Jump to content

NASA

Publishers
  • Posts

    5,727
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. Explore This Section Science Science Activation Sharing PLANETS Curriculum… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 2 min read Sharing PLANETS Curriculum with Out-of-School Time Educators Out of school time (OST) educators work with youth in afterschool, community, and camp programs. Science, Technology, Engineering, and Mathematics (STEM) learning in OST can be challenging for multiple reasons, including lack of materials and support for educators. The NASA Science Activation program’s PLANETS project – Planetary Learning that Advances the Nexus of Engineering, Technology, and Science – led by Northern Arizona University in Flagstaff, AZ, provides both written curriculum and virtual educator support on planetary science and engineering. PLANETS offers three curriculum units focused on themes from NASA’s strategic priorities and mission directives in planetary science over the next decade: Space Hazards for learners in grades 3-5, Water in Extreme Environments, and Remote Sensing for learners in grades 6-8. PLANETS recently exhibited at two national conferences for educators to share these free NASA partner resources: the Space Exploration Educators Conference at Space Center Houston in Houston, TX on Feb 6-8, 2025 and the Beyond School Hours conference in Orlando, FL on Feb 13-16, 2025. Approximately 500 educators interacted with PLANETS team members to learn about the curriculum and to share their needs for OST learners. Some educators shared how they are already using PLANETS and how much their learners enjoy the lessons. In addition to sharing PLANETS resources, the team also had QR codes and flyers providing information about all the other Science Activation project teams, making sure educators grow in awareness of all that NASA’s Science Mission Directorate does to engage the public. OST educators appreciate the integrity and quality of NASA-funded resources. One educator shared, “Free resources are always critical to youth-serving organizations. PLANETS also has everyday materials and educator dialogue on how to deliver, making it easy to pick up and use.” Another OST educator said, “There are programs out there, like PLANETS, that truly help people of all backgrounds,” and yet another expressed, “I love the activities, and could see our youth engaging with it in a fun way.” Disseminating these types of NASA Science Activation program resources at regional and national venues is vital. The PLANETS project is supported by NASA under cooperative agreement award number NNX16AC53A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn Members of the PLANETS team exhibiting at the Space Exploration Educators Conference in Houston, TX. Share Details Last Updated Feb 25, 2025 Editor NASA Science Editorial Team Related Terms Science Activation Opportunities For Educators to Get Involved Planetary Science Explore More 3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska Article 7 days ago 2 min read An Afternoon of Family Science and Rocket Exploration in Alaska Article 2 weeks ago 3 min read Tribal Library Co-Design STEM Space Workshop Article 2 weeks ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  2. NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrates the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.Lockheed Martin Corporation/Gary Tice NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests. During maximum afterburner testing, a test demonstrating the engine’s ability to generate the thrust required for supersonic flight, the aircraft showed off a phenomenon known as Mach diamonds, seen in this image from Jan. 22, 2025. Mach diamonds, or shock diamonds, appear in the exhaust of supersonic aircraft like the X-59. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter. See what’s next for X-59. Image credit: Lockheed Martin/Gary Tice View the full article
  3. 6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This artist’s concept depicts NASA’s Europa Clipper as it flies by Mars, using the planet’s gravitational force to alter the spacecraft’s path on its way to the Jupiter system. NASA/JPL-Caltech The orbiter bound for Jupiter’s moon Europa will investigate whether the moon is habitable, but it first will get the help of Mars’ gravitational force to get to deep space. On March 1, NASA’s Europa Clipper will streak just 550 miles (884 kilometers) above the surface of Mars for what’s known as a gravity assist — a maneuver to bend the spacecraft’s trajectory and position it for a critical leg of its long voyage to the Jupiter system. The close flyby offers a bonus opportunity for mission scientists, who will test their radar instrument and thermal imager. Europa Clipper will be closest to the Red Planet at 12:57 p.m. EST, approaching it at about 15.2 miles per second (24.5 kilometers per second) relative to the Sun. For about 12 hours prior and 12 hours after that time, the spacecraft will use the gravitational pull of Mars to pump the brakes and reshape its orbit around the Sun. As the orbiter leaves Mars behind, it will be traveling at a speed of about 14 miles per second (22.5 kilometers per second). The flyby sets up Europa Clipper for its second gravity assist — a close encounter with Earth in December 2026 that will act as a slingshot and give the spacecraft a velocity boost. After that, it’s a straightforward trek to the outer solar system; the probe is set to arrive at Jupiter’s orbit in April 2030. “We come in very fast, and the gravity from Mars acts on the spacecraft to bend its path,” said Brett Smith, a mission systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. “Meanwhile, we’re exchanging a small amount of energy with the planet, so we leave on a path that will bring us back past Earth.” This animation depicts NASA’s Europa Clipper as it flies by the Red Planet. The spacecraft will use the planet’s gravity to bend its path slightly, setting up the next leg of its long journey to investigate Jupiter’s icy moon Europa. NASA/JPL-Caltech Harnessing Gravity Europa Clipper launched from Kennedy Space Center in Florida on Oct. 14, 2024, via a SpaceX Falcon Heavy, embarking on a 1.8-billion-mile (2.9-billion-kilometer) trip to Jupiter, which is five times farther from the Sun than Earth is. Without the assists from Mars in 2025 and from Earth in 2026, the 12,750-pound (6,000-kilogram) spacecraft would require additional propellant, which adds weight and cost, or it would take much longer to get to Jupiter. Gravity assists are baked into NASA’s mission planning, as engineers figure out early on how to make the most of the momentum in our solar system. Famously, the Voyager 1 and Voyager 2 spacecraft, which launched in 1977, took advantage of a once-in-a-lifetime planetary lineup to fly by the gas giants, harnessing their gravity and capturing data about them. While navigators at JPL, which manages Europa Clipper and Voyager, have been designing flight paths and using gravity assists for decades, the process of calculating a spacecraft’s trajectory in relation to planets that are constantly on the move is never simple. “It’s like a game of billiards around the solar system, flying by a couple of planets at just the right angle and timing to build up the energy we need to get to Jupiter and Europa,” said JPL’s Ben Bradley, Europa Clipper mission planner. “Everything has to line up — the geometry of the solar system has to be just right to pull it off.” About 4½ months after its launch, NASA’s Europa Clipper is set to perform a gravity as-sist maneuver as it flies by Mars on March 1. Next year the spacecraft will swing back by Earth for a final gravity assist before NASA/JPL-Caltech Refining the Path Navigators sent the spacecraft on an initial trajectory that left some buffer around Mars so that if anything were to go wrong in the weeks after launch, Europa Clipper wouldn’t risk impacting the planet. Then the team used the spacecraft’s engines to veer closer to Mars’ orbit in what are called trajectory correction maneuvers, or TCMs. Mission controllers have performed three TCMs to set the stage for the Mars gravity assist — in early November, late January, and on Feb. 14. They will conduct another TCM about 15 days after the Mars flyby to ensure the spacecraft is on track and are likely to conduct additional ones — upwards of 200 — throughout the mission, which is set to last until 2034. Opportunity for Science While navigators are relying on the gravity assist for fuel efficiency and to keep the spacecraft on their planned path, scientists are looking forward to the event to take advantage of the close proximity to the Red Planet and test two of the mission’s science instruments. About a day prior to the closest approach, the mission will calibrate the thermal imager, resulting in a multicolored image of Mars in the months following as the data is returned and scientists process the data. And near closest approach, they’ll have the radar instrument perform a test of its operations — the first time all its components will be tested together. The radar antennas are so massive, and the wavelengths they produce so long that it wasn’t possible for engineers to test them on Earth before launch. More About Europa Clipper Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet. Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, managed the launch service for the Europa Clipper spacecraft. Find more information about Europa Clipper here: https://science.nasa.gov/mission/europa-clipper/ Check out Europa Clipper's Mars flyby in 3D News Media Contacts Gretchen McCartney Jet Propulsion Laboratory, Pasadena, Calif. 818-287-4115 gretchen.p.mccartney@jpl.nasa.gov Karen Fox / Molly Wasser NASA Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 2025-024 Share Details Last Updated Feb 25, 2025 Related TermsEuropa ClipperEuropaJet Propulsion Laboratory Explore More 2 min read Is There Potential for Life on Europa? We Asked a NASA Expert: Episode 52 Article 2 hours ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon Article 2 weeks ago 5 min read NASA’s SPHEREx Space Telescope Will Seek Life’s Ingredients Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  4. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) That’s a great question. And it’s a question that NASA will seek to answer with the Europa Clipper spacecraft. Europa is a moon of Jupiter. It’s about the same size as Earth’s Moon, but its surface looks very different. The surface of Europa is covered with a layer of ice, and below that ice, we think there’s a layer of liquid water with more water than all of Earth’s oceans combined. So because of this giant ocean, we think that Europa is actually one of the best places in the solar system to look for life beyond the Earth. Life as we know it has three main requirements: liquid water — all life here on Earth uses liquid water as a basis. The second is the right chemical elements. These are elements like carbon, hydrogen, nitrogen, oxygen, phosphorus, sulfur. They’re elements that create the building blocks for life as we know it on Earth. We think that those elements exist on Europa. The third component is an energy source. As Europa orbits around Jupiter, Jupiter’s strong gravity tugs and pulls on it. It actually stretches out the surface. And it produces a heat source called tidal heating. So it’s possible that hydrothermal systems could exist at the bottom of Europa’s ocean, and it’s possible that those could be locations for abundant life. So could there be life on Europa? It’s possible. And Europa Clipper is going to explore Europa to help try to answer that question. [END VIDEO TRANSCRIPT] Full Episode List Full YouTube Playlist Share Details Last Updated Feb 25, 2025 Related TermsScience Mission DirectorateAstrobiologyEuropaEuropa ClipperPlanetary SciencePlanetary Science DivisionThe Solar System Explore More 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the… Article 2 hours ago 4 min read NASA: New Study on Why Mars is Red Supports Potentially Habitable Past Article 5 hours ago 4 min read Five Facts About NASA’s Moon Bound Technology Article 16 hours ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  5. 4 Min Read Science in Orbit: Results Published on Space Station Research in 2024 NASA and its international partners have hosted research experiments and fostered collaboration aboard the International Space Station for over 25 years. More than 4,000 investigations have been conducted, resulting in over 4,400 research publications with 361 in 2024 alone. Space station research continues to advance technology on Earth and prepare for future space exploration missions. Below is a selection of scientific results that were published over the past year. For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results. Making stronger cement NASA’s Microgravity Investigation of Cement Solidification (MICS) observes the hydration reaction and hardening process of cement paste on the space station. As part of this experiment, researchers used artificial intelligence to create 3D models from 2D microscope images of cement samples formed in microgravity. Characteristics such as pore distribution and crystal growth can impact the integrity of any concrete-like material, and these artificial intelligence models allow for predicting internal structures that can only be adequately captured in 3D. Results from the MICS investigation improve researchers’ understanding of cement hardening and could support innovations for civil engineering, construction, and manufacturing of industrial materials on exploration missions. European Space Agency (ESA) astronaut Alexander Gerst works on the Microgravity Investigation of Cement Solidification (MICS) experiment in a portable glovebag aboard the International Space Station.NASA Creating Ideal Clusters The JAXA (Japan Aerospace Exploration Agency) Colloidal Clusters investigation uses the attractive forces between oppositely charged particles to form pyramid-shaped clusters. These clusters are a key building block for the diamond lattice, an ideal structure in materials with advanced light-manipulation capabilities. Researchers immobilized clusters on the space station using a holding gel with increased durability. The clusters returned to Earth can scatter light in the visible to near-infrared range used in optical and laser communications systems. By characterizing these clusters, scientists can gain insights into particle aggregation in nature and learn how to effectively control light reflection for technologies that bend light, such as specialized sensors, high-speed computing components, and even novel cloaking devices. A fluorescent micrograph image shows colloidal clusters immobilized in gel. Negatively charged particles are represented by green fluorescence, and positively charged particles are red. JAXA/ Nagoya City University Controlling Bubble Formation NASA’s Optical Imaging of Bubble Dynamics on Nanostructured Surfaces studies how different types of surfaces affect bubbles generated by boiling water on the space station. Researchers found that boiling in microgravity generates larger bubbles and that bubbles grow about 30 times faster than on Earth. Results also show that surfaces with finer microstructures generate slower bubble formation due to changes in the rate of heat transfer. Fundamental insights into bubble growth could improve thermal cooling systems and sensors that use bubbles. High-speed video shows dozens of bubbles growing in microgravity until they collapse.Tengfei Luo Evaluating Cellular Responses to Space The ESA (European Space Agency) investigation Cytoskeleton attempts to uncover how microgravity impacts important regulatory processes that control cell multiplication, programmed cell death, and gene expression. Researchers cultured a model of human bone cells and identified 24 pathways that are affected by microgravity. Cultures from the space station showed a reduction of cellular expansion and increased activity in pathways associated with inflammation, cell stress, and iron-dependent cell death. These results help to shed light on cellular processes related to aging and the microgravity response, which could feed into the development of future countermeasures to help maintain astronaut health and performance. Fluorescent staining of cells from microgravity (left) and ground control (right).ESA Improving Spatial Awareness The CSA (Canadian Space Agency) investigation Wayfinding investigates the impact of long-duration exposure to microgravity on the orientation skills in astronauts. Researchers identified reduced activity in spatial processing regions of the brain after spaceflight, particularly those involved in visual perception and orientation of spatial attention. In microgravity, astronauts cannot process balance cues normally provided by gravity, affecting their ability to perform complex spatial tasks. A better understanding of spatial processes in space allows researchers to find new strategies to improve the work environment and reduce the impact of microgravity on the spatial cognition of astronauts. An MRI (magnetic resonance imaging) scan of the brain shows activity in the spatial orientation regions.NeuroLab Monitoring low Earth orbit The Roscomos-ESA-Italian Space Agency investigation Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory) is a multipurpose telescope designed to examine light emissions entering Earth’s atmosphere. Researchers report that Mini-EUSO data has helped to develop a new machine learning algorithm to detect space debris and meteors that move across the field of view of the telescope. The algorithm showed increased precision for meteor detection and identified characteristics such as rotation rate. The algorithm could be implemented on ground-based telescopes or satellites to identify space debris, meteors, or asteroids and increase the safety of space activities. The Mini-EUSO telescope is shown in early assembly.JEM-EUSO Program For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results. Destiny Doran International Space Station Research Communications Team Johnson Space Center Keep Exploring Discover More Topics From NASA Space Station Research Results Humans In Space Space Station Research and Technology Space Station Research and Technology Resources View the full article
  6. Is There Potential for Life on Europa? We Asked a NASA Expert
  7. The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems NASA’s Artemis IV astronauts will be the first to inhabit the Gateway lunar space station, opening the door to greater exploration of the Moon and paving the way to Mars. Gateway’s Power and Propulsion Element, which will make the station the most powerful solar electric spacecraft ever flown, takes shape at Maxar Space Systems. In lunar orbit, Gateway will allow NASA to conduct unique science and exploration while preparing astronauts to go to the Red Planet. Technicians install key hardware on the element’s Propulsion Bus Module following installation of both electric propulsion and chemical propulsion control modules. The image highlights a propellant tank exposed on the right, positioned within the central cylinder of the element. The Power and Propulsion Element will launch with Gateway’s HALO (Habitation and Logistics Outpost) ahead of NASA’s Artemis IV mission. During Artemis IV, V, and VI, international crews of astronauts will assemble the lunar space station around the Moon and embark on expeditions to the Moon’s South Pole region. The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland and built by Maxar Space Systems in Palo Alto, California. Gateway is an international collaboration to establish humanity’s first lunar space station as a central component of the Artemis architecture designed to return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars. The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems An artist’s rendering of the Gateway lunar space station, including its Power and Propulsion Element, shown here with its solar arrays deployed. Gateway will launch its initial elements to lunar orbit ahead of the Artemis IV mission. NASA/Alberto Bertolin An artist’s rendering of Gateway with the Power and Propulsion Element’s advanced thrusters propelling the lunar space station to the Moon. NASA/Alberto Bertolin Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share Details Last Updated Feb 25, 2025 ContactJacqueline Minerdjacqueline.minerd@nasa.govLocationGlenn Research Center Related TermsArtemisArtemis 4Earth's MoonExploration Systems Development Mission DirectorateGateway ProgramGateway Space StationGlenn Research CenterHumans in SpaceTechnologyTechnology for Space Travel Explore More 5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station NASA and its international partners are making progress on Gateway – the lunar space station… Article 4 days ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing… Article 1 month ago 2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission A key element of the Gateway lunar space station has entered the cleanroom for final… Article 2 weeks ago Keep Exploring Discover More Topics From NASA Humans In Space Orion Spacecraft Human Landing System Extravehicular Activity and Human Surface Mobility View the full article
  8. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A new international study partially funded by NASA on how Mars got its iconic red color adds to evidence that Mars had a cool but wet and potentially habitable climate in its ancient past. Mosaic of the Valles Marineris hemisphere of Mars projected into point perspective, a view similar to that which one would see from a spacecraft. The distance is 2500 kilometers from the surface of the planet, with the scale being .6km/pixel. The mosaic is composed of 102 Viking Orbiter images of Mars. The center of the scene (lat -8, long 78) shows the entire Valles Marineris canyon system, over 2000 kilometers long and up to 8 kilometers deep, extending form Noctis Labyrinthus, the arcuate system of graben to the west, to the chaotic terrain to the east. Many huge ancient river channels begin from the chaotic terrain from north-central canyons and run north. The three Tharsis volcanoes (dark red spots), each about 25 kilometers high, are visible to the west. South of Valles Marineris is very ancient terrain covered by many impact craters.NASA The current atmosphere of Mars is too cold and thin to support liquid water, an essential ingredient for life, on its surface for lengthy periods. However, various NASA and international missions have found evidence that water was abundant on the Martian surface billions of years ago during a more clement era, such as features that resemble dried-up rivers and lakes, and minerals that only form in the presence of liquid water. Adding to this evidence, results from a study published February 25 in the journal Nature Communications suggest that the water-rich iron mineral ferrihydrite may be the main culprit behind Mars’ reddish dust. Martian dust is known to be a hodgepodge of different minerals, including iron oxides, and this new study suggests one of those iron oxides, ferrihydrite, is the reason for the planet’s color. The finding offers a tantalizing clue to Mars’ wetter and potentially more habitable past because ferrihydrite forms in the presence of cool water, and at lower temperatures than other previously considered minerals, like hematite. This suggests that Mars may have had an environment capable of sustaining liquid water before it transitioned from a wet to a dry environment billions of years ago. “The fundamental question of why Mars is red has been considered for hundreds if not for thousands of years,” said lead author Adam Valantinas, a postdoctoral fellow at Brown University, Providence, Rhode Island, who started the work as a Ph.D. student at the University of Bern, Switzerland. “From our analysis, we believe ferrihydrite is everywhere in the dust and also probably in the rock formations, as well. We’re not the first to consider ferrihydrite as the reason for why Mars is red, but we can now better test this using observational data and novel laboratory methods to essentially make a Martian dust in the lab.” Laboratory sample showing simulated Martian dust. The ochre color is characteristic of iron-rich ferrihydrite, a mineral that provides crucial insights into ancient water activity and environmental conditions on Mars. The fine-powder mixture consists of ferrihydrite and ground basalt with particles less than one micrometer in size (1/100th diameter of a human hair) (Sample scale: 1 inch across).Adam Valantinas “These new findings point to a potentially habitable past for Mars and highlight the value of coordinated research between NASA and its international partners when exploring fundamental questions about our solar system and the future of space exploration,” said Geronimo Villanueva, the Associate Director for Strategic Science of the Solar System Exploration Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-author of this study. The researchers analyzed data from multiple Mars missions, combining orbital observations from instruments on NASA’s Mars Reconnaissance Orbiter, ESA’s (the European Space Agency) Mars Express and Trace Gas Orbiter with ground-level measurements from NASA rovers like Curiosity, Pathfinder, and Opportunity. Instruments on the orbiters and rovers provided detailed spectral data of the planet’s dusty surface. These findings were then compared to laboratory experiments, where the team tested how light interacts with ferrihydrite particles and other minerals under simulated Martian conditions. “What we want to understand is the ancient Martian climate, the chemical processes on Mars — not only ancient — but also present,” said Valantinas. “Then there’s the habitability question: Was there ever life? To understand that, you need to understand the conditions that were present during the time of this mineral’s formation. What we know from this study is the evidence points to ferrihydrite forming and for that to happen there must have been conditions where oxygen from air or other sources and water can react with iron. Those conditions were very different from today’s dry, cold environment. As Martian winds spread this dust everywhere, it created the planet’s iconic red appearance.” Whether the team’s proposed formation model is correct could be definitively tested after samples from Mars are delivered to Earth for analysis. “The study really is a door-opening opportunity,” said Jack Mustard of Brown University, a senior author on the study. “It gives us a better chance to apply principles of mineral formation and conditions to tap back in time. What’s even more important though is the return of the samples from Mars that are being collected right now by the Perseverance rover. When we get those back, we can actually check and see if this is right.” Part of the spectral measurements were performed at NASA’s Reflectance Experiment Laboratory (RELAB) at Brown University. RELAB is supported by NASA’s Planetary Science Enabling Facilities program, part of the Planetary Science Division of NASA’s Science Mission Directorate at NASA Headquarters in Washington. By William Steigerwald NASA Goddard Space Flight Center, Greenbelt, Maryland Share Details Last Updated Feb 24, 2025 EditorWilliam SteigerwaldContactLonnie Shekhtmanlonnie.shekhtman@nasa.govLocationNASA Goddard Space Flight Center Related TermsThe Solar SystemMars Explore More 5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station NASA and its international partners are making progress on Gateway – the lunar space station… Article 4 days ago 6 min read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind Earth is immersed in material streaming from the Sun. This stream, called the solar wind,… Article 4 days ago 2 min read How Long Does it Take to Get to the Moon… Mars… Jupiter? We Asked a NASA Expert: Episode 51 So how long does it take to get from Earth to the Moon, to Mars… Article 6 days ago View the full article
  9. 4 Min Read Five Facts About NASA’s Moon Bound Technology A view of the Moon from Earth, zooming up to IM-2's landing site at Mons Mouton, which is visible in amateur telescopes. Credits: NASA/Scientific Visualization Studio NASA is sending revolutionary technologies to the Moon aboard Intuitive Machines’ second lunar delivery as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term presence on the lunar surface.  As part of this CLPS flight to the Moon, NASA’s Space Technology Mission Directorate will test novel technologies to learn more about what lies beneath the lunar surface, explore its challenging terrain, and improve in-space communication. The launch window for Intuitive Machines’ second CLPS delivery, IM-2, opens no earlier than Wednesday, Feb. 26 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After the Intuitive Machines’ Nova-C class lunar lander reaches Mons Mouton, a lunar plateau near the Moon’s South Pole region, it will deploy several NASA and commercial technologies including a drill and mass spectrometer, a new cellular communication network, and a small drone that will survey difficult terrain before returning valuable data to Earth. Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Here are five things to know about this unique mission to the Moon, the technologies we are sending, and the teams making it happen! 1. Lunar South Pole Exploration IM-2’s landing site is known as one of the flatter regions in the South Pole region, suitable to meet Intuitive Machines’ requirement for a lit landing corridor and acceptable terrain slope. The landing location was selected by Intuitive Machines using data acquired by NASA’s Lunar Reconnaissance Orbiter. An illustration of Mons Mouton, a mesa-like lunar mountain that towers above the landscape carved by craters near the Moon’s South Pole.Credit: NASA/Scientific Visualization Studio 2. New Technology Demonstrations NASA’s Polar Resources Ice Mining Experiment, known as PRIME-1, is a suite of two instruments – a drill and mass spectrometer – designed to demonstrate our capability to look for ice and other resources that could be extracted and used to produce propellant and breathable oxygen for future explorers. The PRIME-1 technology will dig up to about three feet below the surface into the lunar soil where it lands, gaining key insight into the soil’s characteristics and temperature while detecting other resources that may lie beneath the surface. Data from the PRIME-1 technology demonstration will be made available to the public following the mission, enabling partners to accelerate the development of new missions and innovative technologies. The Polar Resources Ice Mining Experiment-1 (PRIME-1) will help scientists search for water at the lunar South Pole.Credit: NASA/Advanced Concepts Lab 3. Mobile Robots Upon landing on the lunar surface, two commercial Tipping Point technology demonstrations will be deployed near Intuitive Machines’ lander, Tipping Points are collaborations between NASA’s Space Technology Mission Directorate and industry that foster the development of commercial space capabilities and benefit future NASA missions. The first is a small hopping drone developed by Intuitive Machines. The hopper, named Grace, will deploy as a secondary payload from the lander and enable high-resolution surveying of the lunar surface, including permanently shadowed craters around the landing site. Grace is designed to bypass obstacles such as steep inclines, boulders, and craters to cover a lot of terrain while moving quickly, which is a valuable capability to support future missions on the Moon and other planets, including Mars. Artist rendering of the Intuitive Machines Micro Nova Hopper.Credit: Intuitive Machines 4. Lunar Surface Communication The next Tipping Point technology will test a Lunar Surface Communications System developed by Nokia. This system employs the same cellular technology used here on Earth, reconceptualized by Nokia Bell Labs to meet the unique requirements of a lunar mission. The Lunar Surface Communications System will demonstrate proximity communications between the lander, a Lunar Outpost rover, and the hopper. Artist rendering of Nokia’s Lunar Surface Communication System (LSCS), which aims to demonstrate cellular-based communications on the lunar surface. Credit: Intuitive Machines 5. Working Together NASA is working with several U.S. companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative. NASA’s Space Technology Mission Directorate plays a unique role in the IM-2 mission by strategically combining CLPS with NASA’s Tipping Point mechanism to maximize the potential benefit of this mission to NASA, industry, and the nation. NASA’s Lunar Surface Innovation Initiative and Game Changing Development program within the agency’s Space Technology Mission Directorate led the maturation, development, and implementation of pivotal in-situ resource utilization, communication, and mobility technologies flying on IM-2. Join NASA to watch full mission updates, from launch to landing on NASA+, and share your experience on social media. Mission updates will be made available on NASA’s Artemis blog. A team of engineers from NASA’s Johnson Space Center in Houston and Honeybee Robotics in Altadena, California inspect TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – shortly after its arrival at the integration and test facility.Credit: NASA/Robert Markowitz Artist’s rendering of Intuitive Machines’ Athena lunar lander on the Moon. Credit: Intuitive Machines Artist conception: Earth emerges from behind Mons Mouton on the horizon.Credit: NASA/Scientific Visualization Studio Explore More 3 min read NASA’s Polar Ice Experiment Paves Way for Future Moon Missions Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander Article 1 month ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon Article 2 weeks ago Keep Exploring Discover More Topics From NASA Space Technology Mission Directorate Polar Resources Ice Mining Experiment 1 (PRIME-1) Commercial Lunar Payload Services (CLPS) The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping… NASA Partners with American Companies on Key Moon, Exploration Tech NASA has selected 11 U.S. companies to develop technologies that could support long-term exploration on the Moon and in space… Share Details Last Updated Feb 24, 2025 EditorStefanie PayneContactAnyah Demblinganyah.dembling@nasa.govLocationNASA Headquarters Related TermsSpace Technology Mission DirectorateArtemisCommercial Lunar Payload Services (CLPS)Game Changing Development ProgramKennedy Space CenterLunar Surface Innovation InitiativeMissionsNASA HeadquartersResearch and Technology at Kennedy Space CenterScience Mission Directorate View the full article
  10. The unpiloted Roscosmos Progress spacecraft pictured on Aug. 13, 2024, from the International Space Station.Credit: NASA NASA will provide live launch and docking coverage of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies for the crew aboard the International Space Station. The unpiloted Roscosmos Progress 91 spacecraft is scheduled to launch at 4:24 p.m. EST, Thursday, Feb. 27 (2:24 a.m. Baikonur time, Friday, Feb. 28), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan. Live launch coverage will begin at 4 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. After a two-day in-orbit journey to the station, the spacecraft will dock autonomously to the aft port of the Zvezda service module at 6:03 p.m. Saturday, March 1. NASA’s rendezvous and docking coverage will begin at 5:15 p.m. on NASA+. The Progress 91 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew. The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars. Get breaking news, images and features from the space station on Instagram, Facebook, and X. Learn more about the International Space Station, its research, and its crew, at: https://www.nasa.gov/station -end- Claire O’Shea Headquarters, Washington 202-358-1100 claire.a.o’shea@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Feb 24, 2025 LocationNASA Headquarters Related TermsInternational Space Station (ISS)Humans in SpaceISS ResearchJohnson Space CenterSpace Operations Mission Directorate View the full article
  11. Tall plumes of white vapor rise from the rocky Venusian surface in this April 19, 1977, artist’s concept.NASA/Rick Guidice Tall plumes of white vapor rise from the rocky Venusian surface in this April 19, 1977, artist’s concept. A little over a year later, NASA’s Pioneer Venus 1 would launch as the first of a two-spacecraft orbiter-probe combination designed to study the atmosphere of Venus. The first American spacecraft to orbit Venus, Pioneer Venus 1 used radar to map the surface of Venus. The probe found Venus to be generally smoother than Earth, though with a mountain higher than Mt. Everest and a chasm deeper than the Grand Canyon. Thanks to exploration by Pioneer Venus 1 and other spacecraft like Magellan, Galileo, Cassini, and even the Parker Solar Probe, we now have a much better view of what the surface of Venus looks like. Image credit: NASA/Rick Guidice View the full article
  12. Live High-Definition Views from the International Space Station (Official NASA Stream)
  13. Live Video from the International Space Station (Official NASA Stream)
  14. Wayne Johnson, who in 2012 earned the highest rank of Fellow at NASA’s Ames Research Center in California, is known worldwide as an expert in rotary wing technology. He was among those who provided help in testing Ingenuity, NASA’s Mars helicopter.NASA / Eric James NASA Ames’ Wayne Johnson Elected to 2025 Class of New Members of the National Academy of Engineering (NAE) Dr. Wayne R. Johnson, aerospace engineer at Ames Research Center, will be inducted as a new member of the prestigious National Academy of Engineering (NAE), class of 2025, on October 5, 2025, for his 45+ years of contributions to rotorcraft analysis, tiltrotor aircraft development, emerging electric aircraft, and the Mars Helicopter development. NAE members are among the world’s most accomplished engineers from business, academia, and government and are elected by their peers. The full announcement was released to the press on February 11, 2025 from NAE and is at https://www.nae.edu/19579/31222/20095/327741/331605/NAENewClass2025 View the full article
  15. Drone pilot Brayden Chamberlain flashes a “good to go” signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff during a FireSense uncrewed aerial system (UAS) Technology Demonstration test in 2023 in Missoula, Montana. The instruments on board collected data on wind speed and direction, humidity, temperature, and pressure.NASA/Milan Loiacono NASA’s Kennedy Space Center in Florida invites media to attend a prescribed fire campaign event hosted by the NASA FireSense Project, the Department of Defense (DOD), and the U.S. Fish and Wildlife Service. Campaign activities will occur from Monday, April 7, to Monday, April 21. The FireSense campaign activities will test cutting-edge models and demonstrate new technologies to measure fire behavior and smoke dynamics. The Fish and Wildlife Service will conduct the prescribed fire as part of their land management responsibilities on the Merritt Island National Wildlife Refuge, which shares a boundary with NASA Kennedy. The event also will demonstrate how NASA, DOD, and the Fish and Wildlife Service work with interagency and private sector partners to reduce the risk from wildland fires and benefit ecosystem health, ultimately preventing catastrophic impacts on critical national infrastructure, the economy, and local communities, while increasing the safety of wildland fire response operations. Credentialing is open to U.S. and international media. International media must apply by 11:59 EDT p.m. Sunday, March 16, and U.S. media must apply by 11:59 p.m. EDT Sunday, March 23. More details on the specific date of the prescribed fire, weather permitting, will be provided in the coming weeks. Media wishing to take part in person must apply for credentials at: https://media.ksc.nasa.gov Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support, please email by Friday, March 28 to: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Messod Bendayan, messod.c.bendayan@nasa.gov. NASA coordinates field and airborne sampling with academic and agency partners, including the DOD Strategic Environmental Research and Development Program and DOD Environmental Security Technology Certification Program. The Fish and Wildlife Service oversees all prescribed burn activities on the Merritt Island National Wildlife Refuge. NASA Kennedy is one of the most biologically diverse areas in the United States, counting over 1,000 species of plants, 117 kinds of fish, 68 types of amphibians and reptiles, 330 kinds of birds, and 31 different mammals within its more than 144,000 acres. For more information about NASA’s FireSense Project, please visit: https://cce.nasa.gov/firesense -end- Milan Loiacono Ames Research Center, California 650-450-7575 milan.p.loiacono@nasa.gov Harrison Raine Ames Research Center, California 310-924-0030 harrison.s.raine@nasa.gov Messod Bendayan Kennedy Space Center, Florida 256-930-1371 messod.c.bendayan@nasa.gov View the full article
  16. NASA logo. (Credit: NASA) NASA acting Administrator Janet Petro announced Monday Vanessa Wyche will serve as the acting associate administrator for the agency at NASA Headquarters in Washington, effective immediately. Wyche, who had been the director of NASA’s Johnson Space Center in Houston, is detailed as Petro’s senior advisor leading the agency’s center directors and mission directorate associate administrators. She will act as the agency’s chief operating officer for about 18,000 civil servant employees and an annual budget of more than $25 billion. Stephen Koerner will become the acting center director of NASA Johnson. The agency also named Jackie Jester as associate administrator for the Office of Legislative and Intergovernmental Affairs and announced Catherine Koerner, associate administrator for the agency’s Exploration Systems Development Mission Directorate will retire effective Friday, Feb. 28. Lori Glaze, currently the deputy associate administrator for Exploration Systems Development will become the mission directorate’s acting associate administrator. “As we continue to advance our mission, it’s crucial that we have strong, experienced leaders in place,” Petro said. “Vanessa will bring exceptional leadership to NASA’s senior ranks, helping guide our workforce toward the opportunities that lie ahead, while Steve will continue to provide steadfast leadership at NASA Johnson. Jackie’s return to the agency will ensure we remain closely aligned with national priorities as we work with Congress. Cathy’s legacy is one of unwavering dedication to human spaceflight, and we are grateful for her years of service. Lori’s leadership will continue to build on that legacy as we push forward in our exploration efforts. These appointments reflect NASA’s unwavering commitment to excellence, and I have full confidence that each of these leaders will carry our vision forward with purpose, integrity, and a relentless drive to succeed.” Prior to her new role, Wyche was the director NASA Johnson – home to America’s astronaut corps, Mission Control Center, International Space Station, Orion and Gateway Programs, and its more than 11,000 civil service and contractor employees. Her responsibilities included a broad range of human spaceflight activities, including development and operation of human spacecraft, NASA astronaut selection and training, mission control, commercialization of low Earth orbit, and leading NASA Johnson in exploring the Moon and Mars. During her 35-year career, Wyche has served in several leadership roles, including Johnson’s deputy center director, director of Exploration Integration and Science Directorate, flight manager of several Space Shuttle Program missions, and executive officer in the Office of the Administrator. A native of South Carolina, Wyche earned a Bachelor of Science in Engineering and Master of Science in Bioengineering from Clemson University. As deputy director of NASA Johnson, Stephen Koerner, oversaw strategic workforce planning, serves as the Designated Agency Safety Health Officer, and supported the Johnson center director in mission reviews. Before his appointment in July 2021, Koerner held various leadership roles at NASA Johnson, including director of the Flight Operations Directorate, associate director, chief financial officer, deputy director of flight operations, and deputy director of mission operations. In her new role as the associate administrator for the Office of Legislative and Intergovernmental Affairs, Jester will direct a staff responsible for managing and coordinating all communication with the U.S. Congress, as well as serve as a senior advisor to agency leaders on legislative matters. Jester rejoins the agency after serving as the senior director for government affairs at Relativity Space’s Washington office where she led policy engagement for the company. Prior to her time with Relativity, she served as a policy advisor at NASA and at the White House Office of Science and Technology Policy. She has served as a professional staff member for the U.S. Senate Committee on Commerce, Science, and Transportation. She has spent time in state government as the Chief Legislative Aide to a member of the Massachusetts House of Representatives. Jester has significant experience advising on space policy issues, aviation operations and safety policy, and has helped develop numerous pieces of legislation. With a 34-year career at NASA, Catherine Koerner has been instrumental in leading NASA’s Exploration Systems Development Mission Directorate, overseeing the development of the agency’s deep space exploration approach. Previously, she was the deputy associate administrator for the mission directorate. Her extensive career at NASA includes roles such as the Orion program manager, director of the Human Health and Performance Directorate, former NASA flight director, several leadership positions within the International Space Station Program during its assembly phase and helping to foster a commercial space industry in low Earth orbit. Glaze has a distinguished background in planetary science, previously serving as the director of NASA’s Planetary Science Division before joining Explorations Systems Development. Prior to her tenure at NASA Headquarters in Washington, she was the chief of the Planetary Geology, Geophysics and Geochemistry Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Deputy Director of Goddard’s Solar System Exploration Division. She has been a leading advocate for Venus exploration, serving as the principal investigator for the Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging mission. Glaze earned her Bachelor of Arts and Master of Science degrees in Physics from the University of Texas at Arlington and a doctorate in Environmental Science from Lancaster University in the United Kingdom. Her prior experience includes roles at the Jet Propulsion Laboratory and at Proxemy Research as Vice President and Senior Research Scientist. For more about NASA’s missions, visit: http://www.nasa.gov -end- Amber Jacobson / Kathryn Hambleton Headquarters, Washington 202-358-1600 amber.c.jacobson@nasa.gov / kathryn.a.hambleton@nasa.gov View the full article
  17. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A NASA exhibit of SLS (Space Launch System), which will return humanity to the Moon, is displayed in front of the Alabama Capitol in Montgomery during Alabama Space Day 2023 on April 11, 2023. NASA’s Marshall Space Flight Center in Huntsville, Alabama, the U.S. Space and Rocket Center, and aerospace industry partners, will host the 2025 Alabama Space Day in Montgomery on Tuesday, Feb. 25 to celebrate Alabama’s robust aerospace contributions and capabilities. The public and news media are invited to attend. NASA/Hannah Maginot Media are invited to attend the 2025 Alabama Space Day from 9:30 a.m. to 4:30 p.m. CST on Tuesday, Feb. 25, at the Alabama State Capitol in Montgomery. NASA’s Marshall Space Flight Center in Huntsville, Alabama, the U.S. Space and Rocket Center, and aerospace industry partners will host the annual public event to celebrate Alabama’s robust aerospace contributions and capabilities, which provide significant economic benefits for the entire state. Area middle school and high school students will have an opportunity to speak with NASA astronaut Loral O’Hara and participate in activities and exhibits. The event also will include a reading of a Space Day resolution by Alabama legislators with NASA Marshall Director Joseph Pelfrey, highlighting Alabama’s contributions to space exploration. Media interested in interviewing NASA Marshall officials or attending NASA events should contact Hannah Maginot at hannah.l.maginot@nasa.gov or 256-932-1937. Space Day 2025 exhibitors include: NASA Marshall, Teledyne Brown Engineering, KBR, Special Aerospace Services (SAS), Sentar, Blue Origin, Astrion, ULA, The University of Alabama in Huntsville’s Propulsion Research Center, Northrop Grumman, Lockheed Martin, and Boeing. Media opportunities for the day include: 9:30 a.m. to 4:30 p.m. – Exhibits and STEM activities Location: South Capitol Lawn and Tunnel between Capitol Building and State House 10:30 to 11 a.m. – Alabama Space Day 2025 Proclamation Ceremony Location: Capitol Auditorium 11 to 11:30 a.m. – Alabama Space Authority Meeting Location: Capitol Auditorium 1 to 2 p.m. – Resolution readings on the House and Senate Floors About the NASA Marshall Space Flight Center NASA’s Marshall Space Flight Center is celebrating 65 years of blending legacy with innovation, advancing space exploration and scientific discovery through collaboration, engineering excellence, and technical solutions that take humanity beyond tomorrow’s horizon. For more information on NASA Marshall, visit https://www.nasa.gov/marshall. Media Contact: Hannah Maginot Marshall Space Flight Center, Huntsville, Ala. hannah.l.maginot@nasa.gov 256-932-1937 Share Details Last Updated Feb 24, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related TermsMarshall Space Flight Center Explore More 6 min read NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork Article 2 hours ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon Article 2 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  18. 6 Min Read NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork NASA’s Marshall Space Flight Center in Huntsville, Alabama, is celebrating its 65-year legacy of ingenuity and service to the U.S. space program – and the expansion of its science, engineering, propulsion, and human spaceflight portfolio with each new decade since the NASA field center opened its doors on July 1, 1960. What many Americans likely call to mind are the “days of smoke and fire,” said Marshall Director Joseph Pelfrey, referring to the work conducted at Marshall to enable NASA’s launch of the first Mercury-Redstone rocket and the Saturn V which lifted Americans to the Moon, the inaugural space shuttle mission, and the shuttle flights that carried the Hubble Space Telescope, Chandra X-ray Observatory, and elements of the International Space Station to orbit. Most recently, he said they’re likely to recall the thunder of NASA’s SLS (Space Launch System), rising into the sky during Artemis I. NASA’s Space Launch System, carrying the Orion spacecraft, launches on the Artemis I flight test on Nov. 16, 2022. NASA’s Marshall Space Flight Center in Huntsville, Alabama, led development and oversees all work on the new flagship rocket, building on its storied history of propulsion and launch vehicle design dating back to the Redstone and Saturn rockets. The most powerful rocket ever built, SLS is the backbone of NASA’s Artemis program, set to carry explorers back to the Moon in 2026, help establish a permanent outpost there, and make possible new, crewed journeys to Mars in the years to come.NASA/Bill Ingalls Yet all the other days are equally meaningful, Pelfrey said, highlighting a steady stream of milestones reflecting the work of Marshall civil service employees, contractors, and industry partners through the years – as celebrated in a new “65 Years of Marshall” timeline. “The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable,” Pelfrey said. “Together they’ve blended legacy with innovation – advancing space exploration and scientific discovery through collaboration, engineering excellence, and technical solutions. They’ve invented and refined technologies that make it possible to safely live and work in space, to explore other worlds, and to help safeguard our own. The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable. Joseph Pelfrey Marshall Space Flight Center Director “Days of smoke and fire may be the most visible signs, but it’s the months and years of preparation and the weeks of post-launch scientific discovery that mark the true dedication, sacrifice, and monumental achievements of this team.” Reflecting on Marshall history Marshall’s primary task in the 1960s was the development and testing of the rockets that carried the first American astronaut to space, and the much larger and more technically complex Saturn rocket series, culminating in the mighty Saturn V, which carried the first human explorers to the Moon’s surface in 1969. “Test, retest, and then fly – that’s what we did here at the start,” said retired engineer Harry Craft, who was part of the original U.S. Army rocket development team that moved from Fort Bliss, Texas, to Huntsville to begin NASA’s work at Marshall. “And we did it all without benefit of computers, working out the math with slide rules and pads of paper.” The 138-foot-long first stage of the Saturn V rocket is lowered to the ground following a successful static test firing in fall 1966 at the S-1C test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The Saturn V, developed and managed at Marshall, was a multi-stage, multi-engine launch vehicle that stood taller than the Statue of Liberty and lofted the first Americans to the Moon. Its success helped position Marshall as an aerospace leader in propulsion, space systems, and launch vehicle development.NASA “Those were exciting times,” retired test engineer Parker Counts agreed. He joined Marshall in 1963 to conduct testing of the fully assembled and integrated Saturn first stages. It wasn’t uncommon for work weeks to last 10 hours a day, plus weekend shifts when deadlines were looming. Counts said Dr. Wernher von Braun, Marshall’s first director, insisted staff in the design and testing organizations be matched with an equal number of engineers in Marshall’s Quality and Reliability Assurance Laboratory. “That checks-and-balances engineering approach led to mission success for all 32 of the Saturn family of rockets,” said Counts, who went on to support numerous other propulsion programs before retiring from NASA in 2003. “We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century,” said instrumentation and electronics test engineer Willie Weaver, who worked at Marshall from 1960 to 1988 – and remains a tour guide at its visitor center, the U.S. Space & Rocket Center. We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century. Willie Weaver Former Marshall Space Flight Center Employee The 1970s at Marshall were a period of transition and expanded scientific study, as NASA ended the Apollo Program and launched the next phase of space exploration. Marshall provided critical work on the first U.S. space station, Skylab, and led propulsion element development and testing for NASA’s Space Shuttle Program. Marshall retiree Jim Odom, a founding engineer who got his start launching NASA satellites in the run-up to Apollo, managed the Space Shuttle External Tank project. The role called for weekly trips to NASA’s Michoud Assembly Facility in New Orleans, which has been managed by Marshall since NASA acquired the government facility in 1961. The shuttle external tanks were manufactured in the same bays there where NASA and its contractors built the Saturn rockets. This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle’s three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.NASA “We didn’t have cellphones or telecon capabilities yet,” Odom recalled. “I probably spent more time with the pilot of the twin-engine plane in those days than I did with my wife.” Marshall’s shuttle propulsion leadership led to the successful STS-1 mission in 1981, launching an era of orbital science exemplified by NASA’s Spacelab program. “Spacelab demonstrated that NASA could continue to achieve things no one had ever done before,” said Craft, who served as mission manager for Spacelab 1 in 1983 – a highlight of his 40-year NASA career. “That combination of science, engineering, and global partnership helped shape our goals in space ever since.” Engineers in the X-ray Calibration Facility at NASA’s Marshall Space Flight Center in Huntsville, Alabama, work to integrate elements of the Chandra X-ray Observatory in this March 1997 photo. Chandra was lifted to orbit by space shuttle Columbia on July 23, 1999, the culmination of two decades of telescope optics, mirror, and spacecraft development and testing at Marshall. In the quarter century since, Chandra has delivered nearly 25,000 detailed observations of neutron stars, supernova remnants, black holes, and other high-energy objects, some as far as 13 billion light-years distant. Marshall continues to manage the program for NASA. NASA Bookended by the successful Hubble and Chandra launches, the 1990s also saw Marshall deliver the first U.S. module for the International Space Station, signaling a transformative new era of human spaceflight. Odom, who retired in 1989 as associate administrator for the space station at NASA Headquarters, reflects on his three-decade agency career with pride. “It was a great experience, start to finish, working with the teams in Huntsville and New Orleans and our partners nationwide and around the globe, meeting each new challenge, solving the practical, day-to-day engineering and technology problems we only studied about in college,” he said. Shrouded for transport, a 45-foot segment of the International Space Station’s “backbone” truss rolls out of test facilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama, in July 2000, ready to be flown to the Kennedy Space Center in Florida for launch. Marshall played a key role in the development, testing, and delivery of the truss and other critical space station modules and structural elements, as well as the station’s air and water recycling systems and science payload hardware. Marshall’s Payload Operations Integration Center also continues to lead round-the-clock space station science. NASA That focus on human spaceflight solutions continued into the 21st century. Marshall delivered additional space station elements and science hardware, refined its air and water recycling systems, and led round-the-clock science from the Payload Operations Integration Center. Marshall scientists also managed the Gravity Probe Band Hinode missions and launched NASA’s SERVIR geospatial observation system. Once primary space stationconstruction – and the 40-year shuttle program – concluded in the 2010s, Marshall took on oversight of NASA’s Space Launch System, led James Webb Space Telescope mirror testing, and delivered the orbiting Imaging X-ray Polarimetry Explorer. As the 2020s continue, Marshall meets each new challenge with enthusiasm and expertise, preparing for the highly anticipated Artemis II crewed launch and a host of new science and discovery missions – and buoyed by strong industry partners and by the Huntsville community, which takes pride in being home to “Rocket City USA.” “Humanity is on an upward, outward trajectory,” Pelfrey said. “And day after day, year after year, Marshall is setting the course to explore beyond tomorrow’s horizon.” Read more about Marshall and its 65-year history: https://www.nasa.gov/marshall Hannah Maginot Marshall Space Flight Center, Huntsville, Ala. 256-544-0034 hannah.l.maginot@nasa.gov Share Details Last Updated Feb 24, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related TermsMarshall Space Flight Center Explore More 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon Article 2 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation Article 2 weeks ago 5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds Article 1 month ago Keep Exploring Discover More Topics From NASA Legacy to Horizon: Marshall 65 Marshall Space Flight Center Missions Marshall Space Flight Center Marshall Space Flight Center History View the full article
  19. Improving space-based pharmaceutical research View of the Ice Cubes experiment #6 (Kirara) floating in the Columbus European Laboratory module aboard the International Space Station.UAE (United Arab Emirates)/Sultan Alneyadi Researchers found differences in the stability and degradation of the anti-Covid drug Remdesivir in space and on Earth on its first research flight, but not on a second. This highlights the need for more standardized procedures for pharmaceutical research in space. Long-term stability of drugs is critical for future space missions. Because multiple characteristics of spaceflight could influence chemical stability, the scientists repeated their experiment under circumstances as nearly identical as possible. This research used Kirara, a temperature-controlled incubator developed by JAXA (Japan Aerospace Exploration Agency) for crystallizing proteins in microgravity. Results also confirmed that a solubility enhancer used in the drug is radiation resistant and its quality was not affected by microgravity and launch conditions. Evaluating postflight task performance A test subject performing a sensorimotor field test on the ground.NASA/Lauren Harnett Immediately after returning from the International Space Station and for up to one week, astronauts perform functional tasks in ways similar to patients on Earth who have a loss of inner ear function. This finding suggests that comparing data from these patients and astronauts could provide insight into the role of the balance and sensory systems in task performance during critical parts of a mission such as landing on the Moon or Mars. Spaceflight causes changes to the balance (vestibular) and sensory systems that can lead to symptoms such as disorientation and impaired locomotion. Standard Measures collects a set of data, including tests of sensorimotor function, related to human spaceflight risks from astronauts before, during, and after missions to help characterize how people adapt to living and working in space. View the full article
  20. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The Project F.I.R.E. team, part of Falcon Research Labs and current students at Cerritos Community College in California, is researching the use of drones to extinguish fires as part of a NASA research award called the University Student Research Challenge. From left, Logan Stahl, Juan Villa, Angel Ortega, Larisa Mayoral, Jenny Escobar, and Paola Mayoral-Jimenez.Falcon Research Labs Great ideas, and the talent and passion that bring them to life, can be found anywhere. In that spirit, NASA’s University Student Research Challenge (USRC) in 2024 selected its first group of community college students to contribute original research to the agency’s transformative vision for 21st century aviation. The student-led group, from Cerritos Community College in California, is researching a new method of safely extinguishing wildfires using eco-friendly pellets dropped from uncrewed drones they call Project F.I.R.E. (Fire Intervention Retardant Expeller). “Wildfires are a major problem we’re facing today,” said Angel Ortega, project technical director and lead research engineer for Project F.I.R.E. at Cerritos Community College. “The goal of our research is to demonstrate that our prototype drone with biodegradable fire retardant can successfully put out a controlled fire.” A Community College First Until now, USRC has only selected participants from traditional four-year institutions, compared to a two-year community college. This award exemplifies the activity’s goal of giving all of tomorrow’s aeronautical innovators a shot at NASA support for their research ideas. “The University Innovation (UI) project provides a number of different avenues for students to contribute to aeronautics,” said Steven Holz, who manages the USRC award process. “All of the opportunities are different and help build knowledge and skills that would be advantageous to those wanting to continue working on UI opportunities or within NASA.” This award is one of two from NASA’s USRC selected in 2024. The team received the USRC award prior to the devastating Los Angeles fires of January 2025. “Our thoughts are with everyone affected by this tragedy,” members of the team said in a statement. “As a team, we are deeply committed to advancing innovative solutions to enhance safety and resilience, working toward a future where communities are better protected against such disasters.” Innovating a Solution The six team members of Project F.I.R.E. are driven by an ethic of public service. As fires continue to affect communities in their native southern California, they are applying their skills to finding a way to help. “We want to get the public inspired that there are possible solutions at hand,” Ortega said. “And the work we’re doing now can hopefully build towards that bigger goal of a widespread solution.” The research they are pursuing involves dropping biodegradable pellets into fires from uncrewed, autonomous drones. The pellets, upon reaching the ground, combine chemical ingredients which create a foamlike solution of fire retardant that will not contaminate the environment after the fire is extinguished. Project F.I.R.E.’s innovative idea for fire suppression involves releasing eco-friendly foam pellets from uncrewed drones.Falcon Research Labs The team is keen to support firefighters and wildland fire managers and keep them safe while managing these natural disasters. The group has met with firefighters, discussed the idea with them, and received useful feedback on how to make the technology work best in the field. Though the group is only at the outset of the research, their idea has existed for longer. Blue Skies Forever Prior to applying for a USRC, Project F.I.R.E. also presented at NASA’s 2024 Gateway to Blue Skies competition, in which they won the “Future Game-Changer” award. Through Gateway to Blue Skies, NASA challenges college students to research climate-friendly technologies and applications related to the future of aviation and present them at an annual forum. Following Project F.I.R.E.’s participation in the forum, they applied for a USRC grant to begin turning their vision into reality. “Our experience with NASA has been incredibly supportive and inspiring,” said Logan Stahl, the project’s operations director. “We thought competing against some of the other schools would be intimidating, but the experience we’ve had is the complete opposite. Everyone was very welcoming, and the NASA representatives communicated with us and asked questions.” The USRC support will allow the team to build on their earlier foundations, they said. “Because Gateway to Blue Skies is more conceptual, it let us bring our idea to the table. Now through USRC, we can start building hands-on and make our idea come to life,” said Larisa Mayoral, chemical engineer and laboratory operations manager. The Project F.I.R.E. team receives their “Future Game-Changer” award during the 2024 Gateway to Blue Skies forum held at NASA’s Ames Research Center in California.NASA / Brandon Torres The team expressed gratitude, speaking as community college students, for their ability to participate in and contribute research at a level that competes with top-brass universities. “We’re very appreciative of our college and NASA providing us this opportunity,” said Paola Mayoral Jimenez, laboratory coordinator and safety manager. “By doing this project, we hope to shine a light on community colleges, their students, and what they have to offer.” Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page. About the AuthorJohn GouldAeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 3 min read NASA Selects New Round of Student-Led Aviation Research Awards Article 5 days ago 3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests Article 2 weeks ago 3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping Article 2 weeks ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Feb 23, 2025 EditorJim BankeContactAngela Surgenorangela.d.surgenor@nasa.gov Related TermsAeronauticsAeronautics Research Mission DirectorateFlight InnovationTransformative Aeronautics Concepts ProgramUniversity InnovationUniversity Student Research Challenge View the full article
  21. NASA

    Simulation Tools

    The Simulation and Graphics Branch produces several software tools to facilitate building and operating simulations. Many of these are available to download and are linked below. Trick Simulation Environment The Trick Simulation Environment provides a common set of simulation capabilities that allow domain experts to concentrate on domain-specific models rather than simulation-specific functions like job ordering, input file processing, or data recording. Trick’s flexible feature set enables users to build applications for all phases of space vehicle development including early vehicle design and performance evaluation, flight software development and testing, flight vehicle dynamic loads analysis, and virtual and hardware-in-the-loop training. General-Use Nodal Network Solver (GUNNS) The General-Use Nodal Network Solver (GUNNS) is a tool that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. It was developed to create medium-fidelity, real-time simulations for crew and flight controller training, and its ability to rapidly model complex integrated systems make it an ideal systems engineering tool: enabling detailed concept comparisons; facilitating requirement and design change impact assessments; and providing realistic environments for testing developmental flight software, high fidelity component and subsystem models, and prototype, developmental, and certification subsystem hardware. It includes core run-time models and code as well as graphical user interfaces for network design and run-time analysis. TrickHLA The TrickHLA software supports the IEEE-1516 High Level Architecture (HLA) simulation interoperability standard for the Trick Simulation Environment. The TrickHLA software abstracts away the details of using HLA, allowing the user to concentrate on the simulation and not worry about having to be an HLA distributed simulation expert. The TrickHLA software is data driven and provides a simple Application Programming Interface (API) making it relatively easy to take an existing Trick simulation and make it a HLA distributed simulation. TrickFMI A Functional Mockup Interface (FMI) Standard Implementation for Trick Base Models and Simulations. FMI standard was developed in partnership with governmental, academic and commercial entities in the European Union. This standard is used to support the exchange of component models for complex system simulations throughout Europe and the United States. Trick simulations are used all across NASA for simulations that support human spaceflight activities. However, until now, there were no means to use FMI based models in a Trick based simulation or a method for providing Trick based models that were FMI compliant. This software provides implementation software to do both. TrickCFS TrickCFS is a software package that provides the C structs, C++ classes and pertinent code required to synchronize a core Flight Software (cFS) system with the Trick simulation executive. It also provides the capability to include cFS-based application (App) data structures for generating the Trick interface code required to peek and poke cFS App data. Input Device Framework (IDF) IDF is a software library that provides an infrastructure for interfacing software with physical input devices. Examples of common devices include hand controllers, joysticks, foot pedals, computer mice, game controllers, etc. Conceptually, the framework can be extended to support any device that produces digital output. IDF additionally presents, and is itself an implementation of, a design methodology that encourages application developers to program against domain-specific interfaces rather than particular hardware devices. This abstraction frees the application from the details of communicating with the underlying devices, resulting in robust and flexible code that is device-agnostic. IDF ensures that devices meet application interface requirements, supports many-to-many relationships between application interfaces and devices, allows for flexible and dynamic interpretation of device inputs, and provides methods for transforming and combining inputs. Displays and Controls Software (DCApp) Dcapp (pronounced “dee see app”) is a displays and controls software package designed for UNIX platforms, specifically MacOS and Linux. It is built upon standard UNIX technologies like OpenGL for graphics, libxml2 for input file parsing, and FreeType2 for font handling. For window management and event handling, it uses Cocoa on MacOS machines and X11 for Linux-based machines. It has built-in communication libraries to communicate with external Trick-based simulations and EDGE/DOUG graphics. Data Visualization Tool – Koviz Koviz is a simulation data visualization tool. It is designed especially for Trick monte carlo data analysis, comparing simulation runs, analyzing data spikes and creating report quality plot booklets. Koviz can be run interactively via the GUI or can be run in batch. Koviz supports Trick binary data and CSV. Koviz offers a real-time analysis report for Trick real-time data recordings. Koviz also offers a plugin-like functionality, external programs, to transform simulation data. Koviz can also be synced with video so one can view video alongside associated data. JSC Engineering Orbital Dynamics (JEOD) The JSC Engineering Orbital Dynamics (JEOD) Software Package is a simulation tool designed to work with NASA Trick Simulation Environment that provides vehicle trajectory generation by the solution of a set of numerical dynamical models. These models are subdivided into four categories. There are Environment models representing the conditions surrounding the vehicle, Dynamics models for integrating the equations of motion, Interaction models representing vehicle interactions with the environment, and a set of mathematical and orbital dynamics Utility models. JEOD is designed to simulate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar operations, interplanetary trajectories, and other deep space missions. JEOD can be used to simulate a stand-alone spacecraft trajectory and attitude state, or it can be interfaced with a larger simulation space, such as coupling with spacecraft effectors and guidance, navigation and control systems. More than one spacecraft can be simulated about one central body or separate spacecraft about separate central bodies. Other Simulation and Graphics Products View the full article
  22. Explore This Section Mars Home Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates 2 min read Gardens on Mars? No, Just Rocks! NASA’s Mars Perseverance rover acquired this image of the area in front of it, showing the Serpentine Lake abrasion patch on the right-hand-side of the rock, with the Green Gardens sampling location on the left. The rover used its onboard Front Right Hazard Avoidance Camera A, and captured the image on Feb. 16, 2025 (sol 1420, or Martian day 1,420 of the Mars 2020 mission) at the local mean solar time of 16:45:19. NASA/JPL-Caltech Over the past week, Perseverance has been parked at a location called “Tablelands,” an area containing the “Serpentine Lake” abrasion patch acquired a few weeks ago. The Mars 2020 team has been diligently analyzing the data from the abrasion patch, and these findings led to the decision to return to Tablelands and attempt a sample at this location. Due to the disaggregated material thwarting our last sample attempt at “Cat Arm Reservoir,” the team was eagerly awaiting results from this sampling attempt at a target called “Green Gardens.” Then, very early Monday morning, the CacheCam images came down confirming that Perseverance had collected another core on Mars! The team will be working next on sealing this sample tube. NASA’s Mars Perseverance rover acquired this image using its onboard Sample Caching System Camera (CacheCam), located inside the rover underbelly. It looks down into the top of a sample tube to take close-up pictures of the sampled material and the tube as it’s prepared for sealing and storage. The material seen inside the coring bit is the Green Gardens sample. This image was acquired on Feb. 17, 2025 (sol 1420, or Martian day 1,420 of the Mars 2020 mission) at the local mean solar time of 19:16:24. NASA/JPL-Caltech Tablelands, the rock from which the Green Gardens core comes, is exciting to the Science Team because it contains serpentine minerals. These serpentine minerals likely formed several billion years ago when water interacted with rocks before Jezero crater formed. Water altered the minerals originally present in the rock into serpentine, which is often green in color. This characteristic green color is why the team chose the name “Green Gardens” for this sample target. These minerals are especially exciting because their structure and composition can tell us about the history of water on Mars. The formation of serpentine on Earth can support microbial communities, and the same might have been true on Mars. A sample like this from the Jezero crater rim is an important piece of the puzzle to Jezero’s watery past! Perseverance is planning to conclude its time at Serpentine Lake with more science observations of the Tablelands outcrop. These measurements could include a reexamination of the Serpentine Lake abrasion patch and analysis of the tailings pile produced by the Green Gardens drill. After snaking around this area for a couple weeks, our next drives will take us further down the slope of the crater rim. We’ll head toward our next stop at a site called “Broom Point,” where more exciting discoveries await! Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University Share Details Last Updated Feb 24, 2025 Related Terms Blogs Explore More 2 min read Sols 4458-4460: Winter Schminter Article 4 days ago 3 min read Cookies, Cream, and Crumbling Cores Article 7 days ago 2 min read Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  23. Credit: NASA NASA has selected SpaceX of Starbase, Texas, to provide launch services for the Near-Earth Object (NEO) Surveyor mission, which will detect and observe asteroids and comets that could potentially pose an impact threat to Earth. The firm fixed price launch service task order is being awarded under the indefinite delivery/indefinite quantity NASA Launch Services II contract. The total cost to NASA for the launch service is approximately $100 million, which includes the launch service and other mission related costs. The NEO Surveyor mission is targeted to launch no earlier than September 2027 on a SpaceX Falcon 9 rocket from Florida. The NEO Surveyor mission consists of a single scientific instrument: an almost 20-inch (50-centimeter) diameter telescope that will operate in two heat-sensing infrared wavelengths. It will be capable of detecting both bright and dark asteroids, the latter being the most difficult type to find with existing assets. The space telescope is designed to help advance NASA’s planetary defense efforts to discover and characterize most of the potentially hazardous asteroids and comets that come within 30 million miles of Earth’s orbit. These are collectively known as near-Earth objects, or NEOs. The mission will carry out a five-year baseline survey to find at least two-thirds of the unknown NEOs larger than 140 meters (460 feet). These are the objects large enough to cause major regional damage in the event of an Earth impact. By using two heat-sensitive infrared imaging channels, the telescope can also make more accurate measurements of the sizes of NEOs and gain information about their composition, shapes, rotational states, and orbits. The mission is tasked by NASA’s Planetary Science Division within the agency’s Science Mission Directorate at NASA Headquarters in Washington. Program oversight is provided by NASA’s Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center in Huntsville, Alabama, provides program management for NEO Surveyor. The project is being developed by NASA’s Jet Propulsion Laboratory in Southern California. Multiple aerospace and engineering companies are contracted to build the spacecraft and its instrumentation, including BAE Systems SMS (Space & Mission Systems), Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, will support operations, and the Infrared Processing and Analysis Center at the California Institute of Technology (Caltech) in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA. Mission team leadership includes the University of California, Los Angeles. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch service. For more information about NEO Surveyor, visit: https://science.nasa.gov/mission/neo-surveyor/ -end- Tiernan Doyle / Joshua Finch Headquarters, Washington 202-358-1600 / 202-358-1100 tiernan.doyle@nasa.gov / joshua.a.finch@nasa.gov Patti Bielling Kennedy Space Center, Florida 321-501-7575 patricia.a.bielling@nasa.gov Share Details Last Updated Feb 21, 2025 LocationNASA Headquarters Related TermsKennedy Space CenterLaunch Services OfficeLaunch Services ProgramNEO Surveyor (Near-Earth Object Surveyor Space Telescope)Planetary Defense Coordination OfficePlanetary Science DivisionScience Mission DirectorateSpace Operations Mission Directorate View the full article
  24. NASA Expert Answers Your Questions About Asteroid 2024 YR4
  25. Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has awarded a delivery order to BAE Systems Space & Mission Systems Inc. of Boulder, Colorado, to build spacecraft for the Lagrange 1 Series project as a part of NOAA’s Space Weather Next program. The award made under the Rapid Spacecraft Acquisition IV contract, has a total value of approximately $230.6 million with the period of performance running from February 2025 to February 2035. The work will take place at the awardee’s facility in Boulder. The firm-fixed-price delivery order covers all phases of the Lagrange 1 Series project operations including developing up to two spacecraft, instrument integration, satellite-level testing, training and support for the spacecraft flight operations team, and mission operations support. Rapid IV contracts serve as a fast and flexible means for the government to acquire spacecraft and related components, equipment, and services in support of NASA missions and other federal government agencies. The Space Weather Next program will maintain and extend space weather observations from various orbitally stable points such as Lagrange 1, which is about a million miles from Earth. The first Space Weather Next Lagrange 1 Series launch, planned in 2029, will be the first observatory under the program and will provide continuity of real-time coronal imagery and upstream solar wind measurements. Space Weather Next will provide uninterrupted data continuity when NOAA’s Space Weather Follow On Lagrange 1 mission comes to its end of operations. Observations of the Sun and the near-Earth space environment are important to protecting our technological infrastructure both on the ground and in space. The spacecraft will provide critical data to NOAA’s Space Weather Prediction Center which issues forecasts, warnings and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems. NASA and NOAA oversee the development, launch, testing, and operation of all the satellites in the Lagrange 1 Series project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA. For information about NASA and agency programs, visit: https://www.nasa.gov -end- Karen Fox/Liz Vlock Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov Jeremy Eggers Goddard Space Flight Center, Greenbelt, Md. 757-824-2958 jeremy.l.eggers@nasa.gov Share Details Last Updated Feb 21, 2025 LocationNASA Headquarters Related TermsSpace WeatherHeliophysicsJoint Agency Satellite DivisionNOAA (National Oceanic and Atmospheric Administration)Science & ResearchScience Mission Directorate View the full article
×
×
  • Create New...