Jump to content

NASA

Publishers
  • Posts

    5,713
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. The four crew members of NASA’s SpaceX Crew-9 mission, including NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, along with Roscosmos cosmonaut Aleksandr Gorbunov, pose for a photo aboard the International Space StationNASA Media are invited to hear from NASA’s SpaceX Crew-9 astronauts during a news conference beginning at 11:55 a.m. EST, Tuesday, March 4, from the International Space Station. NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore will discuss their return to Earth on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 5 p.m. Monday, March 3, at 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial into the news conference no later than 15 minutes prior to the start of the call. A copy of NASA’s media accreditation policy is online. Questions also may be submitted on social media using #AskNASA. Crew-9 contributed to hundreds of scientific experiments, including swabbing the station’s exterior for microbes, printing 3D medical devices, and studying how moisture, orbital altitude, and ultraviolet light affect plant growth. The crew will depart the space station after the arrival of Crew-10 and a short handover period. Ahead of Crew-9’s return, mission teams will review weather conditions at the splashdown sites off the coast of Florida prior to departure from station. The mission is part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station. Follow updates on the Crew-9 mission at: https://www.nasa.gov/station -end- Joshua Finch / Jimi Russell Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / james.j.russell@nasa.gov Courtney Beasley Johnson Space Center, Houston 281-483-5111 courtney.m.beasley@nasa.gov Share Details Last Updated Feb 26, 2025 LocationNASA Headquarters Related TermsHumans in SpaceAstronautsBarry E. WilmoreInternational Space Station (ISS)Sunita L. Williams View the full article
  2. Intuitive Machines-2: Delivering Science and Tech to the Moon (NASA Mission Trailer)
  3. Intuitive Machines-2 Launch to the Moon (Official NASA Broadcast)
  4. 6 Min Read NASA Stennis Flashback: Learning About Rocket Engine Smoke for Safe Space Travel An image shows engineers at an early version of the test stand at the Diagnostic Testbed Facility. From 1988 to the mid-1990s, NASA Stennis engineers operated the facility to conduct rocket engine plume exhaust diagnostics and learn more about the space shuttle main engine combustion process. Credits: NASA/Stennis NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is widely known as the nation’s largest rocket propulsion test site. More than 35 years ago, it also served as a hands-on classroom for NASA engineers seeking to improve the efficiency of space shuttle main engines. From 1988 to the mid-1990’s, NASA Stennis engineers operated a Diagnostic Test Facility to conduct rocket engine plume exhaust diagnostics and learn more about the space shuttle main engine combustion process. The effort also laid the groundwork for the frontline research-and-development testing conducted at the center today. “The Diagnostic Test Facility work is just another example of the can-do, will-do attitude of the NASA Stennis team and of its willingness to support the nation’s space exploration program in all ways needed and possible,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. The Diagnostic Test Facility work is just another example of the can-do, will-do attitude of the NASA Stennis team… joe schuyler NASA Stennis Engineering and Test Directorate Director Tests conducted at the Diagnostic Testbed Facility played a critical safety role for engine operations and also provided a real-time opportunity for NASA Stennis engineers to learn about exhaust diagnostics. NASA/Stennis An image shows the Diagnostic Testbed Facility test stand data acquisition trailer. NASA/Stennis The Need Envision a rocket or space vehicle launching into the sky. A trail of bright exhaust, known as the engine plume, follows. As metals wear down in the engines from the intense heat of the combustion process, the flame glows with colors, some visible, such as orange or yellow, and others undetectable by the human eye. The colors tell a story – about the health and operation of the engine and its components. For space shuttle main engines, which flew on multiple missions, engineers needed to understand that story, much as a doctor needs to understand the condition of a human body during checkup, to ensure future engine operation. Where better place to study such details than the nation’s premier propulsion test site? Paging NASA Stennis. An image shows the rocket motor and thruster at the Diagnostic Testbed Facility. NASA/Stennis An image shows the Diagnostic Testbed Facility blended team of NASA personnel and contractors. Kneeling, left to right, is Brantly Adams (NASA), Felix Bircher (Sverdrup Technology), Dennis Butts (Sverdrup Technology), and Nikki Raines (Sverdrup Technology). Standing, left to right, NASA astronaut John Young, Greg Sakala (Sverdrup Technology), Barney Nokes (Sverdrup Technology), John Laboda (Sverdrup Technology), Glenn Varner (NASA), Stan Gill (NASA), Bud Nail (NASA), Don Sundeen (Sverdrup Technology), NASA astronaut John Blaha.NASA/Stennis The Facility NASA Stennis has long enabled and supported innovative and collaborative work to benefit both the agency and the commercial space industry. When NASA came calling in the late 1980s, site engineers went to work on a plan to study space shuttle main engine rocket exhaust. The concept for an enabling structure about the size of a home garage was born in October 1987. Five months later, construction began on a Diagnostic Testbed Facility to provide quality research capabilities for studying rocket engine exhaust and learning more about the metals burned off during hot fire. The completed facility featured a 1,300-square-foot control and data analysis center, as well as a rooftop observation deck. Small-scale infrastructure was located nearby for testing a 1,000-pound-thrust rocket engine that simulated the larger space shuttle main engine. The 1K engine measured about 2 feet in length and six inches in diameter. Using a small-scale engine allowed for greater flexibility and involved less cost than testing the much-larger space shuttle engine. An image shows Sverdrup Technology’s Robert Norfleet as he preps the dopant injection system for testing at the Diagnostic Testbed Facility. The goal of the facility was to inject known metals and materials in a chemical form and then look at what emissions were given off. During one test, generally a six or 12 second test, operators would inject three known dopants, or substances, and then run distilled water between each test to clean out the system.NASA/Stennis An image shows engineers Stan Gill, Robert Norfleet, and Elizabeth Valenti in the Diagnostic Testbed Facility test control center. NASA/Stennis The Process Engineers could quickly conduct multiple short-duration hot fires using the smaller engine. A six-second test provided ample time to collect data from engine exhaust that reached as high as 3,900 degrees Fahrenheit. Chemical solutions simulating engine materials were injected into the engine combustion chamber for each hot fire. The exhaust plume then was analyzed using a remote camera, spectrometer, and microcomputers to determine what colors certain metals and elements emit when burning. Each material produced a unique profile. By matching the profiles to the exhaust of space shuttle main engine tests conducted at NASA Stennis, determinations could be made about which engine components were undergoing wear and what maintenance was needed. We learned about purging, ignition, handling propellants, high-pressure gases, and all the components you had to have to make it work…It was a very good learning experience. Glenn Varner NASA Stennis Engineer The Benefits The Diagnostic Testbed Facility played a critical safety role for engine operations and also provided a real-time opportunity for NASA Stennis engineers to learn about exhaust diagnostics. Multiple tests were conducted. The average turnaround time between hot fires was 18 to 20 minutes with the best turnaround from one test to another taking just 12 minutes. By January 1991, the facility had recorded a total of 588 firings for a cumulative 3,452 seconds. As testing progressed, the facility team evolved into a collection of experts in plume diagnostics. Longtime NASA Stennis engineer Glenn Varner serves as the mechanical operations engineer at the Thad Cochran Test Stand, where he contributed to the successful testing of the first SLS (Space Launch System) core stage onsite. However, much of Varner’s hands-on experience came at the Diagnostic Test Facility. “We learned about purging, ignition, handling propellants, high-pressure gases, and all the components you had to have to make it work,” he said. “It was a very good learning experience.” An image shows the Diagnostic Testbed Facility team working in the test control center. Seated, left to right, is Steve Nunez, Glenn Varner, Joey Kirkpatrick. Standing, back row left to right, is Scott Dracon and Fritz Policelli. Vince Pachel is pictured standing wearing the headset. NASA/Stennis The physical remnants of the Diagnostic Testbed Facility are barely recognizable now, but that spirit and approach embodied by that effort and its teams continues in force at the center. joe schuyler NASA Stennis Engineering and Test Directorate Director The Impact The Diagnostic Testbed Facility impacted more than just those engineers involved in the testing. Following the initial research effort, the facility underwent modifications in January 1993. Two months later, facility operators completed a successful series of tests on a small-scale liquid hydrogen turbopump for a California-based aerospace company. The project marked an early collaboration between the center and a commercial company and helped pave the way for the continued success of the NASA Stennis E Test Complex. Building on Diagnostic Testbed Facility knowledge and equipment, the NASA Stennis complex now supports multiple commercial aerospace projects with its versatile infrastructure and team of propulsion test experts. “The physical remnants of the Diagnostic Testbed Facility are barely recognizable now,” Schuyler said. “But that spirit and approach embodied by that effort and its teams continues in force at the center.” Additional Information NASA Stennis has leveraged hardware and expertise from the Diagnostic Testbed Facility to provide benefit to NASA and industry for two decades and counting. The facility’s thruster, run tanks, valves, regulators and instrumentation were used in developing the versatile four-stand E Test Complex at NASA Stennis that includes 12 active test cell positions capable of various component, engine, and stage test activities. “The Diagnostic Testbed Facility was the precursor to that,” said NASA engineer Glenn Varner. “Everything but the structure still in the grass moved to the E-1 Test Stand, Cell 3. Plume diagnostics was part of the first testing there.” When plume diagnostic testing concluded at E-1, equipment moved to the E-3 Test Stand, where the same rocket engine used for the Diagnostic Testbed Facility has since performed many test projects. The Diagnostic Testbed Facility thruster also has been used for various projects at E-3, most recently in a project for the exploration upper stage being built for use on future Artemis missions. In addition to hardware, engineers who worked at the Diagnostic Testbed Facility also moved on to support E Test Complex projects. There, they helped new NASA engineers learn how to handle gaseous hydrogen and liquid hydrogen propellants. Engineers learned about purging, ignition, and handling propellants and all the components needed for a successful test. “From an engineering perspective, the more knowledge you have of the processes and procedures to make propulsion work, the better off you are,” Varner said. “It applied then and still applies today. The Diagnostic Testbed Facility contributed to the future development of NASA Stennis infrastructure and expertise.” Share Details Last Updated Feb 25, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 4 min read NASA Stennis Flashback: Shuttle Team Achieves Unprecedented Milestone Article 7 months ago 4 min read Stennis Flashback: NASA Test Series Leads to Bold Space Shuttle Flight It may have been small, but the white puff of smoke exiting the B-2 Test… Article 2 years ago Keep Exploring Discover More Topics From NASA Stennis NASA’s Stennis Space Center History NASA Stennis Images NASA Stennis Fact Sheets NASA Stennis Front Door View the full article
  5. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 3 min read Sols 4461-4463: Salty Salton Sea? NASA’s Mars rover Curiosity acquired this image showing its Alpha Particle X-Ray Spectrometer (APXS), a spectrometer that measures the abundance of chemical elements in rocks and soils, on the “Chumash Trail” target in its workspace. Note the butte in the background. The rover used its Front Hazard Avoidance Camera (Front Hazcam) to capture the image on Feb. 19, 2025 — sol 4458, or Martian day 4,458 of the Mars Science Laboratory mission — at 21:03:48 UTC. NASA/JPL-Caltech Earth planning date: Friday, Feb. 21, 2025 Since first encountering the sulfate-bearing unit around Sol 3540, we have detected minerals and elemental concentrations consistent with the presence of various salts and a general drying out of Mars climate (read ”NASA’s Curiosity Mars Rover Reaches Long-Awaited Salty Region”). Salton Sea in California is a saline lake, meaning it has high concentrations of salty minerals formed as a result of evaporation processes dominating over input of fresh water. As such, we thought it would be a fitting name for one of our rock targets to be analyzed by the APXS and MAHLI instruments in this weekend plan. We have observed a variety of different textures and colors associated with the sulfate-bearing unit. The target “Salton Sea” is an example of one such texture — a dark-toned, relatively smooth, platy layer. Will the chemistry indicate the presence of salty minerals, some of which may be the same as those found at Salton Sea? Other rock targets to be analyzed in this busy weekend plan include “Wellman Divide,” another APXS and MAHLI target on a thicker, dark-toned, rougher textured layer, and “Goodykoontz” and “Paseo del Mar,” both ChemCam LIBS targets, on a nodule and a dark, platy layer, respectively. We also continue to document the layers of rock exposed within several buttes and mesas around us (“Dragon Tooth” and “Texoli” buttes, and “Gould Mesa”) with CCAM RMI and Mastcam imaging. Curiosity will hopefully climb though equivalent layers as we continue our ascent of Mount Sharp, so these images can help with interpretation when we finally encounter them on the ground. Mastcam will also image a trough in the sand surrounding one of the bedrock blocks — a feature that has been observed relatively frequently lately. The atmospheric scientists also have an action-packed plan with coordinated APXS atmospheric and ChemCam passive-sky observations to measure argon and oxygen, respectively, as well as standard activities. These observations help to track changes in seasonal atmospheric flow from equatorial to polar regions on Mars. Standard atmospheric monitoring activities included in the plan are: Navcam dust devil movies (x2), suprahorizon movies (x2), a zenith movie, line of sight observations (x2), and a cloud altitude observation, as well as Mastcam tau observations (x2). After a planned drive of about 49 meters (about 161 feet) on the second sol of this three-sol weekend plan, the MARDI camera will take an image of the terrain beneath the rover. The plan is rounded out with standard REMS, DAN and RAD activities. Written by Lucy Thompson, Planetary Geologist at University of New Brunswick Share Details Last Updated Feb 25, 2025 Related Terms Blogs Explore More 2 min read Gardens on Mars? No, Just Rocks! Article 3 days ago 2 min read Sols 4458-4460: Winter Schminter Article 5 days ago 3 min read Cookies, Cream, and Crumbling Cores Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  6. Acting Director of NASA’s Johnson Space Center, Steve Koerner. Credit: NASA/Norah Moran NASA has selected Stephen Koerner as acting director of Johnson Space Center. Koerner previously served as Johnson’s deputy director. “It is an honor to accept my new role as acting director for Johnson,” Koerner said. “Our employees are key to our nation’s human spaceflight goals. I am continually impressed with what our workforce accomplishes and am proud to be named the leader of such an incredible team dedicated to mission excellence.” Koerner previously served as deputy director of NASA Johnson beginning in July 2021, overseeing strategic workforce planning, serving as Designated Agency Safety Health Officer (DASHO), and supporting the Johnson Center Director in mission reviews. Before his appointment to deputy director, Koerner served as director of the Flight Operations Directorate (FOD) for two years. In that role, he was responsible for selecting and protecting astronauts, and for the planning, training, and execution of human space flight and aviation missions. He managed an annual budget of $367 million, 600 civil servants and military personnel, and 2300 contractor personnel. He oversaw the Astronaut Office, the Flight Director Office, the Mission Control Center, human spaceflight training facilities, and Johnson’s Aviation Operations Division. During this tenure he was also responsible for FOD’s flight readiness of the first commercial human spaceflight mission, ushering in a new era of domestic launch capability and the return of American astronauts launching from American soil. Prior to assuming his position as director of Flight Operations, Koerner served in several senior executive roles, including: Johnson Space Center Associate Director from 2018 to 2019 Johnson Space Center Chief Financial Officer (CFO) from 2017 to 2018 Deputy Director of Flight Operations from 2014 to 2017 Deputy Director Mission Operations from 2007 to 2014 Koerner joined Johnson full-time in 1992. He has extensive operations experience including serving as an environmental systems space shuttle flight controller, where he supported 41 space shuttle flights in Mission Control. Since that time, he has served in a series of progressively more responsible positions, including lead for two International Space Station flight control groups, chief of the space station’s Data Systems Flight Control Branch, chief of the Mission Operations Directorate’s Management Integration Office, and as the Mission Operation Directorate’s manager for International Space Station operations. Additional special assignments throughout his career include: Project manager for Johnson’s Crew Exploration Vehicle Avionics Integration Lab (June 2007 –June 2008) Member of NASA’s Human Exploration Framework Team (April 2010 –October 2010) Member of NASA’s Standing Review Board that provided an independent assessment at life cycle review milestones for the Multi-Purpose Crew Vehicle Program, the Space Launch System Program and the Ground Systems Development and Operations Program (October 2011 – August 2014) Lead of NASA’s Mission Operations Capability Team (October 2015 –April 2017) “Steve has an accomplished career serving human spaceflight. His vision and dedication to the Johnson workforce makes him the perfect person to lead the Johnson team forward as acting director,” said Vanessa Wyche, NASA acting associate administrator. “Steve is an asset to the center and the agency—as both a proven technical expert and a leader.” Throughout his career, Koerner has been recognized for outstanding technical achievements and leadership, receiving two Superior Accomplishment Awards, the Outstanding Leadership Medal, the Johnson Space Center Director’s Commendation Award, two group achievement awards, the Exceptional Service Medal, and the Presidential Rank Award. Koerner is a native of Stow, Ohio. He earned a bachelor’s degree in mechanical engineering from the University of Akron in Ohio, and a master’s degree in business administration from LeTourneau University in Longview, Texas. View the full article
  7. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s F-15D research aircraft is positioned adjacent to the X-59 during electromagnetic compatibility testing at U.S. Air Force Plant 42 in Palmdale, California. Researchers activated the F-15D’s radar, C-band transponder, and radios at different distances from the X-59 to evaluate potential electromagnetic interference with the aircraft’s flight-critical systems, ensuring the X-59 can operate safely with other aircraft. These tests showed that the aircraft’s integration is maturing and cleared a major hurdle that moves it one step closer to first flight.NASA/Carla Thomas NASA’s quiet supersonic X-59 research aircraft has cleared electromagnetic testing, confirming its systems will work together safely, without interference across a range of scenarios. “Reaching this phase shows that the aircraft integration is advancing,” said Yohan Lin, NASA’s X-59 avionics lead. “It’s exciting to see the progress, knowing we’ve cleared a major hurdle that moves us closer to X-59’s first flight.” Electromagnetic interference occurs when an electric or magnetic field source affects an aircraft’s operations, potentially impacting safety. This interference, whether from an external source or the aircraft’s own equipment, can disrupt the electronic signals that control critical systems – similar to effects that lead to static or crackling on a radio from a nearby emitting device, like a phone. The tests, conducted at contractor Lockheed Martin Skunk Works’ facility in Palmdale, California, ensured that the X-59’s onboard systems – such as radios, navigation equipment, and sensors – did not interfere with one another or cause unexpected problems. During these tests, engineers activated each system on the aircraft one at a time while they monitored the other systems for possible interference. NASA’s X-59 quiet supersonic research aircraft successfully completed electromagnetic interference (EMI) testing at Lockheed Martin Skunk Works in Palmdale, California. During EMI tests, the team examined each of the X-59’s internal electronic systems, ensuring they worked with one another without interference. The X-59 is designed to fly faster than the speed of sound while reducing the loud sonic boom to a quieter sonic thump.NASA/Carla Thomas “This testing helped us determine whether the systems within the X-59 are interfering with each other,” Lin said. “It’s called a source-victim test – essentially, we activate one system and monitor the other for issues like noise, glitches, faults, or errors.” The X-59 will generate a quieter thump rather than a loud boom while flying faster than the speed of sound. The aircraft is the centerpiece of NASA’s Quesst mission, which will provide regulators with information that could help lift current bans on commercial supersonic flight over land. Currently, the aircraft is progressing through ground tests to ensure safety and performance. These included the recent, successful completion of a set of engine tests. The electromagnetic interference testing to examine the X-59’s internal electronic systems followed. Other electromagnetic interference testing involved the team looking at the operation of the X-59’s landing gear, ensuring this critical component can extend and retract without affecting other systems. And they tested that the fuel switch shutoff was functioning properly without interference. Electromagnetic compatibility was also assessed during this testing – making sure the X-59’s systems will function properly when it eventually flies near NASA research aircraft. NASA test pilot Jim Less prepares to exit the cockpit of the quiet supersonic X-59 aircraft in between electromagnetic interference (EMI) testing. The EMI testing ensures an aircraft’s systems function properly under various conditions of electromagnetic radiation. The X-59 is the centerpiece of the NASA’s Quesst mission, designed to demonstrate quiet supersonic technology and provide data to address a key barrier to commercial supersonic travel.NASA/Carla Thomas Researchers staged the X-59 on the ground in front of NASA’s F-15D, placing them 47 feet apart, then 500 feet apart. The proximity of the two aircraft replicated conditions needed for the F-15D to use a special probe to gather measurements about the shock waves the X-59 will produce. “We want to confirm there’s compatibility between the two aircraft, even at close proximity,” Lin said. For the electromagnetic compatibility testing, the team powered up the X-59’s engine while turning on the F-15D’s radar, C-band radar transponder, and radios. Data from the X-59 were transmitted to NASA’s Mobile Operations Facility, where control room staff and engineers monitored for anomalies. “You want to make discoveries of any potential electromagnetic interference or electromagnetic compatibility issues on the ground first,” Lin said. “This reduces risk and ensures we’re not learning about problems in the air.” Now that electromagnetic testing is complete, the X-59 is ready to move on to aluminum bird tests – during which data will be fed to the aircraft on the ground under both normal and failure conditions – and then taxi tests before flight. Share Details Last Updated Feb 25, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related TermsArmstrong Flight Research CenterAeronauticsAeronautics Research Mission DirectorateLangley Research CenterLow Boom Flight DemonstratorQuesst (X-59)Quesst: The VehicleSupersonic Flight Explore More 4 min read NASA University Research Program Makes First Award to a Community College Project Article 2 days ago 3 min read NASA Selects New Round of Student-Led Aviation Research Awards Article 7 days ago 3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests Article 2 weeks ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Aeronautics Integrated Aviation Systems Program Supersonic Flight View the full article
  8. 5 Min Read NASA’s EZIE Launching to Study Magnetic Fingerprints of Earth’s Aurora High above Earth’s poles, intense electrical currents called electrojets flow through the upper atmosphere when auroras glow in the sky. These auroral electrojets push about a million amps of electrical charge around the poles every second. They can create some of the largest magnetic disturbances on the ground, and rapid changes in the currents can lead to effects such as power outages. In March, NASA plans to launch its EZIE (Electrojet Zeeman Imaging Explorer) mission to learn more about these powerful currents, in the hopes of ultimately mitigating the effects of such space weather for humans on Earth. Results from EZIE will help NASA better understand the dynamics of the Earth-Sun connection and help improve predictions of hazardous space weather that can harm astronauts, interfere with satellites, and trigger power outages. The EZIE mission includes three CubeSats, each about the size of a carry-on suitcase. These small satellites will fly in a pearls-on-a-string formation, following each other as they orbit Earth from pole to pole about 350 miles (550 kilometers) overhead. The spacecraft will look down toward the electrojets, which flow about 60 miles (100 kilometers) above the ground in an electrified layer of Earth’s atmosphere called the ionosphere. During every orbit, each EZIE spacecraft will map the electrojets to uncover their structure and evolution. The spacecraft will fly over the same region 2 to 10 minutes apart from one another, revealing how the electrojets change. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission will use three CubeSats to map Earth’s auroral electrojets — intense electric currents that flow high above Earth’s polar regions when auroras glow in the sky. As the trio orbits Earth, each satellite will use four dishes pointed at different angles to measure magnetic fields created by the electrojets. NASA/Johns Hopkins APL/Steve Gribben Previous ground-based experiments and spacecraft have observed auroral electrojets, which are a small part of a vast electric circuit that extends 100,000 miles (160,000 kilometers) from Earth to space. But for decades, scientists have debated what the overall system looks like and how it evolves. The mission team expects EZIE to resolve that debate. “What EZIE does is unique,” said Larry Kepko, EZIE mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “EZIE is the first mission dedicated exclusively to studying the electrojets, and it does so with a completely new measurement technique.” EZIE is the first mission dedicated exclusively to studying the electrojets. Larry Kepko EZIE mission scientist, NASA’s Goddard Space Flight Center This technique involves looking at microwave emission from oxygen molecules about 10 miles (16 kilometers) below the electrojets. Normally, oxygen molecules emit microwaves at a frequency of 118 Gigahertz. However, the electrojets create a magnetic field that can split apart that 118 Gigahertz emission line in a process called Zeeman splitting. The stronger the magnetic field, the farther apart the line is split. Each of the three EZIE spacecraft will carry an instrument called the Microwave Electrojet Magnetogram to observe the Zeeman effect and measure the strength and direction of the electrojets’ magnetic fields. Built by NASA’s Jet Propulsion Laboratory (JPL) in Southern California, each of these instruments will use four antennas pointed at different angles to survey the magnetic fields along four different tracks as EZIE orbits. The technology used in the Microwave Electrojet Magnetograms was originally developed to study Earth’s atmosphere and weather systems. Engineers at JPL had reduced the size of the radio detectors so they could fit on small satellites, including NASA’s TEMPEST-D and CubeRRT missions, and improved the components that separate light into specific wavelengths. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission will investigate Earth’s auroral electrojets, which flow high above Earth’s polar regions when auroras (northern and southern lights) glow. By providing unprecedented measurements of these electrical currents, EZIE will answer decades-old mysteries. Understanding these currents will also improve scientists’ capabilities for predicting hazardous space weather. NASA/Johns Hopkins APL The electrojets flow through a region that is difficult to study directly, as it’s too high for scientific balloons to reach but too low for satellites to dwell. “The utilization of the Zeeman technique to remotely map current-induced magnetic fields is really a game-changing approach to get these measurements at an altitude that is notoriously difficult to measure,” said Sam Yee, EZIE’s principal investigator at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland. The mission is also including citizen scientists to enhance its research, distributing dozens of EZIE-Mag magnetometer kits to students in the U.S. and volunteers around the world to compare EZIE’s observations to those from Earth. “EZIE scientists will be collecting magnetic field data from above, and the students will be collecting magnetic field data from the ground,” said Nelli Mosavi-Hoyer, EZIE project manager at APL. EZIE scientists will be collecting magnetic field data from above, and the students will be collecting magnetic field data from the ground. Nelli Mosavi-Hoyer EZIE project manager, Johns Hopkins Applied Physics Laboratory The EZIE spacecraft will launch aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California as part of the Transporter-13 rideshare mission with SpaceX via launch integrator Maverick Space Systems. The mission will launch during what’s known as solar maximum — a phase during the 11-year solar cycle when the Sun’s activity is stronger and more frequent. This is an advantage for EZIE’s science. “It’s better to launch during solar max,” Kepko said. “The electrojets respond directly to solar activity.” The EZIE mission will also work alongside other NASA heliophysics missions, including PUNCH (Polarimeter to Unify the Corona and Heliosphere), launching in late February to study how material in the Sun’s outer atmosphere becomes the solar wind. According to Yee, EZIE’s CubeSat mission not only allows scientists to address compelling questions that have not been able to answer for decades but also demonstrates that great science can be achieved cost-effectively. “We’re leveraging the new capability of CubeSats,” Kepko added. “This is a mission that couldn’t have flown a decade ago. It’s pushing the envelope of what is possible, all on a small satellite. It’s exciting to think about what we will discover.” The EZIE mission is funded by the Heliophysics Division within NASA’s Science Mission Directorate and is managed by the Explorers Program Office at NASA Goddard. APL leads the mission for NASA. Blue Canyon Technologies in Boulder, Colorado, built the CubeSats. by Vanessa Thomas NASA’s Goddard Space Flight Center, Greenbelt, Md. Header Image: An artist’s concept shows the three EZIE satellites orbiting Earth. Credits: NASA/Johns Hopkins APL/Steve Gribben Share Details Last Updated Feb 25, 2025 Related Terms Heliophysics Auroras EZIE (Electrojet Zeeman Imaging Explorer) Goddard Space Flight Center Missions Small Satellite Missions The Sun Explore More 6 min read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind Article 4 days ago 2 min read Hubble Spies a Spiral That May Be Hiding an Imposter Article 4 days ago 3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska Article 1 week ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  9. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Lucy spacecraft has its next flyby target, the small main belt asteroid Donaldjohanson, in its sights. By blinking between images captured by Lucy on Feb. 20 and 22, this animation shows the perceived motion of Donaldjohanson relative to the background stars as the spacecraft rapidly approaches the asteroid. NASA’s Lucy spacecraft’s first views of the asteroid Donaldjohanson. The asteroid is circled on the left to guide the eye.NASA/Goddard/SwRI/Johns Hopkins APL Lucy will pass within 596 miles (960 km) of the 2-mile-wide asteroid on April 20. This second asteroid encounter for the Lucy spacecraft will serve as a dress-rehearsal for the spacecraft’s main targets, the never-before-explored Jupiter Trojan asteroids. Lucy already successfully observed the tiny main belt asteroid Dinkinesh and its contact-binary moon, Selam, in November 2023. Lucy will continue to image Donaldjohanson over the next two months as part of its optical navigation program, which uses the asteroid’s apparent position against the star background to ensure an accurate flyby. Donaldjohanson will remain an unresolved point of light during the spacecraft’s long approach and won’t start to show surface detail until the day of the encounter. From a distance of 45 million miles (70 million km), Donaldjohanson is still dim, though it stands out clearly in this field of relatively faint stars in the constellation of Sextans. Celestial north is to the right of the frame, and the 0.11-degree field of view would correspond to 85,500 miles (140,000 km) at the distance of the asteroid. In the first of the two images, another dim asteroid can be seen photobombing in the lower right quadrant of the image. However, just as the headlights of an approaching car often appear relatively stationary, Donaldjohanson’s apparent motion between these two images is much smaller than that of this interloper, which has moved out of the field of view in the second image. These observations were made by Lucy’s high-resolution camera, the L’LORRI instrument — short for Lucy LOng Range Reconnaissance Imager — provided by the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. Asteroid Donaldjohanson is named for anthropologist Donald Johanson, who discovered the fossilized skeleton — called “Lucy” — of a human ancestor. NASA’s Lucy mission is named for the fossil. Lucy’s principal investigator, Hal Levison, is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program for the Science Mission Directorate at NASA Headquarters in Washington. For more information about NASA’s Lucy mission, visit: https://www.nasa.gov/lucy By Katherine Kretke Southwest Research Institute Media Contact: Nancy N. Jones NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Feb 25, 2025 Related TermsLucyGeneralGoddard Space Flight CenterPlanetary ScienceThe Solar SystemTrojan Asteroids View the full article
  10. Download Press Kit (PDF) Return to CLPS Homepage View the full article
  11. Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 8 min read AGU 2024: NASA Science on Display in the Nation’s Capital Introduction The American Geophysical Union (AGU) returned to the nation’s capital in 2024, hosting its annual meeting at the Walter E. Washington Convention Center in Washington, DC from December 9–14, 2024. NASA Science upheld its long-standing tradition as an AGU partner and exhibitor, leveraging the meeting as an opportunity to share NASA’s cutting-edge research, data, and technology with the largest collection of Earth and planetary science professionals in the world. Many of the estimated 25,000 students, scientists, and industry personnel who attended the conference visited the NASA Science exhibit, interacting with NASA subject matter experts as detailed in the essay that follows – see Photo 1. Visitors also watched live Hyperwall presentations and collected NASA Science outreach materials, such as the 2025 NASA Science Planning Guide. Photo 1. Paulo Younse [NASA/Jet Propulsion Laboratory (JPL), Robotics Systems Group—Engineer,] poses with a model of the sample tube he designed for the caching architecture that was used on NASA’s Mars Sample Return mission. Photo credit: NASA Highlights from the NASA Science Exhibit NASA Hyperwall Stories The NASA Hyperwall has been a focal point of the agency’s outreach efforts for over two decades, serving as both a powerful storytelling platform and the primary vehicle through which the public engages with the award-winning visualizations published by NASA’s Scientific Visualization Studio (SVS) – see Photo 2. Forty-nine NASA mission scientists and program representatives shared NASA science with the public from the Hyperwall stage during AGU24. NASA leadership shared mission news and outlined upcoming research across all five of the NASA Science divisions: Earth science, planetary science, heliophysics, astrophysics, and biological and physical sciences – see Photos 3–8. A catalog of NASA project scientists and mission representatives, who provided colorful overviews of everything from NASA’s Mars Sample Return to the Parker Solar Probe’s historic flyby of the Sun, delivered additional presentations. Photo 2. Mark Subbarao [NASA GSFC—Director of NASA’s Scientific Visualization Studio] highlighted key visualizations produced by NASA’s Scientific Visualization Studio during 2024 and presented them as a countdown of the top 10 visualizations of the year. Photo credit: NASA The complete AGU24 Hyperwall schedule is available at this link. Readers can view YouTube videos of the presentations via links over the individual names in the photo captions below. Photo 3. Nicola Fox [NASA HQ—Associate Administrator of Science Mission Directorate] kicked off the week’s Hyperwall storytelling series by sharing 12 images selected for the 2025 NASA Science Planning Guide. Each image underscores the beauty of the natural world and the inherent value of scientific endeavors undertaken not only at NASA but by citizens around the globe. Photo credit: NASA Photo 4. Karen St. Germain [NASA HQ—Director of the Earth Science Division] provided audience members with an overview of NASA’s Earth Science Division – including the latest science from the Plankton, Aerosol, Cloud, and Ecosystems (PACE) mission. Photo credit: NASA Photo 5. Jack Kaye [NASA HQ—Director of the Airborne Science Program] highlighted key airborne science missions that flew in 2024 and demonstrated the broad list of airborne satellites and instruments and how their applications enable the advancement of Earth science research around the globe. Photo credit: NASA Photo 6. Joseph Westlake [NASA HQ—Director of the Heliophysics Division] delivered a talk in front of the NASA Hyperwall that captured the groundbreaking research that NASA has planned for the culmination of the Heliophysics Big Year, including mission news related to the Parker Solar Probe, Interstellar Mapping and Acceleration Probe (IMAP), and Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS). Photo credit: NASA Photo 7. Mark Clampin [NASA HQ—Director of the Astrophysics Division] gave AGU attendees a glimpse of NASA missions that will help researchers around the globe observe distant worlds and answer profound questions about the physics of the universe beyond our solar system. His presentation centered around the impact of the upcoming Nancy Grace Roman Telescope and Habitable Worlds Observatory (HWO). Photo credit: NASA Photo 8. Lisa Carnell [NASA HQ—Director of the Biological Sciences Division], who sits at the helm of NASA’s newest scientific division, gave an overview of the current and future NASA research that is enhancing our understanding of how humans can live and work in space. Photo credit: NASA During AGU, NASA also celebrated the winners of the 2024 AGU Michael Freilich Student Visualization Competition, an annual competition honoring former NASA Earth Science Division director Michael Freilich that inspires students to develop creative strategies for effectively communicating complex scientific problems – see Photo 9. See the summary of “Symposium on Earth Science and Applications from Space…” [The Earth Observer, Mar–Apr 2020, Volume 32 Issue 3, 4–18] to learn more about Freilich’s career at NASA and impact on Earth science. A list of the award’s past recipients, dating back to the 2016, is published on AGU’s website. Photo 9a. In partnership with AGU, student winners of the 2024 AGU Michael Freilich Student Visualization Competition received prizes and presented their work at the NASA hyperwall stage. Steve Platnick [NASA GSFC—Research Scientist for Earth Science Division ] [left with back to camera] congratulates Caitlin Haedrich [NC State University—Ph.D. candidate, contest winner (CW)]. Photo credit: NASA Photo 9b. Standing on the NASA Hyperwall stage [left to right] are Erik Hankin [AGU—Assistant Director of Career and Student Programs], Barry Lefer [NASA HQ—Program Manager for the Tropospheric Composition Program (TCP)], Mya Thomas [University of Missouri-Kansas City—Undergraduate Student. CW], Mariliee Karinshak [Washington University in St. Louis—Undergraduate Student, CW], Swati Singh [Auburn University—PhD Candidate, CW], Crisel Suarez [Vanderbilt University—PhD Candidate, CW], and Steve Graham [GSFC/Global Science & Technology Inc.—NASA Science Support Office Task Leader]. Photo credit: NASA Photo 9c. Patrick Kerwin [University of Arizona—Graduate Student, CW] delivers his award-winning talk titled Earth Observation for Disaster Response: Highlighting Applied Products. Photo credit: NASA Face-to-face With NASA Experts AGU opened its exhibit hall to the public at 10:00 AM on December 9. Thousands of eager attendees poured into the space to engage with exhibit staff, representing a variety of universities, research institutions, and private organizations from around the world. Photo 10. AGU attendees explore the NASA Science exhibit space shortly after the exhibit hall opened on December 9. Photo credit: NASA Photo 11a. AGU meeting participants anticipate the distribution of the NASA Science Planning Guide each year, which features artwork from Science Mission Directorate (SMD) art director Jenny Mottar and a collection of science images curated by SMD leadership. Photo credit: NASA Photo 11b. AGU meeting participants anticipate the distribution of the NASA Science Planning Guide each year, which features artwork from Science Mission Directorate (SMD) art director Jenny Mottar and a collection of science images curated by SMD leadership. Photo credit: NASA NASA Science welcomed AGU attendees, who gathered within the perimeter of the exhibit shortly after opening – see Photo 10 – where NASA staff distributed the 2025 NASA Science Planning Guide – see Photo 11. Attendees filtered through the NASA Science booth by the thousands, where more than 130 outreach specialists and subject matter experts from across the agency were available to share mission-specific science and interface directly with members of the public – see Photos 12–15. Photo 12. The NASA Science booth included a collection of exhibit tables, where mission scientists and outreach specialists shared information and materials specific to various NASA missions and programs. Photo credit: NASA Photo 13. Outreach specialists from NASA’s Dragonfly mission, which plans to send a robotic aircraft to the surface of Saturn’s moon Titan, speak with attendees in front of a to-scale model of the aircraft. Photo credit: NASA Photo 14. Staff from NASA’s astrobiology program share a collection of graphic novels produced by graphic artist Aaron Gronstal, highlighting the research that the program conducts to answer important questions about the origin, evolution, and distribution of life in the universe. Photo credit: NASA Photo 15. Exhibit staff and AGU attendees interact with three-dimensional (3D) models of NASA spacecraft and technology in augmented reality. Photo credit: NASA AGU attendees met with project scientists and experts at a new exhibit, called “Ask Me Anything.” The discussions spanned a variety of NASA missions, including Mars Sample Return, James Webb Space Telescope, and Parker Solar Probe, with specialists from these and other missions who spoke during the sessions – see Photo 16. An installation of NASA’s Earth Information Center also made an appearance at AGU24, providing attendees with additional opportunities to speak with Earth scientists and learn more about NASA research – see Photo 17. Photo 16. NASA Heliophysicists discuss solar science with AGU attendees at the “Ask Me About Heliophysics” table. Photo credit: NASA Photo 17. At the Earth Information Center, attendees spoke with NASA staff about the various ways that NASA keeps tabs on the health of Earth’s atmosphere, oceans, and landmasses from space. Photo credit: NASA 2024 SMD Strategic Content and Integration Meeting As they have done for many years now, staff and leadership from NASA’s Science Mission Directorate (SMD) Engagement Branch convened in Washington, DC on December 8 (the day before the Fall AGU meeting began) to discuss agency communications and outreach priorities. This annual meeting provided personnel from each of SMD’s scientific divisions a valuable opportunity to highlight productive strategies and initiatives from the previous calendar year and chart a path for the year ahead. During the single-day event, team leaders shared information related to NASA’s web-modernization efforts, digital outreach strategies, and exhibit presence. Approximately 150 in-person and 50 online NASA staff joined the hybrid meeting. After a welcome from Steve Graham [GSFC/GST—NASA Science Support Office Task Leader], who covered meeting logistics, the participants heard from NASA Headquarters’ SMD Engagement and Communication representatives throughout the day. Amy Kaminski [Engagement Branch Chief], who recently replaced Kristen Erickson in this role, used this opportunity to more formally introduce herself to those who might not know her and share her visions for engagement. Karen Fox [Senior Science Communications Official] discussed the evolution of communication for SMD missions over the past decade – moving from siloed communications a decade ago that very much focused on “my mission,” to a much more cooperation between missions and focus on thematic communications. Following up on Kaminski’s remarks that gave an overall vision for engagement, and Fox’s remarks about how having a vision will help streamline our messaging, Alex Lockwood [Strategic Messaging and Engagement Lead] delved into the nuts and bolts of strategic planning, with focus on the use of work packages and memorandums of understanding for promoting upcoming missions. After the leadership set the tone for the meeting, Emily Furfaro [NASA Science Digital Manager] gave a rapid tour of many of NASA’s digital assets intended to give participants an idea of the vast resources available for use. Diana Logreira [NASA Science Public Web Manager] then laid out some principles to be followed in developing unified vision for the NASA Science public web experience. In the afternoon, there were individual breakout sessions for the Earth Science, Planetary Science, and Heliophysics divisions. These sub-meetings were led by Ellen Gray, Erin Mahoney, and Deb Hernandez, Engagement Leads for Earth Science, Heliophysics, and Planetary Sciences respectively. These breakout sessions afforded participants with an opportunity to focus on ideas and goals specific to their own divisions for 2025. In the Earth Science breakout session, participants heard from other several other speakers who discussed the beats, or content focus areas, that had been chosen for Earth Science Communications in 2024 – including oceans and Earth Action (formerly known as Applied Sciences) – and those that have been identified for 2025: technology, land science, and continued focus on Earth Action. Photo 18a. NASA Science Mission Directorate staff gathers in Washington, DC ahead of AGU for the annual meeting, where in-person attendees hear from leadership and work collaboratively to refine communications strategies for 2025. Photo credit: NASA Photo 18b. Joseph Westlake [NASA HQ—Heliophysics Division Director] discusses division-specific goals with Heliophysics communication leads during the division’s “breakout session.” Photo credit: NASA Photo 18c. Science Mission Directorate leadership fields questions from SMD staff during the end-of-meeting panel discussion. Photo credit: NASA After participants reconvened from the breakouts, Nicola Fox [Associate Administrator, Science Mission Directorate] gave a mid-afternoon presentation in which she presented her perspective on integrated NASA science, which led into a one-hour “Ask Us” panel with Division Directors to conclude the meeting. Participants included: Mark Clampin [Astrophysics], Lisa Carnell [Biological], Julie Robinson [Earth Science, Deputy], Joe Westlake [Heliophysics], John Gagosian [Joint Agency Satellite], Charles Webb [Planetary Science, Acting]. Based on this meeting, and other communications guidance from NASA HQ, a few general SMD/Earth Science content and engagement priorities for 2025 have emerged. They include: continuing to develop stories and products related to the three primary beats for 2025: technology, land, and Earth action; emphasizing the value of SMD science as a whole or system of connected divisions, promoting cross-divisional science; increasing the use of social media as a vehicle to share NASA missions and programs with diverse audiences; focusing on critical – and high-profile – ongoing missions [e.g., Parker Solar Probe, Europa Clipper, Plankton Aerosols, Cloud and ocean Ecosystem (PACE)] and upcoming launches [ARTEMIS and NASA–Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR)]; fostering collaborations and partnerships with agencies and institutions, e.g. instillation of the Earth Information Center at the Smithsonian Museum of Natural History; and improving the visitor and guest experience at NASA centers, including Kennedy Space Center launches. Conclusion The NASA exhibit is an important component of the agency’s presence at AGU, and NASA leverages its large cohort of scientists who participate in the exchange of information and ideas outside of the exhibit hall – in plenary meetings, workshops, poster sessions, panels, and informal discussions. AGU sessions and events that featured NASA resources, scientists, and program directors included the Living with a Star Town Hall, NASA’s Early Career Research Program, NASA’s Sea Level Change Team: Turning Research into Action, and many more. Click here for the complete list of NASA-related events at AGU24. As the final event in a busy calendar of annual scientific conferences, AGU is often an opportunity for NASA scientists to publish findings from the previous year and set goals for the year ahead. Just as they did in 2024, the agency’s robust portfolio of missions and programs will continue to set new records, such as NASA’s Parker Solar Probe pass of the Sun, and conduct fundamental research in the fields of Earth and space science. The 2025 AGU annual meeting will be held at the New Orleans Ernest N. Morial Convention Center, in New Orleans, LA, from December 15–19, 2025. See you there. Nathan Marder NASA’s Goddard Space Flight Center/Global Science & Technology Inc. nathan.marder@nasa.gov Share Details Last Updated Feb 25, 2025 Related Terms Earth Science View the full article
  12. Explore This Section Science Science Activation Sharing PLANETS Curriculum… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 2 min read Sharing PLANETS Curriculum with Out-of-School Time Educators Out of school time (OST) educators work with youth in afterschool, community, and camp programs. Science, Technology, Engineering, and Mathematics (STEM) learning in OST can be challenging for multiple reasons, including lack of materials and support for educators. The NASA Science Activation program’s PLANETS project – Planetary Learning that Advances the Nexus of Engineering, Technology, and Science – led by Northern Arizona University in Flagstaff, AZ, provides both written curriculum and virtual educator support on planetary science and engineering. PLANETS offers three curriculum units focused on themes from NASA’s strategic priorities and mission directives in planetary science over the next decade: Space Hazards for learners in grades 3-5, Water in Extreme Environments, and Remote Sensing for learners in grades 6-8. PLANETS recently exhibited at two national conferences for educators to share these free NASA partner resources: the Space Exploration Educators Conference at Space Center Houston in Houston, TX on Feb 6-8, 2025 and the Beyond School Hours conference in Orlando, FL on Feb 13-16, 2025. Approximately 500 educators interacted with PLANETS team members to learn about the curriculum and to share their needs for OST learners. Some educators shared how they are already using PLANETS and how much their learners enjoy the lessons. In addition to sharing PLANETS resources, the team also had QR codes and flyers providing information about all the other Science Activation project teams, making sure educators grow in awareness of all that NASA’s Science Mission Directorate does to engage the public. OST educators appreciate the integrity and quality of NASA-funded resources. One educator shared, “Free resources are always critical to youth-serving organizations. PLANETS also has everyday materials and educator dialogue on how to deliver, making it easy to pick up and use.” Another OST educator said, “There are programs out there, like PLANETS, that truly help people of all backgrounds,” and yet another expressed, “I love the activities, and could see our youth engaging with it in a fun way.” Disseminating these types of NASA Science Activation program resources at regional and national venues is vital. The PLANETS project is supported by NASA under cooperative agreement award number NNX16AC53A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn Members of the PLANETS team exhibiting at the Space Exploration Educators Conference in Houston, TX. Share Details Last Updated Feb 25, 2025 Editor NASA Science Editorial Team Related Terms Science Activation Opportunities For Educators to Get Involved Planetary Science Explore More 3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska Article 7 days ago 2 min read An Afternoon of Family Science and Rocket Exploration in Alaska Article 2 weeks ago 3 min read Tribal Library Co-Design STEM Space Workshop Article 2 weeks ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  13. NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrates the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.Lockheed Martin Corporation/Gary Tice NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests. During maximum afterburner testing, a test demonstrating the engine’s ability to generate the thrust required for supersonic flight, the aircraft showed off a phenomenon known as Mach diamonds, seen in this image from Jan. 22, 2025. Mach diamonds, or shock diamonds, appear in the exhaust of supersonic aircraft like the X-59. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter. See what’s next for X-59. Image credit: Lockheed Martin/Gary Tice View the full article
  14. 6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This artist’s concept depicts NASA’s Europa Clipper as it flies by Mars, using the planet’s gravitational force to alter the spacecraft’s path on its way to the Jupiter system. NASA/JPL-Caltech The orbiter bound for Jupiter’s moon Europa will investigate whether the moon is habitable, but it first will get the help of Mars’ gravitational force to get to deep space. On March 1, NASA’s Europa Clipper will streak just 550 miles (884 kilometers) above the surface of Mars for what’s known as a gravity assist — a maneuver to bend the spacecraft’s trajectory and position it for a critical leg of its long voyage to the Jupiter system. The close flyby offers a bonus opportunity for mission scientists, who will test their radar instrument and thermal imager. Europa Clipper will be closest to the Red Planet at 12:57 p.m. EST, approaching it at about 15.2 miles per second (24.5 kilometers per second) relative to the Sun. For about 12 hours prior and 12 hours after that time, the spacecraft will use the gravitational pull of Mars to pump the brakes and reshape its orbit around the Sun. As the orbiter leaves Mars behind, it will be traveling at a speed of about 14 miles per second (22.5 kilometers per second). The flyby sets up Europa Clipper for its second gravity assist — a close encounter with Earth in December 2026 that will act as a slingshot and give the spacecraft a velocity boost. After that, it’s a straightforward trek to the outer solar system; the probe is set to arrive at Jupiter’s orbit in April 2030. “We come in very fast, and the gravity from Mars acts on the spacecraft to bend its path,” said Brett Smith, a mission systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. “Meanwhile, we’re exchanging a small amount of energy with the planet, so we leave on a path that will bring us back past Earth.” This animation depicts NASA’s Europa Clipper as it flies by the Red Planet. The spacecraft will use the planet’s gravity to bend its path slightly, setting up the next leg of its long journey to investigate Jupiter’s icy moon Europa. NASA/JPL-Caltech Harnessing Gravity Europa Clipper launched from Kennedy Space Center in Florida on Oct. 14, 2024, via a SpaceX Falcon Heavy, embarking on a 1.8-billion-mile (2.9-billion-kilometer) trip to Jupiter, which is five times farther from the Sun than Earth is. Without the assists from Mars in 2025 and from Earth in 2026, the 12,750-pound (6,000-kilogram) spacecraft would require additional propellant, which adds weight and cost, or it would take much longer to get to Jupiter. Gravity assists are baked into NASA’s mission planning, as engineers figure out early on how to make the most of the momentum in our solar system. Famously, the Voyager 1 and Voyager 2 spacecraft, which launched in 1977, took advantage of a once-in-a-lifetime planetary lineup to fly by the gas giants, harnessing their gravity and capturing data about them. While navigators at JPL, which manages Europa Clipper and Voyager, have been designing flight paths and using gravity assists for decades, the process of calculating a spacecraft’s trajectory in relation to planets that are constantly on the move is never simple. “It’s like a game of billiards around the solar system, flying by a couple of planets at just the right angle and timing to build up the energy we need to get to Jupiter and Europa,” said JPL’s Ben Bradley, Europa Clipper mission planner. “Everything has to line up — the geometry of the solar system has to be just right to pull it off.” About 4½ months after its launch, NASA’s Europa Clipper is set to perform a gravity as-sist maneuver as it flies by Mars on March 1. Next year the spacecraft will swing back by Earth for a final gravity assist before NASA/JPL-Caltech Refining the Path Navigators sent the spacecraft on an initial trajectory that left some buffer around Mars so that if anything were to go wrong in the weeks after launch, Europa Clipper wouldn’t risk impacting the planet. Then the team used the spacecraft’s engines to veer closer to Mars’ orbit in what are called trajectory correction maneuvers, or TCMs. Mission controllers have performed three TCMs to set the stage for the Mars gravity assist — in early November, late January, and on Feb. 14. They will conduct another TCM about 15 days after the Mars flyby to ensure the spacecraft is on track and are likely to conduct additional ones — upwards of 200 — throughout the mission, which is set to last until 2034. Opportunity for Science While navigators are relying on the gravity assist for fuel efficiency and to keep the spacecraft on their planned path, scientists are looking forward to the event to take advantage of the close proximity to the Red Planet and test two of the mission’s science instruments. About a day prior to the closest approach, the mission will calibrate the thermal imager, resulting in a multicolored image of Mars in the months following as the data is returned and scientists process the data. And near closest approach, they’ll have the radar instrument perform a test of its operations — the first time all its components will be tested together. The radar antennas are so massive, and the wavelengths they produce so long that it wasn’t possible for engineers to test them on Earth before launch. More About Europa Clipper Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet. Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, managed the launch service for the Europa Clipper spacecraft. Find more information about Europa Clipper here: https://science.nasa.gov/mission/europa-clipper/ Check out Europa Clipper's Mars flyby in 3D News Media Contacts Gretchen McCartney Jet Propulsion Laboratory, Pasadena, Calif. 818-287-4115 gretchen.p.mccartney@jpl.nasa.gov Karen Fox / Molly Wasser NASA Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 2025-024 Share Details Last Updated Feb 25, 2025 Related TermsEuropa ClipperEuropaJet Propulsion Laboratory Explore More 2 min read Is There Potential for Life on Europa? We Asked a NASA Expert: Episode 52 Article 2 hours ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon Article 2 weeks ago 5 min read NASA’s SPHEREx Space Telescope Will Seek Life’s Ingredients Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  15. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) That’s a great question. And it’s a question that NASA will seek to answer with the Europa Clipper spacecraft. Europa is a moon of Jupiter. It’s about the same size as Earth’s Moon, but its surface looks very different. The surface of Europa is covered with a layer of ice, and below that ice, we think there’s a layer of liquid water with more water than all of Earth’s oceans combined. So because of this giant ocean, we think that Europa is actually one of the best places in the solar system to look for life beyond the Earth. Life as we know it has three main requirements: liquid water — all life here on Earth uses liquid water as a basis. The second is the right chemical elements. These are elements like carbon, hydrogen, nitrogen, oxygen, phosphorus, sulfur. They’re elements that create the building blocks for life as we know it on Earth. We think that those elements exist on Europa. The third component is an energy source. As Europa orbits around Jupiter, Jupiter’s strong gravity tugs and pulls on it. It actually stretches out the surface. And it produces a heat source called tidal heating. So it’s possible that hydrothermal systems could exist at the bottom of Europa’s ocean, and it’s possible that those could be locations for abundant life. So could there be life on Europa? It’s possible. And Europa Clipper is going to explore Europa to help try to answer that question. [END VIDEO TRANSCRIPT] Full Episode List Full YouTube Playlist Share Details Last Updated Feb 25, 2025 Related TermsScience Mission DirectorateAstrobiologyEuropaEuropa ClipperPlanetary SciencePlanetary Science DivisionThe Solar System Explore More 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the… Article 2 hours ago 4 min read NASA: New Study on Why Mars is Red Supports Potentially Habitable Past Article 5 hours ago 4 min read Five Facts About NASA’s Moon Bound Technology Article 16 hours ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  16. 4 Min Read Science in Orbit: Results Published on Space Station Research in 2024 NASA and its international partners have hosted research experiments and fostered collaboration aboard the International Space Station for over 25 years. More than 4,000 investigations have been conducted, resulting in over 4,400 research publications with 361 in 2024 alone. Space station research continues to advance technology on Earth and prepare for future space exploration missions. Below is a selection of scientific results that were published over the past year. For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results. Making stronger cement NASA’s Microgravity Investigation of Cement Solidification (MICS) observes the hydration reaction and hardening process of cement paste on the space station. As part of this experiment, researchers used artificial intelligence to create 3D models from 2D microscope images of cement samples formed in microgravity. Characteristics such as pore distribution and crystal growth can impact the integrity of any concrete-like material, and these artificial intelligence models allow for predicting internal structures that can only be adequately captured in 3D. Results from the MICS investigation improve researchers’ understanding of cement hardening and could support innovations for civil engineering, construction, and manufacturing of industrial materials on exploration missions. European Space Agency (ESA) astronaut Alexander Gerst works on the Microgravity Investigation of Cement Solidification (MICS) experiment in a portable glovebag aboard the International Space Station.NASA Creating Ideal Clusters The JAXA (Japan Aerospace Exploration Agency) Colloidal Clusters investigation uses the attractive forces between oppositely charged particles to form pyramid-shaped clusters. These clusters are a key building block for the diamond lattice, an ideal structure in materials with advanced light-manipulation capabilities. Researchers immobilized clusters on the space station using a holding gel with increased durability. The clusters returned to Earth can scatter light in the visible to near-infrared range used in optical and laser communications systems. By characterizing these clusters, scientists can gain insights into particle aggregation in nature and learn how to effectively control light reflection for technologies that bend light, such as specialized sensors, high-speed computing components, and even novel cloaking devices. A fluorescent micrograph image shows colloidal clusters immobilized in gel. Negatively charged particles are represented by green fluorescence, and positively charged particles are red. JAXA/ Nagoya City University Controlling Bubble Formation NASA’s Optical Imaging of Bubble Dynamics on Nanostructured Surfaces studies how different types of surfaces affect bubbles generated by boiling water on the space station. Researchers found that boiling in microgravity generates larger bubbles and that bubbles grow about 30 times faster than on Earth. Results also show that surfaces with finer microstructures generate slower bubble formation due to changes in the rate of heat transfer. Fundamental insights into bubble growth could improve thermal cooling systems and sensors that use bubbles. High-speed video shows dozens of bubbles growing in microgravity until they collapse.Tengfei Luo Evaluating Cellular Responses to Space The ESA (European Space Agency) investigation Cytoskeleton attempts to uncover how microgravity impacts important regulatory processes that control cell multiplication, programmed cell death, and gene expression. Researchers cultured a model of human bone cells and identified 24 pathways that are affected by microgravity. Cultures from the space station showed a reduction of cellular expansion and increased activity in pathways associated with inflammation, cell stress, and iron-dependent cell death. These results help to shed light on cellular processes related to aging and the microgravity response, which could feed into the development of future countermeasures to help maintain astronaut health and performance. Fluorescent staining of cells from microgravity (left) and ground control (right).ESA Improving Spatial Awareness The CSA (Canadian Space Agency) investigation Wayfinding investigates the impact of long-duration exposure to microgravity on the orientation skills in astronauts. Researchers identified reduced activity in spatial processing regions of the brain after spaceflight, particularly those involved in visual perception and orientation of spatial attention. In microgravity, astronauts cannot process balance cues normally provided by gravity, affecting their ability to perform complex spatial tasks. A better understanding of spatial processes in space allows researchers to find new strategies to improve the work environment and reduce the impact of microgravity on the spatial cognition of astronauts. An MRI (magnetic resonance imaging) scan of the brain shows activity in the spatial orientation regions.NeuroLab Monitoring low Earth orbit The Roscomos-ESA-Italian Space Agency investigation Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory) is a multipurpose telescope designed to examine light emissions entering Earth’s atmosphere. Researchers report that Mini-EUSO data has helped to develop a new machine learning algorithm to detect space debris and meteors that move across the field of view of the telescope. The algorithm showed increased precision for meteor detection and identified characteristics such as rotation rate. The algorithm could be implemented on ground-based telescopes or satellites to identify space debris, meteors, or asteroids and increase the safety of space activities. The Mini-EUSO telescope is shown in early assembly.JEM-EUSO Program For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results. Destiny Doran International Space Station Research Communications Team Johnson Space Center Keep Exploring Discover More Topics From NASA Space Station Research Results Humans In Space Space Station Research and Technology Space Station Research and Technology Resources View the full article
  17. Is There Potential for Life on Europa? We Asked a NASA Expert
  18. The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems NASA’s Artemis IV astronauts will be the first to inhabit the Gateway lunar space station, opening the door to greater exploration of the Moon and paving the way to Mars. Gateway’s Power and Propulsion Element, which will make the station the most powerful solar electric spacecraft ever flown, takes shape at Maxar Space Systems. In lunar orbit, Gateway will allow NASA to conduct unique science and exploration while preparing astronauts to go to the Red Planet. Technicians install key hardware on the element’s Propulsion Bus Module following installation of both electric propulsion and chemical propulsion control modules. The image highlights a propellant tank exposed on the right, positioned within the central cylinder of the element. The Power and Propulsion Element will launch with Gateway’s HALO (Habitation and Logistics Outpost) ahead of NASA’s Artemis IV mission. During Artemis IV, V, and VI, international crews of astronauts will assemble the lunar space station around the Moon and embark on expeditions to the Moon’s South Pole region. The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland and built by Maxar Space Systems in Palo Alto, California. Gateway is an international collaboration to establish humanity’s first lunar space station as a central component of the Artemis architecture designed to return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars. The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems An artist’s rendering of the Gateway lunar space station, including its Power and Propulsion Element, shown here with its solar arrays deployed. Gateway will launch its initial elements to lunar orbit ahead of the Artemis IV mission. NASA/Alberto Bertolin An artist’s rendering of Gateway with the Power and Propulsion Element’s advanced thrusters propelling the lunar space station to the Moon. NASA/Alberto Bertolin Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share Details Last Updated Feb 25, 2025 ContactJacqueline Minerdjacqueline.minerd@nasa.govLocationGlenn Research Center Related TermsArtemisArtemis 4Earth's MoonExploration Systems Development Mission DirectorateGateway ProgramGateway Space StationGlenn Research CenterHumans in SpaceTechnologyTechnology for Space Travel Explore More 5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station NASA and its international partners are making progress on Gateway – the lunar space station… Article 4 days ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing… Article 1 month ago 2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission A key element of the Gateway lunar space station has entered the cleanroom for final… Article 2 weeks ago Keep Exploring Discover More Topics From NASA Humans In Space Orion Spacecraft Human Landing System Extravehicular Activity and Human Surface Mobility View the full article
  19. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A new international study partially funded by NASA on how Mars got its iconic red color adds to evidence that Mars had a cool but wet and potentially habitable climate in its ancient past. Mosaic of the Valles Marineris hemisphere of Mars projected into point perspective, a view similar to that which one would see from a spacecraft. The distance is 2500 kilometers from the surface of the planet, with the scale being .6km/pixel. The mosaic is composed of 102 Viking Orbiter images of Mars. The center of the scene (lat -8, long 78) shows the entire Valles Marineris canyon system, over 2000 kilometers long and up to 8 kilometers deep, extending form Noctis Labyrinthus, the arcuate system of graben to the west, to the chaotic terrain to the east. Many huge ancient river channels begin from the chaotic terrain from north-central canyons and run north. The three Tharsis volcanoes (dark red spots), each about 25 kilometers high, are visible to the west. South of Valles Marineris is very ancient terrain covered by many impact craters.NASA The current atmosphere of Mars is too cold and thin to support liquid water, an essential ingredient for life, on its surface for lengthy periods. However, various NASA and international missions have found evidence that water was abundant on the Martian surface billions of years ago during a more clement era, such as features that resemble dried-up rivers and lakes, and minerals that only form in the presence of liquid water. Adding to this evidence, results from a study published February 25 in the journal Nature Communications suggest that the water-rich iron mineral ferrihydrite may be the main culprit behind Mars’ reddish dust. Martian dust is known to be a hodgepodge of different minerals, including iron oxides, and this new study suggests one of those iron oxides, ferrihydrite, is the reason for the planet’s color. The finding offers a tantalizing clue to Mars’ wetter and potentially more habitable past because ferrihydrite forms in the presence of cool water, and at lower temperatures than other previously considered minerals, like hematite. This suggests that Mars may have had an environment capable of sustaining liquid water before it transitioned from a wet to a dry environment billions of years ago. “The fundamental question of why Mars is red has been considered for hundreds if not for thousands of years,” said lead author Adam Valantinas, a postdoctoral fellow at Brown University, Providence, Rhode Island, who started the work as a Ph.D. student at the University of Bern, Switzerland. “From our analysis, we believe ferrihydrite is everywhere in the dust and also probably in the rock formations, as well. We’re not the first to consider ferrihydrite as the reason for why Mars is red, but we can now better test this using observational data and novel laboratory methods to essentially make a Martian dust in the lab.” Laboratory sample showing simulated Martian dust. The ochre color is characteristic of iron-rich ferrihydrite, a mineral that provides crucial insights into ancient water activity and environmental conditions on Mars. The fine-powder mixture consists of ferrihydrite and ground basalt with particles less than one micrometer in size (1/100th diameter of a human hair) (Sample scale: 1 inch across).Adam Valantinas “These new findings point to a potentially habitable past for Mars and highlight the value of coordinated research between NASA and its international partners when exploring fundamental questions about our solar system and the future of space exploration,” said Geronimo Villanueva, the Associate Director for Strategic Science of the Solar System Exploration Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-author of this study. The researchers analyzed data from multiple Mars missions, combining orbital observations from instruments on NASA’s Mars Reconnaissance Orbiter, ESA’s (the European Space Agency) Mars Express and Trace Gas Orbiter with ground-level measurements from NASA rovers like Curiosity, Pathfinder, and Opportunity. Instruments on the orbiters and rovers provided detailed spectral data of the planet’s dusty surface. These findings were then compared to laboratory experiments, where the team tested how light interacts with ferrihydrite particles and other minerals under simulated Martian conditions. “What we want to understand is the ancient Martian climate, the chemical processes on Mars — not only ancient — but also present,” said Valantinas. “Then there’s the habitability question: Was there ever life? To understand that, you need to understand the conditions that were present during the time of this mineral’s formation. What we know from this study is the evidence points to ferrihydrite forming and for that to happen there must have been conditions where oxygen from air or other sources and water can react with iron. Those conditions were very different from today’s dry, cold environment. As Martian winds spread this dust everywhere, it created the planet’s iconic red appearance.” Whether the team’s proposed formation model is correct could be definitively tested after samples from Mars are delivered to Earth for analysis. “The study really is a door-opening opportunity,” said Jack Mustard of Brown University, a senior author on the study. “It gives us a better chance to apply principles of mineral formation and conditions to tap back in time. What’s even more important though is the return of the samples from Mars that are being collected right now by the Perseverance rover. When we get those back, we can actually check and see if this is right.” Part of the spectral measurements were performed at NASA’s Reflectance Experiment Laboratory (RELAB) at Brown University. RELAB is supported by NASA’s Planetary Science Enabling Facilities program, part of the Planetary Science Division of NASA’s Science Mission Directorate at NASA Headquarters in Washington. By William Steigerwald NASA Goddard Space Flight Center, Greenbelt, Maryland Share Details Last Updated Feb 24, 2025 EditorWilliam SteigerwaldContactLonnie Shekhtmanlonnie.shekhtman@nasa.govLocationNASA Goddard Space Flight Center Related TermsThe Solar SystemMars Explore More 5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station NASA and its international partners are making progress on Gateway – the lunar space station… Article 4 days ago 6 min read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind Earth is immersed in material streaming from the Sun. This stream, called the solar wind,… Article 4 days ago 2 min read How Long Does it Take to Get to the Moon… Mars… Jupiter? We Asked a NASA Expert: Episode 51 So how long does it take to get from Earth to the Moon, to Mars… Article 6 days ago View the full article
  20. 4 Min Read Five Facts About NASA’s Moon Bound Technology A view of the Moon from Earth, zooming up to IM-2's landing site at Mons Mouton, which is visible in amateur telescopes. Credits: NASA/Scientific Visualization Studio NASA is sending revolutionary technologies to the Moon aboard Intuitive Machines’ second lunar delivery as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term presence on the lunar surface.  As part of this CLPS flight to the Moon, NASA’s Space Technology Mission Directorate will test novel technologies to learn more about what lies beneath the lunar surface, explore its challenging terrain, and improve in-space communication. The launch window for Intuitive Machines’ second CLPS delivery, IM-2, opens no earlier than Wednesday, Feb. 26 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After the Intuitive Machines’ Nova-C class lunar lander reaches Mons Mouton, a lunar plateau near the Moon’s South Pole region, it will deploy several NASA and commercial technologies including a drill and mass spectrometer, a new cellular communication network, and a small drone that will survey difficult terrain before returning valuable data to Earth. Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Here are five things to know about this unique mission to the Moon, the technologies we are sending, and the teams making it happen! 1. Lunar South Pole Exploration IM-2’s landing site is known as one of the flatter regions in the South Pole region, suitable to meet Intuitive Machines’ requirement for a lit landing corridor and acceptable terrain slope. The landing location was selected by Intuitive Machines using data acquired by NASA’s Lunar Reconnaissance Orbiter. An illustration of Mons Mouton, a mesa-like lunar mountain that towers above the landscape carved by craters near the Moon’s South Pole.Credit: NASA/Scientific Visualization Studio 2. New Technology Demonstrations NASA’s Polar Resources Ice Mining Experiment, known as PRIME-1, is a suite of two instruments – a drill and mass spectrometer – designed to demonstrate our capability to look for ice and other resources that could be extracted and used to produce propellant and breathable oxygen for future explorers. The PRIME-1 technology will dig up to about three feet below the surface into the lunar soil where it lands, gaining key insight into the soil’s characteristics and temperature while detecting other resources that may lie beneath the surface. Data from the PRIME-1 technology demonstration will be made available to the public following the mission, enabling partners to accelerate the development of new missions and innovative technologies. The Polar Resources Ice Mining Experiment-1 (PRIME-1) will help scientists search for water at the lunar South Pole.Credit: NASA/Advanced Concepts Lab 3. Mobile Robots Upon landing on the lunar surface, two commercial Tipping Point technology demonstrations will be deployed near Intuitive Machines’ lander, Tipping Points are collaborations between NASA’s Space Technology Mission Directorate and industry that foster the development of commercial space capabilities and benefit future NASA missions. The first is a small hopping drone developed by Intuitive Machines. The hopper, named Grace, will deploy as a secondary payload from the lander and enable high-resolution surveying of the lunar surface, including permanently shadowed craters around the landing site. Grace is designed to bypass obstacles such as steep inclines, boulders, and craters to cover a lot of terrain while moving quickly, which is a valuable capability to support future missions on the Moon and other planets, including Mars. Artist rendering of the Intuitive Machines Micro Nova Hopper.Credit: Intuitive Machines 4. Lunar Surface Communication The next Tipping Point technology will test a Lunar Surface Communications System developed by Nokia. This system employs the same cellular technology used here on Earth, reconceptualized by Nokia Bell Labs to meet the unique requirements of a lunar mission. The Lunar Surface Communications System will demonstrate proximity communications between the lander, a Lunar Outpost rover, and the hopper. Artist rendering of Nokia’s Lunar Surface Communication System (LSCS), which aims to demonstrate cellular-based communications on the lunar surface. Credit: Intuitive Machines 5. Working Together NASA is working with several U.S. companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative. NASA’s Space Technology Mission Directorate plays a unique role in the IM-2 mission by strategically combining CLPS with NASA’s Tipping Point mechanism to maximize the potential benefit of this mission to NASA, industry, and the nation. NASA’s Lunar Surface Innovation Initiative and Game Changing Development program within the agency’s Space Technology Mission Directorate led the maturation, development, and implementation of pivotal in-situ resource utilization, communication, and mobility technologies flying on IM-2. Join NASA to watch full mission updates, from launch to landing on NASA+, and share your experience on social media. Mission updates will be made available on NASA’s Artemis blog. A team of engineers from NASA’s Johnson Space Center in Houston and Honeybee Robotics in Altadena, California inspect TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – shortly after its arrival at the integration and test facility.Credit: NASA/Robert Markowitz Artist’s rendering of Intuitive Machines’ Athena lunar lander on the Moon. Credit: Intuitive Machines Artist conception: Earth emerges from behind Mons Mouton on the horizon.Credit: NASA/Scientific Visualization Studio Explore More 3 min read NASA’s Polar Ice Experiment Paves Way for Future Moon Missions Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander Article 1 month ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon Article 2 weeks ago Keep Exploring Discover More Topics From NASA Space Technology Mission Directorate Polar Resources Ice Mining Experiment 1 (PRIME-1) Commercial Lunar Payload Services (CLPS) The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping… NASA Partners with American Companies on Key Moon, Exploration Tech NASA has selected 11 U.S. companies to develop technologies that could support long-term exploration on the Moon and in space… Share Details Last Updated Feb 24, 2025 EditorStefanie PayneContactAnyah Demblinganyah.dembling@nasa.govLocationNASA Headquarters Related TermsSpace Technology Mission DirectorateArtemisCommercial Lunar Payload Services (CLPS)Game Changing Development ProgramKennedy Space CenterLunar Surface Innovation InitiativeMissionsNASA HeadquartersResearch and Technology at Kennedy Space CenterScience Mission Directorate View the full article
  21. The unpiloted Roscosmos Progress spacecraft pictured on Aug. 13, 2024, from the International Space Station.Credit: NASA NASA will provide live launch and docking coverage of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies for the crew aboard the International Space Station. The unpiloted Roscosmos Progress 91 spacecraft is scheduled to launch at 4:24 p.m. EST, Thursday, Feb. 27 (2:24 a.m. Baikonur time, Friday, Feb. 28), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan. Live launch coverage will begin at 4 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. After a two-day in-orbit journey to the station, the spacecraft will dock autonomously to the aft port of the Zvezda service module at 6:03 p.m. Saturday, March 1. NASA’s rendezvous and docking coverage will begin at 5:15 p.m. on NASA+. The Progress 91 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew. The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars. Get breaking news, images and features from the space station on Instagram, Facebook, and X. Learn more about the International Space Station, its research, and its crew, at: https://www.nasa.gov/station -end- Claire O’Shea Headquarters, Washington 202-358-1100 claire.a.o’shea@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Feb 24, 2025 LocationNASA Headquarters Related TermsInternational Space Station (ISS)Humans in SpaceISS ResearchJohnson Space CenterSpace Operations Mission Directorate View the full article
  22. Tall plumes of white vapor rise from the rocky Venusian surface in this April 19, 1977, artist’s concept.NASA/Rick Guidice Tall plumes of white vapor rise from the rocky Venusian surface in this April 19, 1977, artist’s concept. A little over a year later, NASA’s Pioneer Venus 1 would launch as the first of a two-spacecraft orbiter-probe combination designed to study the atmosphere of Venus. The first American spacecraft to orbit Venus, Pioneer Venus 1 used radar to map the surface of Venus. The probe found Venus to be generally smoother than Earth, though with a mountain higher than Mt. Everest and a chasm deeper than the Grand Canyon. Thanks to exploration by Pioneer Venus 1 and other spacecraft like Magellan, Galileo, Cassini, and even the Parker Solar Probe, we now have a much better view of what the surface of Venus looks like. Image credit: NASA/Rick Guidice View the full article
  23. Live High-Definition Views from the International Space Station (Official NASA Stream)
  24. Live Video from the International Space Station (Official NASA Stream)
  25. Wayne Johnson, who in 2012 earned the highest rank of Fellow at NASA’s Ames Research Center in California, is known worldwide as an expert in rotary wing technology. He was among those who provided help in testing Ingenuity, NASA’s Mars helicopter.NASA / Eric James NASA Ames’ Wayne Johnson Elected to 2025 Class of New Members of the National Academy of Engineering (NAE) Dr. Wayne R. Johnson, aerospace engineer at Ames Research Center, will be inducted as a new member of the prestigious National Academy of Engineering (NAE), class of 2025, on October 5, 2025, for his 45+ years of contributions to rotorcraft analysis, tiltrotor aircraft development, emerging electric aircraft, and the Mars Helicopter development. NAE members are among the world’s most accomplished engineers from business, academia, and government and are elected by their peers. The full announcement was released to the press on February 11, 2025 from NAE and is at https://www.nae.edu/19579/31222/20095/327741/331605/NAENewClass2025 View the full article
×
×
  • Create New...