCam over the last few orbits,” said Ed Hirst, project manager of Juno at NASA’s Jet Propulsion Laboratory in Southern California. “Pictures from the last flyby show a reduction in the imager’s dynamic range and the appearance of ‘striping’ noise. Our engineering team has been working on solutions to alleviate the radiation damage and to keep the imager going.” More Io, Please After several months of study and assessment, the Juno team adjusted the spacecraft’s planned future trajectory to add seven new distant Io flybys (for a total of 18) to the extended mission plan. After the close Io pass on Feb. 3, the spacecraft will fly by Io every other orbit, with each orbit growing progressively more distant: The first will be at an altitude of about 10,250 miles (16,500 kilometers) above Io, and the last will be at about 71,450 miles (115,000 kilometers). The gravitational pull of Io on Juno during the Dec. 30 flyby will reduce the spacecraft’s orbit around Jupiter from 38 days to 35 days. Juno’s orbit will drop to 33 days after the Feb. 3 flyby. After that, Juno’s new trajectory will result in Jupiter blocking the Sun from the spacecraft for about five minutes at the time when the orbiter is at its closest to the planet, a period called perijove. Although this will be the first time the solar-powered spacecraft has encountered darkness since its flyby of Earth in October 2013, the duration will be too short to affect its overall operation. With the exception of the Feb. 3 perijove, the spacecraft will encounter solar eclipses like this during every close flyby of Jupiter from now on through the remainder of its extended mission, which ends in late 2025. Starting in April 2024, the spacecraft will carry out a series of occultation experiments that use Juno’s Gravity Science experiment to probe Jupiter’s upper atmospheric makeup, which provides key information on the planet’s shape and interior structure. More About the Mission JPL, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott J. Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. Lockheed Martin Space in Denver built and operates the spacecraft. More information about Juno is available at: https://www.nasa.gov/juno News Media Contacts DC Agle Jet Propulsion Laboratory, Pasadena, Calif. 818-393-9011 agle@jpl.nasa.gov Karen Fox / Alana Johnson NASA Headquarters, Washington 301-286-6284 / 202-358-1501 karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov Deb Schmid Southwest Research Institute, San Antonio 210-522-2254 dschmid@swri.org 2023-188 Share Details Last Updated Dec 27, 2023 Related TermsJunoEuropaJet Propulsion LaboratoryJupiterJupiter MoonsRings of JupiterThe Solar System Explore More 5 min read NASA’s Deep Space Network Turns 60 and Prepares for the Future Article 5 days ago 6 min read Meet the Infrared Telescopes That Paved the Way for NASA’s Webb Article 5 days ago 5 min read NASA Asteroid Sampling Mission Renamed OSIRIS-APEX for New Journey The former OSIRIS-REx spacecraft sets off on a journey to study asteroid Apophis and take… Article 5 days ago View the full article
×
×
  • Create New...