Jump to content

NASA

Publishers
  • Posts

    4,764
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. NASA/Bill Ingalls NASA astronaut Frank Rubio landed in Kazakhstan on Sept. 27, 2023, after spending 371 days in space aboard the International Space Station. Rubio’s mission is the longest single spaceflight by a U.S. astronaut in history. While on the space station, Rubio completed 5,963 orbits of the Earth. See the highlights of his year in space. Image Credit: NASA/Bill Ingalls View the full article
  2. NASA research pilot Scott “Jelly” Howe tested specialized retinal movement tracking glasses at Sikorsky Memorial Airport in Bridgeport, Connecticut on June 27, 2023. The glasses will help researchers working to design air taxis understand how a pilot visually experiences the cockpit and interacts with flight navigation tools.NASA/Dr. Tyler Fettrow Air taxis may become an important part of the U.S. transportation ecosystem, quickly carrying people relatively short distances – and eventually some may fly without a pilot aboard. NASA is helping prepare for that future with research to ensure that fully autonomous flight technology is safe. Currently, a NASA study team is evaluating how autonomous software can work with flight navigation tools. And to get that information, they’re investigating how human pilots interact with the new flight navigation technology. This work, involving the agency’s research pilots, software developers, and flight engineers, is critical for NASA’s Advanced Air Mobility mission, which envisions a future of new air transportation options including air taxis and delivery drones. The research is part of an automation software development collaboration between NASA, the Defense Advanced Research Projects Agency (DARPA) and the aircraft manufacturer Sikorsky. During an upcoming test, NASA research pilot Scott “Jelly” Howe will wear specially designed glasses that track the movement of his pupils, as well as biometric sensors that measure his body temperature and brain activity during flight. Data gathered will include Howe’s real-time reactions to ground control instructions, aircraft controls, the presence of other aircraft, and weather. The research will also monitor his use of a specially designed tablet into which he will select algorithm suggested flight path options and manually input commands. Biometric indicators such as dilated pupils, increased brain activity, elevated heart rate, respiration, and temperature can reveal when a pilot is experiencing excessive workload or heightened stress levels. The data gathered through this study will provide insight into pilots’ tendencies during flight. NASA researchers will use that data to improve future autonomous systems, so they can respond to hazards like human pilots would, paving the way for air taxi operations in the U.S. airspace “The biometric devices we employ enable us to quantify physiological aspects that are typically subconscious,” said NASA human factors researcher Dr. Tyler Fettrow. “Through these devices, we capture eye tracking data, providing insights into where the pilot’s attention is focused, the duration of their fixations, and changes in pupil dilation.” This type of human-factors research is important because of the unique challenges involved with integrating air taxis in the existing airspace system, where autonomous systems will have to avoid obstacles like other aircraft, buildings, birds, and weather. NASA is looking at the larger blueprint of how these aircraft will be integrated into the national airspace. “Advanced Air Mobility systems typically involve a high degree of automation and interaction between the humans and technology,” Fettrow said. “Designing interfaces that provide clear situational awareness, appropriate alerts and notifications, and effective communication channels is vital for safe operations.” Share Details Last Updated Oct 03, 2023 Editor Cody S. Lydon Contact Location Armstrong Flight Research Center Related Terms AeronauticsAeronautics ResearchAeronautics Research Mission DirectorateAir Traffic SolutionsAirspace Operations and Safety ProgramAmes Research CenterArmstrong Flight Research CenterDrones & YouFlight InnovationLangley Research CenterTechnology Demonstration Explore More 5 min read Clues to Psyche Asteroid’s Metallic Nature Found in SOFIA Data Article 23 hours ago 2 min read NASA Research Challenge Selects Two New Student-Led Teams Article 6 days ago 5 min read New Simulations Shed Light on Origins of Saturn’s Rings and Icy Moons Article 7 days ago View the full article
  3. (June 9, 2023) — NASA astronaut and Expedition 68 Flight Engineer Woody Hoburg rides the Canadarm2 robotic arm while maneuvering a roll-out solar array toward the International Space Station’s truss structure 257 miles above the Pacific Ocean. In the rear, is the SpaceX Dragon crew vehicle that docked to the Harmony module’s forward port on March 3 carrying four SpaceX Crew-6 crew members.Credits: NASA Two upcoming spacewalks outside the International Space Station to conduct science research and station maintenance will feature NASA astronauts, both first-time spacewalkers. NASA astronaut Loral O’Hara will participate in spacewalks on Thursday, Oct. 12, and Friday, Oct. 20, with ESA (European Space Agency) astronaut Andreas Mogensen joining her on the first, and NASA astronaut Jasmin Moghbeli joining her on the second. Agency experts will preview the spacewalks during a news conference at 1 p.m. EDT on Friday, Oct. 6, from NASA’s Johnson Space Center in Houston. Live coverage of the news conference and spacewalks will air on NASA Television, the NASA app, and the agency’s website. News conference participants are: Dana Weigel, deputy manager, International Space Station Program, NASA Johnson Elias Myrmo, spacewalk flight director, NASA Johnson Faruq Sabur, U.S. spacewalk 89 officer, NASA Johnson Sandra Fletcher, U.S. spacewalk 90 officer, NASA Johnson Media interested in participating in person or by phone must contact the Johnson newsroom no later than 10 a.m., Friday, Oct. 6, by calling 281-483-5111 or emailing jsccommu@mail.nasa.gov. To ask questions by phone, reporters must dial into the news conference no later than 15 minutes prior to the start of the call. Questions may also be submitted on social media using #AskNASA. The first spacewalk is scheduled to begin at 10 a.m. and last about six hours with NASA TV coverage beginning at 8:30 a.m. On Oct. 12, O’Hara and Mogensen will exit the station’s Quest airlock to collect samples for analysis to see whether microorganisms may exist on the exterior of the orbital complex. They also will replace a high-definition camera on the port truss of the station and conduct other maintenance work to prepare for future spacewalks. O’Hara will serve as extravehicular activity (EVA) crew member 1 and will wear a suit with red stripes. Mogensen will serve as extravehicular crew member 2 and will wear an unmarked suit. U.S. spacewalk 89 will be the first spacewalk for both crew members. On Oct. 20, O’Hara and Moghbeli will complete the removal of a faulty electronics box, called a Radio Frequency Group, from a communications antenna on the starboard truss of the station and replace one of twelve Trundle Bearing Assemblies on the port truss Solar Alpha Rotary Joint. The bearings enable the station’s solar arrays to rotate properly to track the sun as the station orbits the Earth. During this spacewalk, Moghbeli will serve as EVA crew member 1 and O’Hara will serve as EVA crew member 2. U.S. spacewalk 90 will be the first spacewalk for Moghbeli and second for O’Hara. The second spacewalk will begin at 7:30 a.m. and last approximately six and a half hours with NASA TV coverage beginning at 6 a.m. Get breaking news, images and features from the space station on the station blog, Instagram, Facebook, and X. Learn more about International Space Station research and operations at: https://www.nasa.gov/station -end- Lora Bleacher / Julian Coltre Headquarters, Washington 202-358-1100 lora.v.bleacher@nasa.gov / julian.n.coltre@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Oct 03, 2023 Location NASA Headquarters Related Terms Humans in SpaceInternational Space Station (ISS)Missions View the full article
  4. 4 min read Start Your Engines: NASA to Begin Critical Testing for Future Artemis Missions Crews bring RS-25 developmental engine E0525 to the Fred Haise Test Stand at NASA’s Stennis Space Center on Aug. 30 for the upcoming certification test series. The first test of the 12-test series is Thursday, Oct. 5 at NASA Stennis.NASA / Danny Nowlin NASA will begin a new RS-25 test series Oct. 5, the final round of certification testing ahead of production of an updated set of the engines for the SLS (Space Launch System) rocket. The engines will help power future Artemis missions to the Moon and beyond. A series of 12 tests stretching into 2024 is scheduled to occur on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The tests are a key step for lead SLS engines contractor Aerojet Rocketdyne, an L3Harris Technologies company, to produce engines that will help power the SLS rocket, beginning with Artemis V. “NASA and our industry partners continue to make steady progress toward restarting production of the RS-25 engines for the first time since the space shuttle era as we prepare for our more ambitious missions to deep space under Artemis with the SLS rocket,” said Johnny Heflin, liquid engines manager for SLS at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The upcoming fall test series builds off previous hot fire testing already conducted at NASA Stennis to help certify a new design that will make this storied spaceflight engine even more powerful.” For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS rocket, producing more than 8.8 million pounds of thrust at liftoff. Following a “test like you fly” approach, all 12 tests in the new series are scheduled for at least 500 seconds, the same amount of time the engines must fire during an actual launch. The 12-test series will use developmental engine E0525 to collect data for the final RS-25 design certification review. The engine features a second set of new key components, including a nozzle, hydraulic actuators, flex ducts, and turbopumps. The components match design features of those used during the initial certification test series completed at the south Mississippi site in June. “Testing a second set of hardware during this next phase of our certification test series will give us repeatability to ensure we have sound processes for building our new engines,” said Mike Lauer, RS-25 deputy program manager at Aerojet Rocketdyne. “The successful testing of the brand-new certification engine proved our engineering was sound – that the new design is capable of meeting requirements at operating extremes and durations. This next test series will help confirm our manufacturing processes will reliably create production engines that will meet these same requirements.” Operators will fire the engine at power levels varying between 80% and 113% to test performance in multiple scenarios. The first four Artemis missions are using modified space shuttle main engines that can power up to 109% of their rated level. New RS-25 engines will power up to the 111% level to provide additional thrust. Testing up to the 113% power level provides a margin of operational safety. The longest test of the new series is planned for 650 seconds. Crews will conduct a gimbal test of the engine to ensure it can pivot as needed to help SLS maintain stability and trajectory during flight. The Oct. 5 test is scheduled for 550 seconds and will fire the RS-25 engine up to 111% power level. Overall, a total of 6,350 seconds of hot fire is planned for the series. With completion of the campaign, it is anticipated all systems will be “go” to produce 24 new RS-25 engines using the updated design for missions beginning with Artemis V. “Testing at the historic Fred Haise Test Stand is critical to ensure that our astronauts fly safely,” said Chip Ellis, project manager for RS-25 testing at NASA Stennis. “The test team takes great care to ensure these engines will operate as designed to launch NASA payloads and astronauts to the Moon and beyond.” Through Artemis, NASA will use innovative technologies and collaborate with commercial and international partners to explore more of the Moon than ever. The agency will use what is learned on and around the Moon to take the next giant leap of sending the first astronauts to Mars. For information about NASA’s Stennis Space Center, visit: www.nasa.gov/centers/stennis/ C. Lacy Thompson Stennis Space Center, Bay St. Louis, Mississippi 228-363-5499 calvin.l.thompson@nasa.gov Share Details Last Updated Oct 03, 2023 Editor Contact Location Stennis Space Center Related Terms Stennis Space Center Explore More 4 min read Data Tells Story of NASA Moon Rocket Engine Tests Article 1 week ago 5 min read NASA Achieves Key Milestone for Production of Future Artemis Engines Article 2 months ago 4 min read Stennis Flashback: NASA Test Series Leads to Bold Space Shuttle Flight It may have been small, but the white puff of smoke exiting the B-2 Test… Article 5 months ago Keep Exploring Discover More Topics from NASA Stennis Doing Business with NASA Stennis About NASA Stennis Visit NASA Stennis NASA Stennis Media Resources View the full article
  5. As we continue to celebrate Hispanic Heritage Month, the NASA Office of Small Business Programs is pleased to share the contributions of Bastion Technologies Inc. (Bastion), a Hispanic-owned company that supports NASA’s missions. Their primary role is in Safety & Mission Assurance at NASA’s Marshall Space Flight Center in Huntsville, Alabama. This includes systems engineering, where they have worked on design and analysis activities for the International Space Station, space shuttle, and Artemis programs. Bastion engages in critical assessments to ensure the highest standards of safety and reliability in NASA missions. Their team provides mission assurance support for both crewed and uncrewed flight systems at various other NASA centers such as Stennis Space Center, Ames Research Center, Glenn Research Center, and NASA’s Jet Propulsion Laboratory. In addition to supporting the success of NASA missions, they have prioritized the safety of our astronauts and valuable payloads. As a result, Bastion has received the Marshall Space Flight Center Safety Award for maintaining an exemplary safety record, with 2 million work hours without any injuries.  NASA has also recognized Bastion with the Space Flight Awareness Award for their role in multiple aspects of the Space Launch Program, particularly in ensuring the successful delivery and launch of the Artemis I launch vehicle.  During Artemis I, NASA’s SLS (Space Launch System), soared into the sky and sent the Orion spacecraft on a 1.4-million-mile journey beyond the Moon and back. The Space Launch System is NASA’s heavy-lift rocket and serves as the cornerstone for human exploration beyond Earth’s orbit. The SLS is the only rocket capable of sending the Orion spacecraft, four astronauts, and transporting extensive cargo directly to the Moon within a single mission.  Liftoff! NASA’s Space Launch System carrying the Orion spacecraft lifts off the pad at Launch Complex 39B at the agency’s Kennedy Space Center in Florida at 1:47 a.m. EST on Nov. 16, 2022. The first in a series of increasingly complex missions, Artemis I will provide a foundation for human deep space exploration and demonstrate our commitment and capability to extend human presence to the Moon and beyond. The primary goal of Artemis I is to thoroughly test the integrated systems before crewed missions by operating the spacecraft in a deep space environment, testing Orion’s heat shield, and recovering the crew module after reentry, descent, and splashdown. a They have also aided in a 12-test series of the new RS-25 engines at the agency’s Stennis Space Center in Mississippi, which are integral to future SLS rocket missions. For over three decades, the RS-25 engine powered the space shuttle, completing 135 missions. This engine stands as one of the most rigorously tested large rocket engines in history, with over 3,000 starts and an accumulated firing time exceeding 1 million seconds through ground tests and flight. Throughout the Space Shuttle Program, the RS-25 underwent numerous design enhancements aimed at improving durability, reliability, safety, and performance. Four RS-25 engines attached to the core stage for Artemis I Furthermore, Bastion’s assistance in projects such as the Sample Cartridge Assembly and Copper Indium Sulfide Defect Growth  has been critical in completing the CISDG-C1 hardware for shipment and launch on the 28th SpaceX commercial resupply services mission for NASA. It launched to the International Space Station from the agency’s Kennedy Space Center in Florida on June 3, 2023.  On this mission, SpaceX’s Dragon spacecraft transported several thousand pounds of essential hardware,  scientific experiments, and technology demonstrations. It also encompassed research on plant stress adaptation, investigations into genetic structures known as telomeres, as well as the deployment of satellite projects designed by Canadian students.  Embed Video: https://youtu.be/KMB9fvH-EsM Lastly, Bastion’s contribution to the Life Science Glovebox payload has seen a significant increase, with them completing 2.5 times as many integrated safety assessments in 2023 as they did in 2022. The Life Sciences Glovebox is a sealed work area in the International Space Station  which provides bioisolation and waste control. Crew members can perform experimental procedures in cell, insect, aquatic, plant, and animal developmental biology. NASA’s new Life Sciences Glovebox undergoes testing at Marshall prior to its scheduled Sept. 10 flight to the International Space Station. The research facility is 26 inches high, 35 inches wide and 24 inches deep, with a 15-cubic-foot workspace.NASA/MSFC/Steve Moon Hispanic professional continues to influence his daily work with NASA and Bastion in profound ways. “Growing up in a culturally rich and diverse background, I have brought a unique perspective to problem-solving and teamwork. I’ve learned to adapt to different challenges and appreciate the value of diversity in the workplace,” says Hernandez.   He goes on to emphasize that Bastion actively supports mentorship and advocates for underrepresented minorities in STEM fields, aiming to inspire the next generation of diverse professionals to reach for the stars.  “Bastion’s journey supporting NASA has been deeply influenced by my heritage, which has driven our company to excel and promote diversity within the agency. Bastion is proud to contribute to NASA’s mission and play our part in advancing our understanding of the universe.” – Jorge Hernandez By: Maliya Malik NASA Office Of Small Business Programs Intern View the full article
  6. The first crew to take part in a yearlong NASA Mars analog mission reached a milestone of 100 days inside the 1,700-square-foot habitat on October 3. The four person, volunteer crew entered the CHAPEA (Crew Health and Performance Exploration Analog) habitat at NASA’s Johnson Space center in Houston on June 25 to begin a 378-day Mars surface simulation. Throughout their mission, the crew is carrying out different types of mission activities future astronauts will take part in during a human Mars mission, including simulated spacewalks, robotic operations, habitat maintenance, personal hygiene, exercise, and crop growth. While the CHAPEA crew is also simulating Mars-realistic communication delay of up to 22-minutes one-way, they have periodically captured and shared images of their experience. Nathan Jones, CHAPEA mission 1 medical officer, gives Anca Selariu, CHAPEA mission 1 science officer, the first haircut inside the simulated Mars habitat.NASA/CHAPEA crew Nathan Jones participates in a simulated “Marswalk” inside the 1,200 square foot sandbox, which is connected to the habitat through an airlock.NASA/CHAPEA crew CHAPEA crew members Ross Brockwell and Anca Selariu complete geology work using the glovebox inside the habitat.NASA/CHAPEA crew NASA is leading a return to the Moon for long-term science and exploration. Through Artemis missions, NASA will land the first woman and first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever before. Lessons learned on and around the Moon and activities like CHAPEA on the ground will prepare NASA for the next giant leap: sending astronauts to Mars. Explore More 3 min read NASA Mars Analog Crew to Test Food Systems, Crop Growth Article 3 months ago 1 min read First CHAPEA Crew Begins 378-Day Mission Article 3 months ago 5 min read NASA Selects Participants for One-Year Mars Analog Mission Article 3 months ago View the full article
  7. NASA logoCredits: NASA NASA has selected seven companies to provide commercial data in support of the agency’s Earth science research. The Commercial Smallsat Data Acquisition Program will acquire Earth observation data and related services from commercial sources for NASA. This fixed-price, indefinite-delivery/indefinite-quantity, multiple-award contract will be effective for a period of five years with an option to extend services an additional six-months. The maximum potential value is cumulatively $476 million among all contractors selected. The following companies were selected as part of this full and open competition: Airbus DS Geo, Inc. of Herndon, Virginia Capella Space Corp. of San Francisco GHGSat, Inc. of Montreal Maxar Intelligence, Inc. of Westminster, Colorado Space Sciences and Engineering (dba PlanetiQ) of Golden, Colorado Spire Global Subsidiary, Inc. of Vienna, Virginia Umbra Lab, Inc., of Santa Barbara, California The contract serves as a flexible method for NASA to acquire data from commercial sources that support NASA’s Earth science research and application activities. An emphasis will be placed on data acquired by commercial satellite constellations, affording the means of complementing NASA’s Earth observations data with higher resolutions, increased temporal frequency or other novel capabilities. This contract will provide a cost-effective means to complement the suite of Earth observations acquired by NASA and other U.S. government agencies, as well as international partners and agencies. NASA will require end user license agreements to enable broad levels of dissemination and shareability of the commercial data. There is a set of government-defined license tiers associated with all contracts and task orders awarded for scientific non-commercial use. For information about NASA and agency programs, visit: https://www.nasa.gov -end- Abbey Donaldson Headquarters, Washington 202-358-1600 abbey.a.donaldson@nasa.gov View the full article
  8. NASA

    Jennifer L. Turner

    Environmental Portrait of Jennifer L. Turner for Faces of NASA Project. NASA / James Blair “I can almost directly trace my entire career back to [my extracurriculars] in high school and a mentor I had. My first foray into engineering was this high school program called the Robotics Science Academy. It was basically my high school’s attempt to put together a curriculum that was designed specifically to prepare students for an engineering track in college. But since it was the first year of trying this program, there were only about eight of us. The high school teacher leading the robotics track, Mr. Donelson, was always [encouraging] about trying new things and getting out of our comfort zone. And I think that always really helped me.” “So I owe a lot to him, for sure. He would stay after school with us and walk us through our assignments, and ended up encouraging us to enter an underwater robotics competition. Because we were fairly landlocked – which is obviously not great for underwater robotics that are meant for deep sea missions — we sort of lucked our way into the international competition.” “Even so, we ended up winning a “bang for your buck” award based on the amount of tasks we completed in the mission and the cost of our robot, because the cost was very, very low. It was just this Frankenstein monstrosity of PVC pipes and messy high schooler soldering and wiring. But no matter how it looked, I was lucky to have teachers like Mr. Donelson to push all of us forward.” Image Credit: NASA / James Blair Check out some of our other Faces of NASA. View the full article
  9. On Oct. 1, 1958, the National Aeronautics and Space Administration (NASA) officially began operations. President Dwight D. Eisenhower signed into law the National Aeronautics and Space Act the previous July, creating NASA to lead America’s civilian space program in response to Soviet advances in space exploration. T. Keith Glennan and Hugh L. Dryden were sworn in as NASA’s first administrator and deputy administrator, respectively. As its core, the new agency incorporated the National Advisory Committee for Aeronautics (NACA), founded in 1915 to advance aeronautics research in the United States. The NACA elements included three large research laboratories and two small test facilities. Projects and facilities transferred from other agencies to augment NASA’s capabilities. Within days of opening, NASA began work on America’s first human spaceflight program. Left: NASA Deputy Administrator Hugh L. Dryden, left, introduces NASA Administrator T. Keith Glennan as he prepares to deliver a filmed address to NACA employees about the impending transition to NASA. Middle: The Dolley Madison House on LaFayette Square in Washington, D.C., NASA’s first headquarters building. Right: The main entrance to the Dolley Madison House. In a filmed address delivered to all NACA employees shortly before the transition, Glennan explained that the change to the new organization should not affect their daily lives, even though the new agency would over time take on more responsibilities. Indeed, the transition for the existing 8,000 NACA employees proved rather seamless. They went home on Sept. 30 as NACA employees and reported for work on Oct. 1 as NASA employees, without change to their daily routines. On Oct. 1, Glennan addressed the 170-member headquarters staff in the courtyard of the Dolley Madison House on Lafayette Square in Washington, D.C., that served as NASA’s first headquarters. Left: The logo for the National Advisory Committee for Aeronautics (NACA) on the wall of the 8-foot transonic pressure wind tunnel at the Langley Aeronautical Laboratory, now NASA’s Langley Research Center in Hampton, Virginia. Right: The entrance sign to the NACA Ames Aeronautical Laboratory, now NASA’s Ames Research Center in California’s Silicon Valley. Left: The entrance sign to NACA’s Lewis Flight Propulsion Laboratory. Right: The entrance sign to the renamed NASA Lewis Research Center, now NASA’s Glenn Research Center in Cleveland. Left: The NACA High Speed Flight Station, now NASA’s Armstrong Flight Research Center, at Edwards Air Force Base in California. Right: Workers removing the NACA logo at the High Speed Flight Station. Three NACA research laboratories – Langley Aeronautical Laboratory in Hampton, Virginia; Ames Aeronautical Laboratory in Mountain View, California; and Lewis Flight Propulsion Laboratory in Cleveland, Ohio – and two small test facilities – the Muroc Dry Lake in California’s high desert for high-speed flight research, and one for sounding rockets at Wallops Island in Virginia – transferred to NASA on Oct. 1, with a total of 8,000 employees and an annual budget of $100 million. By Dec. 31, 1958, NASA had absorbed elements of the Army Ballistic Missile Agency in Huntsville, Alabama, the Naval Research Laboratory in Washington, D.C., including its Project Vanguard, and the Jet Propulsion Laboratory in Pasadena, California, a contractor facility operated by the California Institute of Technology. These added 420 employees and 2,300 contractors to the workforce and brought the agency’s appropriations to more than $330 million. It also acquired a high-priority rocket engine development project from the U.S. Air Force. Over time, the Agency established or incorporated additional centers and facilities to meet the growing needs of the nation’s space program. Today, 10 field centers across the nation work together to accomplish NASA’s varied missions. Left: The headquarters building for the Space Task Group at NASA’s Langley Research Center in Hampton, Virginia. Middle: An early cutaway representation of a Mercury capsule. Right: An early representation of rocket engines for human spaceflight, including the F-1 at right. President Eisenhower gave NASA overall responsibility for developing America’s human spaceflight program. The new agency inherited two large top priority projects in this arena. The first involved developing a spacecraft capable of carrying a single human into space and returning him safely to Earth. Engineers at Langley had conducted studies in this area since 1952, and on Oct. 8, 1958, Glennan gave the formal approval for the formation of a team at Langley to develop this capability. On Nov. 5, the Space Task Group (STG) formally came into existence, with Robert R. Gilruth named as project manager and Charles J. Donlan as his assistant. Thanks to their previous work, the STG released the specifications for the crewed capsule on Nov. 14, mailing them three days later to 20 prospective companies that had expressed an interest in bidding on the project that NASA formally named Project Mercury on Nov. 26. On Jan. 9, 1959, NASA selected the McDonnell Aircraft Corporation of St. Louis to develop the spacecraft. The second major high-priority project involved the development of a 1.5-million-pound thrust rocket engine to power a future large space booster. The new agency inherited studies conducted by the U.S. Air Force, and by mid-December, NASA selected the Rocketdyne Division of North American Aviation to develop the F-1 engine that later powered the Saturn V moon rocket. Left: Pioneer 1 shortly before its launch on a Thor-Able rocket. Middle: Replica of Pioneer 1 on display at the Smithsonian Institute’s Steven F. Udvar-Hazy Center in Chantilly, Virginia. Image credit: courtesy National Air and Space Museum. Right: Engineers inspect Pioneer 3 before launch. The nearly identical Pioneer 4 became the first American spacecraft to reach solar orbit. The new agency inherited satellite programs from other agencies. The first of these, part of a program of lunar orbiters inherited from the U.S. Air Force, launched on Oct. 11, 1958, under the auspices of NASA although the Air Force conducted the operations. Pioneer 1 blasted off aboard a Thor-Able rocket from a fledgling launch facility at Cape Canaveral, Florida. Although it did not achieve its intended mission to orbit the Moon due to a rocket malfunction, Pioneer 1 did reach a then record altitude of about 70,000 miles. The probe returned scientific data confirming the existence of the Van Allen radiation belts until it burned up on reentry in the Earth’s atmosphere 43 hours after launch. Two other Pioneers met similar fates in November and December. Pioneer 4, although it missed the Moon, became the first American spacecraft to enter solar orbit in March 1959. In the subsequent decades, NASA launched spacecraft to unlock the mysteries of the universe, dispatched probes to make close up observations of every planet in the solar system, sent men on voyages to the Moon, built a space station to maintain a permanent human presence in space, and today is preparing to return astronauts to the Moon. Share Details Last Updated Oct 02, 2023 Related Terms NASA History Explore More 16 min read 35 Years Ago: STS-26 Returns the Space Shuttle to Flight Article 5 days ago 9 min read 50 Years Ago: Skylab 3 Astronauts Splash Down after Record 59 Days in Space Article 1 week ago 3 min read Forget Movie Magic, NASA Armstrong has the Real Thing Article 3 weeks ago View the full article
  10. Substantive Areas The following sites provide substantive information on matters of concern to the Contracts and Acquisition Integrity Law Practice Group: Searchable versions of the current Federal Acquisition Regulation (FAR) and NASA FAR Supplement (NFS). NASA Grant and Cooperative Agreement Handbook — NASA Grant and Cooperative Agreement Handbook, NASA Procedures and Guidelines (NPG) 5800.1E, on the NASA On-Line Directives Information System (NODIS). Useful Federal and Other Links Acquisition Central → Defense Acquisition Regulations System → Defense Procurement and Acquisition Policy (DPAP) → General Accounting Office (GAO) Bid Protest Decisions → “Government Executive” A-76 and Outsourcing Page → NASA Acquisition Internet Service (NAIS) → NASA Procurement Library → View the full article
  11. When the asteroid Psyche has its first close-up with a NASA spacecraft, scientists hypothesize they will find a metal-rich asteroid. It could be part or all of the iron-rich interior of a planetesimal, an early planetary building block, that was stripped of its outer rocky shell as it repeatedly collided with other large bodies during the early formation of the solar system. New research from scientists at NASA’s Ames Research Center in California’s Silicon Valley suggests that is exactly what the agency’s Psyche mission will find. An artist’s concept depicting the metal-rich asteroid Psyche, which is located in the main asteroid belt between Mars and Jupiter. NASA/JPL-Caltech/ASU Led by Anicia Arredondo, the paper’s first author and a postdoctoral researcher at the Southwest Research Institute in San Antonio, Texas, and Maggie McAdam, Ames research scientist and principal investigator, the team observed Psyche in Feb. 2022 using NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA). The now-retired observatory was a Boeing 747SP aircraft modified to carry a reflecting telescope. As a flying telescope, SOFIA collected data that was not affected by Earth’s lower atmosphere and made observations from all over the world, including over the oceans. For the first time, SOFIA was able to gather data from every part of Psyche’s surface. It also allowed the team to collect data about the materials that make up Psyche’s surface – information that could not be gathered from ground-based telescopes. Psyche’s potential to answer many questions about planet formation is a key reason why it was selected for close observation by a spacecraft. Scientists believe that planets like Earth, Mars, and Mercury have metallic cores, but they are buried too far below the planets’ mantles and crusts to see or measure directly. If Psyche is confirmed to be a planetary core, it can help scientists understand what is inside the Earth and other large planetary bodies. Psyche’s size is also important for advancing scientific understanding of Earth-like planets. It is the largest M-type (metallic) asteroid in our solar system and is long enough to cover the distance from New York City to Baltimore, Maryland. This means Psyche is more likely to show differentiation, which is when the materials inside a planet separate from one another, with the heaviest materials sinking to the middle and forming cores. “Every time a new study of Psyche is published, it raises more questions,” said Arredondo, who was a postdoctoral researcher at Ames on the SOFIA mission when the Psyche observations were collected. “Our findings suggest the asteroid is very complex and likely holds many other surprises. The possibility of the unexpected is one of the most exciting parts of a mission to study an unexplored body, and we look forward to gaining a more detailed understanding of Psyche’s origins.” NASA’s Psyche spacecraft is shown in a clean room on June 26, 2023, at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida.NASA/Frank Michaux More about the Psyche and SOFIA missions: Arizona State University leads the Psyche mission. A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, is managing the launch service. SOFIA was a joint project of NASA and the German Space Agency at DLR. DLR provided the telescope, scheduled aircraft maintenance, and other support for the mission. NASA’s Ames Research Center in California’s Silicon Valley managed the SOFIA program, science, and mission operations in cooperation with the Universities Space Research Association, headquartered in Columbia, Maryland, and the German SOFIA Institute at the University of Stuttgart. The aircraft was maintained and operated by NASA’s Armstrong Flight Research Center Building 703, in Palmdale, California. SOFIA achieved full operational capability in 2014 and concluded its final science flight on Sept. 29, 2022. For news media: Members of the news media interested in covering this topic should reach out to the Ames newsroom. View the full article
  12. The NESC has released a technical bulletin for the Software Engineering community. Mission or safety-critical spaceflight systems should be developed to both reduce the likelihood of software faults pre-flight and to detect/mitigate the effects of software errors should they occur in-flight. New data is available that categorizes software errors from significant historic spaceflight software incidents with implications and considerations to better develop and design software to both minimize and tolerate these most likely software failures. Download the full technical bulletin here. For more information, contact Lorraine Prokop, lorraine.e.prokop@nasa.gov. View the full article
  13. NASA

    NASA’s Origins

    The National Aeronautics and Space Administration (NASA) was created on October 1, 1958, to perform civilian research related to space flight and aeronautics. President Eisenhower commissioned Dr. T. Keith Glennan, right, as the first administrator for NASA and Dr. Hugh L. Dryden as deputy administrator.NASA On July 29, 1958, President Dwight D. Eisenhower signed the National Aeronautics and Space Act “to provide for research into problems of flight within and outside the Earth’s atmosphere.” At the White House less than a month later, Eisenhower commissioned Dr. T. Keith Glennan, right, as the first administrator for NASA and Dr. Hugh L. Dryden as deputy administrator. NASA officially opened for business 65 years ago on Oct. 1, 1958, to oversee the United States’ nonmilitary space activities. It was based on its predecessor, the National Advisory Committee for Aeronautics, which was established in 1915 to “supervise and direct the scientific study of the problems of flight, with a view to their practical solution.” Learn more about the creation of NASA. Image Credit: NASA View the full article
  14. 1 min read Know Python? Or have a DSLR Camera? The Eclipse Megamovie needs your help! A drawn silhouette of amateur photographers looking to the sky with telescope and DSLR camera on one of our mounts. Sonoma State University / Aurore Simmonet, CC 4.0 NASA’s Eclipse Megamovie project is back for the 2024 total solar eclipse—and is seeking volunteers! During the four minutes of this solar experience, the sun’s atmosphere, or corona, will become visible. It’s a rare time when we are able to take photographs of the corona from Earth on a large scale. The Megamovie project is giving away 100 equatorial tracking mounts to volunteers with DSLR cameras who will be in the path of totality. The application for mounts will remain open as they parse through existing applications, so if you are interested, apply quickly! The Eclipse Megamovie project is also looking for volunteers to participate after the eclipse to help analyze photographs taken during the eclipse. Volunteers should be proficient in Python code or implementation of Machine Learning (AI) in the arranging of photographs or other data. Sign up now by filling out this survey form! NASA’s Citizen Science Program: Learn about NASA citizen science projects Follow on Twitter Follow on Facebook View the full article
  15. 1 min read NASA Citizen Scientist Wins Award from the Astronomical Society of the Pacific NASA volunteer Dan Caselden, visiting NASA headquarters. Image credit: Dan Caselden The Astronomical Society of the Pacific (ASP), established in 1889, is a nonprofit organization that uses astronomy to increase the understanding and appreciation of science and to advance science and science literacy. This year, the ASP awarded the 2023 Gordon Myers Amateur Achievement Award to NASA Volunteer Dan Caselden for “reshaping the understanding of what is possible in volunteer-research”. A Principal Software Engineer at Netskope by trade, Caselden began his citizen science journey when NASA’s Backyard Worlds: Planet 9 citizen science project caught his eye on Reddit. Together with fellow data scientist, Paul Westin, Caselden created a new, efficient visualization tool, called WiseView, to improve the Backyard Worlds: Planet 9 search. Caselden’s work on WiseView—and his subsequent work applying machine learning to search for Jupiter-like objects called brown dwarfs—has led him to co-author 19 scientific publications so far with multiple research teams. Caselden will be honored at at an in-person ASP Awards Gala on Saturday, November 11, 2023 at the Grand Bay Hotel San Francisco in Redwood City, California. NASA’s Citizen Science Program: Learn about NASA citizen science projects Follow on Twitter Follow on Facebook View the full article
  16. NASA astronaut Scott Kelly took this majestic image of the Earth at night highlighting the green and red hues of an Aurora. NASA NASA is asking American companies to provide input on the agency’s requirements for end-to-end services as part of the Commercial Low-Earth Orbit Development Program. In the future, the agency plans to transition its operations in low Earth orbit to commercially owned and operated destinations to ensure continued access and presence in space for research, technology development, and international collaboration after the planned retirement of the International Space Station. Through a request for information (RFI), NASA is seeking feedback from industry as the agency refines its anticipated requirements for new commercial space destinations. The requirements will help industry understand NASA’s human-rating standards that will be used by the agency to certify that the new systems meet NASA expectations for low Earth orbit operations and transportation. An industry briefing day is scheduled to take place Tuesday Oct. 12, with responses to the RFI due Wednesday, Nov. 17. “This RFI is a significant next step in transitioning low Earth orbit operations to the private sector, allowing NASA to be one of many customers for services” says Phil McAlister, director of commercial spaceflight at NASA Headquarters in Washington, D.C. “These requirements will be the foundation upon which the companies can design safe systems. But the requirements have to work for companies as well. Thus, we are seeking industry feedback on these draft requirements to ensure that the Commercial LEO destinations will be safe, reliable, and cost effective.” The agency is currently supporting the development of several new stations and destination concepts through both funded and unfunded agreements. However, a company does not need to have a current agreement with NASA in order to provide feedback via the RFI or to bid on future procurements to provide low Earth orbit services to the agency. “We’ve seen a tremendous amount of innovation and effort from industry thus far in developing their station designs,” says Angela Hart, manager of the Commercial Low Earth Orbit Development program at NASA’s Johnson Space Center in Houston. “We are working in lockstep with multiple companies to help guide them in a way that sets them up for success to meet our requirements. However, it’s crucial that we open feedback to as wide of an audience as possible. The more commercial stations that are successfully operating in low Earth orbit, the greater likelihood that we can continue to drive down costs and encourage innovation in this new commercial space industry.” NASA previously sought industry input in 2022 and early 2023, and has hosted two industry days on the agency’s assumptions and expectations for crew and technical requirements to guide companies’ technical and business plans. The feedback from industry will continue to inform the agency’s future commercial services strategy for low Earth orbit destinations. NASA’s goal is to enable a strong commercial marketplace in low Earth orbit where NASA is one of many customers for private industry. This strategy will provide services the government needs safely, at a lower cost, and enables the agency to focus on its Artemis missions to the Moon in preparation for Mars, while continuing to use low Earth orbit as a training and proving ground for those deep space missions. Information about how to attend the industry briefing day is contained in the RFI on SAM.gov. The dates for industry day and responses due are subject to change pending a government shutdown resolution and will be updated on SAM.gov when available. For more information about NASA’s commercial space strategy, visit: https://www.nasa.gov/humans-in-space/commercial-space/ By Rebecca Turkington Johnson Space Center, Houston rebecca.turkington@nasa.gov Keep Exploring Discover More Topics Low Earth Orbit Economy Commercial Destinations in Low Earth Orbit Commercial Space Humans In Space View the full article
  17. Welcome, passionate innovators and bold visionaries, to an extraordinary quest to redefine the future of aviation, to bring forth a world where the skies are clear, and the flights are green. The challenge at hand is not just a call to reimagine aircraft but an invitation to unleash your creativity in scripting an environmentally-conscious success story for the ages. Picture this – the year is 2050. A dark, smoky haze shrouds the flightline, casting a shadow of uncertainty on the future of our planet. The world watches as aircraft crisscross the skies, leaving trails of emissions in their wake, fueling a looming climate crisis. Yet, amid this grim reality, a new hope emerges: YOU! We are asking for your brilliant minds to come together and transform the aviation industry, wielding innovative technologies that save the planet from the grips of an environmental catastrophe. The skies are your canvas, and the spotlight is on you. Award: $30,000 in total prizes Open Date: September 28, 2023 Close Date: December 14, 2023 For more information, visit: https://www.herox.com/PureBlueSkies View the full article
  18. The NASA Space Tech Catalyst Prize will recognize U.S. individuals and/or organizations that share effective best practices for how they support underrepresented and diverse space technology innovators, researchers, technologists, and entrepreneurs. The prize competition’s primary goals are: (1) Showcase effective strategies and approaches for developing the capacity and skill sets of these groups, enhancing their ability to succeed, (2) Expand the outreach and engagement efforts of the NASA ESIP portfolio, ensuring a diverse and inclusive pool of applicants for future funding opportunities, and (3) Recognize the efforts of those who support and nurture underrepresented and diverse individuals and organizations in the space technology sector. Award: $500,000 in total prizes Open Date: September 29, 2023 Close Date: February 22, 2024 For more information, visit: https://www.spacetechcatalystprize.org/ View the full article
  19. 2 min read Hubble Views A Vibrant Virgo Cluster Galaxy NASA’s Hubble Space Telescope, ESA, and J. Lee (Space Telescope Science Institute); Processing: Gladys Kober (NASA/Catholic University of America) It’s easy to get swept up in the swirling starry arms of this intermediate spiral galaxy, NGC 4654, in the constellation Virgo. The galaxy has a bright center and is labeled “intermediate” because it has characteristics of both unbarred and barred spirals. NGC 4654 is just north of the celestial equator, making it visible from the northern hemisphere and most of the southern hemisphere. The galaxy is around 55 million light-years from Earth. NGC 4654 is one of many Virgo Cluster galaxies that have an asymmetric distribution of stars and of neutral hydrogen gas. Astronomers reason that NGC 4654 may be experiencing a process called “ram pressure stripping,” where the gravitational pull of the Virgo galaxy cluster puts pressure on NGC 4654 as it moves through a superheated plasma made largely of hydrogen called the “intracluster medium.” This pressure feels like a gust of wind – think of a biker feeling wind even on a still day – that strips NGC 4654 of its gas. This process produced a long, thin tail of hydrogen gas on the galaxy’s southeastern side. Most galaxies that experienced ram pressure stripping hold very little cold gas, halting the galaxy’s ability to form new stars, since stars generate from dense gas. However, NGC 4654 has star formation rates consistent with other galaxies of its size. NGC 4654 also had an interaction with the companion galaxy NGC 4639 about 500 million years ago. The gravity of NGC 4639 stripped NGC 4654’s gas along its edge, limiting star formation in that region and causing the asymmetrical distribution of the galaxy’s stars. Scientists study galaxies like NGC 4654 to examine the connection between young stars and the cold gas from which they form. NASA’s Hubble Space Telescope took this image in visible, ultraviolet, and infrared light. Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Oct 02, 2023 Editor Andrea Gianopoulos Contact Related Terms Astrophysics Division Galaxies Hubble Space Telescope Missions Science Mission Directorate Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA Stars Stories Galaxies Stories Exoplanets Our Solar System View the full article
  20. Our First Asteroid Sample Return Mission is Back on Earth on This Week @NASA – September 29, 2023
  21. Discovery Alert: The Planet that Shouldn’t Be There Artist’s rendering of planet 8 Ursae Minoris b – also known as “Halla” – amid the field of debris after a violent merger of two stars. The planet might have survived the merger, but also might be an entirely new planet formed from the debris. W. M. Keck Observatory/Adam Makarenko By Pat Brennan NASA’s Exoplanet Exploration Program The discovery: A large planet is somehow orbiting a star that should have destroyed it. Key facts: Planet 8 Ursae Minoris b orbits a star some 530 light-years away that is in its death throes. A swollen red giant, the star would have been expected to expand beyond the planet’s orbit before receding to its present (still giant) size. In other words, the star would have engulfed and ripped apart any planets orbiting closely around it. Yet the planet remains in a stable, nearly circular orbit. The discovery of this seemingly impossible situation, relying on precise measurements using NASA’s Transiting Exoplanet Survey Satellite (TESS), shows that planet formation – and destruction – are likely far more intricate and unpredictable than many scientists might have thought. Details: As stars like our Sun approach the ends of their lives, they begin to exhaust their nuclear fuel. They become red giants, expanding to their maximum size. If that happened in this case, the star would have grown outward from its center to 0.7 astronomical units – that is, about three-quarters the distance from Earth to the Sun. It would have swallowed and destroyed any nearby orbiting planets in the process. But planet b, a large gaseous world, sits at about 0.5 astronomical units, or AU. Because the planet could not have survived engulfment, Marc Hon, the lead author of a recent paper on the discovery, instead proposes two other possibilities: The planet is really the survivor of a merger between two stars, or it’s a new planet – formed out of the debris left behind by that merger. The first scenario begins with two stars about the size of our Sun in close orbit around each other, the planet orbiting both. One of the stars “evolves” a bit faster than the other, going through its red giant phase, casting off its outer layers and turning into a white dwarf – the tiny but high-mass remnant of a star. The other just reaches the red giant stage before the two collide; what remains is the red giant we see today. This merger, however, stops the red giant from expanding further, sparing the orbiting planet from destruction. In the second scenario, the violent merger of the two stars ejects an abundance of dust and gas, which forms a disk around the remaining red giant. This “protoplanetary” disk provides the raw material for a new planet to coalesce. It’s a kind of late-stage second life for a planetary system – though the star still is nearing its end. Fun facts: How can astronomers infer such a chaotic series of events from present-day observations? It all comes down to well understood stellar physics. Planet-hunting TESS also can be used to observe the jitters and quakes on distant stars, and these follow known patterns during the red-giant phase. (Tracking such oscillations in stars is known as “asteroseismology.”) The pattern of oscillations on 8 Ursae Minoris, the discovery team found, match those of red giants at a late, helium-burning stage – not one that is still expanding as it burns hydrogen. So it isn’t that the star is still growing and hasn’t yet reached the planet. The crisis has come and gone, but the planet somehow continues to exist. The discoverers: The paper describing the TESS result, “A close-in giant planet escapes engulfment by its star,” was published in the journal Nature in June 2023 by an international science team led by astronomer Marc Hon of the University of Hawaii. View the full article
  22. NASA logoCredits: NASA NASA has selected four small explorer missions to conduct concept studies. These studies aim to expand knowledge of the dynamics of the Sun and related phenomena, such as coronal mass ejections, aurora, and solar wind to better understand the Sun-Earth connection. Any missions selected to move forward after the concept studies are conducted will join the current heliophysics mission fleet, which not only provides deeper insight into the mechanics of our universe, but also offers critical information to help protect astronauts, satellites, and communications signals, and helps enable space exploration. “These four mission concept studies were selected because they address compelling science questions and could greatly impact the field of heliophysics,” said Nicky Fox, the associate administrator for science at NASA Headquarters in Washington. “These mission proposals are exciting because they build upon and complement the science of our current mission fleet, have the potential for broad impact and could provide new and deeper insight into the solar atmosphere and space weather.” CINEMA The Cross-scale Investigation of Earth’s Magnetotail and Aurora (CINEMA) mission would work to understand the structure and evolution of Earth’s plasma sheet – a long sheet of denser space plasma in the magnetic fields flowing behind Earth, known as the magnetotail — using a constellation of nine CubeSats flown in sun-synchronous, low Earth orbit. The primary purpose of this mission is to study the role of plasma sheet structure, as well as how Earth’s magnetic fields transfer heat and change over time at multiple scales. CINEMA will complement current heliophysics missions, such as the THEMIS (Time History of Events and Macroscale Interactions during Substorms), MMS (Magnetospheric Multiscale) mission, and the planned Geospace Dynamics Constellation mission. The principal investigator for the CINEMA mission concept study is Robyn Millan from Dartmouth College, in Hanover, New Hampshire. CMEx The Chromospheric Magnetism Explorer (CMEx) mission would attempt to understand the magnetic nature of solar eruptions and identify the magnetic sources of the solar wind. CMEx proposes to obtain the first continuous observations of the solar magnetic field in the chromosphere – the layer of solar atmosphere directly above the photosphere or visible surface of the Sun. These observations would improve our understanding of how the magnetic field on the Sun’s surface connects to the interplanetary magnetic field. The principal investigator for this mission concept study is Holly Gilbert from the National Center for Atmospheric Research in Boulder, Colorado. EUV CME and Coronal Connectivity Observatory The Extreme ultraviolet Coronal Mass Ejection and Coronal Connectivity Observatory (ECCCO) consists of a single spacecraft with two instruments, a wide-field extreme ultra-violet imager and a unique imaging EUV spectrograph. ECCCO’s observations would contribute to understanding the middle corona, the dynamics of eruptive events leaving the Sun, and the conditions that produce the outward streaming solar wind. The mission would address fundamental questions about where the mass and energy flow linking the Sun to the outer corona and heliosphere originate ECCCO’s concept study principal investigator is Katharine Reeves from the Smithsonian Astrophysical Observatory, in Cambridge, Massachusetts. MAAX The primary objective of the Magnetospheric Auroral Asymmetry Explorer (MAAX) mission would be to improve our understanding of how electrodynamic coupling between Earth’s magnetosphere and ionosphere regulates auroral energy flow. The mission would use two identical spacecraft equipped with dual-wavelength ultraviolet imagers to provide global imaging of northern and southern aurora. The principal investigator for the MAAX concept study is Michael Liemohn from the University of Michigan in Ann Arbor. “These mission concept study selections provide so much promise to ongoing heliophysics research,” said Peg Luce, acting Heliophysics division director at NASA Headquarters. “The potential to gain new insights and answer longstanding questions in the field while building on the research and technology of our current and legacy missions is incredible..” Funding and management oversight for these mission concept studies is provided by the Heliophysics Explorers Program, managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. For more information on NASA heliophysics missions, visit: https://science.nasa.gov/heliophysics -end- Denise Hill Headquarters, Washington 202-308-2071 denise.hill@nasa.gov Share Details Last Updated Sep 29, 2023 Related Terms HeliophysicsScience & Research View the full article
  23. 1 min read Near-Earth Asteroids as of September 2023 September 2023 Near-Earth Asteroids: Planetary Defense by the Numbers – February 2023 Each month, NASA’s Planetary Defense Coordination Office releases a monthly update featuring the most recent figures on NASA’s planetary defense efforts, near-Earth object close approaches, and other timely facts about comets and asteroids that could pose an impact hazard with Earth. Here is the what we’ve found for September. Share Details Last Updated Sep 29, 2023 Related Terms General Planetary Defense Planetary Defense Coordination Office Planetary Science Planetary Science Division Science & Research Science Mission Directorate Explore More 5 min read To Study Atmosphere, NASA Rockets Will Fly into Oct. Eclipse’s Shadow Article 2 hours ago 4 min read Living on the Edge: Supernova Bubble Expands in New Hubble Time-Lapse Movie Article 8 hours ago 2 min read Hubble Views a Glistening Red Nebula Article 8 hours ago View the full article
  24. The SpaceX Falcon 9 rocket with the Dragon capsule atop is raised to the vertical position on June 2, 2021, at Launch Complex 39A at NASA’s Kennedy Space Center in Florida, in preparation for the company’s 22nd Commercial Resupply Services mission for NASA to the International Space Station. In view is the access arm. Dragon will deliver more than 7,300 pounds of cargo to the space station. Liftoff is scheduled for 1:29 p.m. EDT on Thursday, June 3.SpaceX Media accreditation is open for SpaceX’s 29th commercial resupply mission for NASA to the International Space Station. Liftoff of the SpaceX Dragon cargo spacecraft on the company’s Falcon 9 rocket is targeted no earlier than Wednesday, Nov. 1, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Media prelaunch and launch activities will take place at NASA Kennedy. Attendance for this launch is open to U.S. citizens. The application deadline for U.S. media is 11:59 p.m. EDT Wednesday, Oct. 18. All accreditation requests should be submitted online at: https://media.ksc.nasa.gov Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available here. For questions about accreditation, or to request special logistical needs, please email ksc-media-accreditat@mail.nasa.gov. For other questions, please contact Kennedy’s newsroom at: 321-867-2468. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo at: antonia.jaramillobotero@nasa.gov or 321-501-8425. SpaceX’s Dragon will deliver new science investigations, food, supplies, and equipment to the international crew. The research includes work to understand interactions between weather on Earth and space, and laser communications. NASA’s Atmospheric Waves Experiment (AWE) will study atmospheric gravity waves –powerful waves formed by weather disturbances on Earth such as strong thunderstorms or brewing hurricanes – to understand the flow of energy through Earth’s upper atmosphere and space. Another experiment – Integrated Laser Communications Relay Demonstration Low-Earth-Orbit User Modem and Amplifier Terminal – (ILLUMA-T) aims to test high data rate laser communications from the space station to Earth. This will complete NASA’s first two-way, end-to-end laser relay system by sending high-resolution data to the agency’s Laser Communications Relay Demonstration, which launched in December 2021. Other investigations that will launch with the resupply mission include ESA’s (European Space Agency) Aquamembrane-3, which will test water filtration using proteins found in nature for water recycling and recovery, and Plant Habitat-06, which will evaluate the effects of spaceflight on plant defense responses using multiple genotypes of tomato. Commercial resupply by U.S. companies significantly increases NASA’s ability to conduct more investigations aboard the orbiting laboratory. These investigations lead to new technologies, medical treatments, and products that improve life on Earth. Other U.S. government agencies, private industry, and academic and research institutions can also conduct microgravity research through the agency’s partnership with the International Space Station National Laboratory. Humans have occupied the space station continuously since November 2000. In that time, 273 people and a variety of international and commercial spacecraft have visited the orbital outpost. It remains the springboard to NASA’s next great leap in exploration, including future missions to the Moon under Artemis, and ultimately, human exploration of Mars. For more information about commercial resupply missions, visit: https://www.nasa.gov/commercialresupply -end- Lora Bleacher / Julian Coltre Headquarters, Washington 202-358-1100 lora.v.bleacher@nasa.gov / julian.n.coltre@nasa.gov Stephanie Plucinsky / Steven Siceloff Kennedy Space Center, Fla. 321-876-2468 stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Sep 29, 2023 Related Terms Commercial ResupplyCommercial SpaceHumans in SpaceInternational Space Station (ISS) View the full article
  25. NASA logo Credit: NASA NASA has selected SpaceX of Hawthorne, California, and its Falcon 9 rocket to provide the launch service for the agency’s TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission, a pair of small satellites that will study space weather and how the Sun’s energy affects Earth’s magnetic environment, or magnetosphere TRACERS will be an important addition to NASA’s heliophysics fleet and aims to answer long-standing questions critical to understanding the Sun-Earth system. The spinning satellites will study how solar wind, the continuous stream of ionized particles escaping the Sun and pouring out to space, interacts with the region around Earth dominated by our planet’s magnetic field. This interaction, or magnetic reconnection, is an intense transfer of energy that can happen when two magnetic fields meet, which could potentially impact operations with crew and sensitive satellites. TRACERS is led by the University of Iowa with partners at the Southwest Research Institute in San Antonio, and Millennium Space Systems in El Segundo, California. NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, in partnership with NASA’s Heliophysics Small Explorers program, announces the launch service as part of the agency’s VADR (Venture-Class Acquisition of Dedicated and Rideshare) launch services contract. Learn more about NASA’s TRACERS mission online: https://blogs.nasa.gov/tracers/ -end- Joshua Finch Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov Leejay Lockhart / Laura Aguiar Kennedy Space Center, Florida 321-747-8310 / 321-593-6245 leejay.lockhart@nasa.gov / laura.aguiar@nasa.gov Share Details Last Updated Sep 29, 2023 Editor Jennifer M. Dooren Location NASA Headquarters Related Terms EarthSmall Satellite Missions View the full article
×
×
  • Create New...