Members Can Post Anonymously On This Site
-
Posts
4,764 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
NASA offers its unique capabilities and resources for use by commercial industries, academic institutions, U.S. Government agencies and international entities. Many NASA partnerships are attributable to direct communication between the potential partner and a NASA Center and are not derived from a formal Partnership Announcement. Therefore, the Partnership Announcements listed below are not inclusive of all partnership opportunities at NASA In the majority of cases, equal access to NASA resources is provided through non-exclusive arrangements where NASA may enter into similar agreements for the same or similar purpose with other private or public entities. In addition to responding to Partnership Announcements, please feel free to contact us if you are interested in partnering with NASA or have a partnership idea. To learn more about NASA’s capabilities, please refer to the NASA Centers/Facilities and Capabilities. Upcoming Events NASA & Partners Small Business and HBCU Summit April 27 in New Orleans Partnership Announcements RFI – Concepts for Operation and Utilization of Launch Complex 48 (LC-48) Research Opportunities for International Space Station (ISS) Utilization NRA Partnering with NASA STEM Engagement For a complete list of the Partnership Announcements, please consult the SAM.gov page. Capabilities Sought through Crowd Sourcing and Prize Competitions https://www.nasa.gov/directorates/spacetech/centennial_challenges/index.html https://www.nasa.gov/coeci/ntl View the full article
-
5 min read Cube Quest Concludes: Wins, Lessons Learned from Centennial Challenge Small satellites, called CubeSats, are shown secured inside NASA’s Orion stage adapter at NASA’s Kennedy Space Center in Florida on Aug. 5, 2021. One of these CubeSats belonged to Team Miles, one of the three finalists in the Cube Quest Centennial Challenge. The ring-shaped stage adapter was connected to the Space Launch System’s Interim Cryogenic Propulsion Stage, with the Orion spacecraft secured on top. The CubeSats’ mission was to detach from the stage adapter, then fly near and beyond the Moon to conduct a variety of science experiments and technology demonstrations to expand our knowledge of the lunar surface during the Artemis I mission.NASA/Cory Huston By Savannah Bullard Artemis I launched from NASA’s Kennedy Space Center in Florida on Nov. 16, 2022, penning a new era of space exploration and inching the agency closer to sending the first woman and first person of color to the lunar surface. Aboard the Space Launch System (SLS) rocket were 10 small satellites, no bigger than shoeboxes, whose goal was to detach and capably perform operations near and beyond the Moon. One of those satellites was a product of the Cube Quest Challenge, a NASA-led prize competition that asked citizen innovators to design, build, and deliver flight-qualified satellites called CubeSats that could perform its mission independently of the Artemis I mission. Cube Quest is the agency’s first in-space public prize competition. Opened in 2015, the challenge began with four ground-based tournaments, which awarded almost $500,000 in prizes. Three finalists emerged from the ground competition with a ticket to hitch a ride aboard the SLS as a secondary payload – and win the rest of the competition’s $5 million prize purse, NASA’s largest-ever prize offering to date – in 2022. Of the three finalists, Team Miles was the sole team to make the trip on Artemis I successfully. Shortly after a successful deployment in space, controllers detected downlink signals and processed them to confirm whether the CubeSat was operational. This remains the latest update for the Team Miles CubeSat. “We’re still celebrating the many wins that were borne out of Cube Quest,” said Centennial Challenges Program Manager Denise Morris. “The intent of the challenge was to reward citizen inventors who successfully advance the CubeSat technologies needed for operations on the Moon and beyond, and I believe we accomplished this.” Innovation rarely comes without error, but according to Challenge Manager Naveen Vetcha, who supports Centennial Challenges through Jacobs Space Exploration Group, even after everything goes as expected, there is no guarantee that scientists will reach their desired outcomes. “Given the magnitude of what we can and do accomplish every day at NASA, it comes with the territory that not every test, proposal, or idea will come out with 100 percent success,” Vetcha said. “We have set ambitious goals, and challenging ourselves to change what’s possible will inevitably end with examples of not meeting our stretch goals. But, with each failure comes more opportunities and lessons to carry forward. In the end, our competitors created technologies that will enable affordable deep space CubeSats, which, to me, is a big win.” Advancements in Commercial Space Research Although Team Miles may have made it furthest in the Cube Quest Challenge, having launched its CubeSat as a secondary payload aboard Artemis I, the team continues to participate in the challenge long after launch. “From Team Miles, Miles Space LLC was created and is still in business,” said Jan McKenna, Team Miles’ project manager and safety lead. “Miles Space is developing and selling the propulsion system designed for our craft to commercial aerospace companies, and we’ve expanded to be able to create hardware for communications along with our CubeSat developments.” The next steps for Miles Space LLC include seeing through their active patent applications, establishing relationships with potential clients, and continuing to hunt for a connection with their flying CubeSat. Another finalist team, Cislunar Explorers, is currently focused on using their lessons learned to benefit the global small satellite community. “I utilized the contacts I made through Cube Quest and the other Artemis Secondary Payloads for my thesis research,” said Aaron Zucherman, Cislunar Explorers’ project manager. “This has enabled me to find partnerships and consulting work with other universities and companies where I have shared my experiences learning the best ways to build interplanetary CubeSats.” Inspiring a Generation of Space Scientists This challenge featured teams from diverse educational and commercial backgrounds. Several team members credited the challenge as a catalyst in their graduate thesis or Ph.D. research, but one young innovator says Cube Quest completely redirected his entire career trajectory. Project Selene team lead, Braden Oh, competed with his peers at La Cañada High School in La Cañada, California. Oh’s team eventually caught the attention of Kerri Cahoy at the Massachusetts Institute of Technology, and the designs were similar enough that Cahoy invited the two teams to merge. The exposure gained through this partnership was a powerful inspiration for Oh and his peers. “I originally intended to apply to college as a computer science major, but my experiences in Cube Quest inspired me to study engineering instead,” Oh said. “I saw similar stories unfold for a number of my teammates; one eventually graduated from MIT and another now works for NASA.” Cube Quest is managed out of NASA’s Ames Research Center in California’s Silicon Valley. The competition is a part of NASA’s Centennial Challenges, which is housed at the agency’s Marshall Space Flight Center in Huntsville, Alabama. Centennial Challenges is a part of NASA’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. Learn more about Cube Quest Facebook logo @NASAPrize @NASAPrize Instagram logo @NASAPrize Jonathan Deal NASA’s Marshall Space Flight Center 256-544-0034 jonathan.e.deal@nasa.gov Share Details Last Updated Nov 16, 2023 Related Terms Centennial ChallengesCentennial Challenges NewsMarshall Space Flight CenterPrizes, Challenges, and Crowdsourcing Program Explore More 4 min read NASA Telescope Data Becomes Music You Can Play Article 1 day ago 2 min read Pale Blue Dot: Visualization Challenge Article 1 day ago 4 min read Rocket Exhaust on the Moon: NASA Supercomputers Reveal Surface Effects Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
NASA / Kevin Davis and Chris Coleman In this photo, NASA’s Space Launch System (SLS), carrying the Orion spacecraft, lifts off the pad at Launch Complex 39B at the agency’s Kennedy Space Center in Florida at 1:47 a.m. EST on Nov. 16, 2022. Set on a path to the Moon, this officially began the Artemis I mission. Over the course of 25.5 days, Orion performed two lunar flybys, coming within 80 miles (129 kilometers) of the lunar surface. At its farthest distance during the mission, Orion traveled nearly 270,000 miles (435,000 kilometers) from our home planet. On Dec. 11, 2022, NASA’s Orion spacecraft successfully completed a parachute-assisted splashdown in the Pacific Ocean at 12:40 p.m. EST as the final major milestone of the Artemis I mission. Artemis I was the first in a series of increasingly complex missions that will enable human exploration at the Moon and future missions to Mars. Following the success of Artemis I, humans will fly around the Moon on Artemis II. Image Credit: NASA/Kevin Davis and Chris Coleman View the full article
-
3 min read NASA and UC Berkeley Host Discussion on the Future of AI at Work David Korsmeyer, acting deputy center director, speaks at the “The Future of Skills in the AI Era” symposium, Sept. 22, 2023, at NASA’s Ames Research Center in California’s Silicon Valley. Korsmeyer highlighted the opportunities to utilize AI during missions to the Moon, Mars and beyond.NASA/Donald B. Richey What does the rise of artificial intelligence mean for the workers of tomorrow? What could it mean for NASA? Leaders from government, academia, and commercial industries gathered earlier this fall to learn, discuss, and collaborate at the inaugural “The Future of Skills in the AI Era” symposium at NASA’s Ames Research Center in California’s Silicon Valley. The one-day event was organized by Ames, UC Berkeley’s Fisher Center for Business Analytics in the Haas School of Business, and the new College of Computing, Data Science, and Society. The event sought to drive dialogue around what the future of artificial intelligence could look like across different sectors and solutions for possible challenges. David Korsmeyer, Ames’ acting deputy center director, spoke to attendees about the history of AI and autonomous technology at NASA and how the agency could use it in the future. He highlighted the ways AI could support work on Earth. “AI tools can help parse through massive amounts of data and bring trends and information to light,” said Korsmeyer, who also discussed the role AI would play in future space exploration, including pre-training spacecraft to identify potential hazards and make decisions autonomously. “When planning missions to places like Mars, a spacecraft and its crew must be ‘Earth independent’ – it can’t come back, there’s no turning around.” Vincent Vanhoucke, senior director of robotics, Google DeepMind, discusses the application of AI in robotics as part of a panel discussion alongside Alexandre Bayen, associate provost for Moffett Field program development at UC Berkeley, Jeremy Frank, group lead of planning and scheduling at NASA Ames, and Terry Fong, chief roboticist at NASA Ames.NASA/Donald B. Richey The role of AI as a tool for school and business was a key theme of the symposium. Annette Bernhardt, director of the technology and work program at the UC Berkeley Labor Center, emphasized the balance between worker privacy and the benefit of highly productive AI tools. Frederick Wehrle, associate dean for academic affairs at UC Berkeley, spoke about the future of education in the era of advancing technology innovation. Alonso Vera, NASA Ames senior scientist for distributed collaborative systems, dug deeper into the relationship between humans and AI, and the unique roles each needs to play when doing complex work. “Artificial intelligence is not on the same path as human intelligence. They’re both superior in different ways,” said Vera. “If you don’t understand a human’s role with AI, you won’t be able to develop and improve the right AI technologies.” AI and autonomous design are embedded in the expanding partnership between Ames and UC Berkeley. The two organizations shared efforts aim to expand learning opportunities in aerospace research and development, including programs like NASA’s Advanced Air Mobility effort, which seeks to develop capabilities for autonomous vehicles to transport cargo and passengers. This area of research is a focus of future collaborations between the two institutions following the recent announcement of plans to develop the Berkeley Space Center at Ames. For news media: Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom. About the AuthorTara Friesen Share Details Last Updated Nov 16, 2023 Related Terms Ames Research CenterGeneral Explore More 27 min read The Marshall Star for November 15, 2023 Article 20 hours ago 3 min read NASA Engineer Earns Goddard Innovation Award for Sun-studying Photon Sieves Goddard Engineer Kevin Denis receives innovation award for photon sieves. Article 23 hours ago 4 min read NASA Telescope Data Becomes Music You Can Play Article 23 hours ago Keep Exploring Discover More Topics From NASA Missions In order to study the Earth as a whole system and understand how it is changing, NASA develops and supports… Humans In Space Our Solar System Overview Our planetary system is located in an outer spiral arm of the Milky Way galaxy. We call it the… Technology The Earth Science Technology Office (ESTO) takes on the technical challenges of Earth observations by funding, developing and demonstrating cutting-edge… View the full article
-
2 min read Backyard Worlds Volunteers Complete Ten Million Classifications in an Epic Search for New Objects Among the Nearest Stars A few Backyard Worlds volunteers. Credit: Backyard Worlds Top (l-r): Arttu Sainio, Frank Kiwy, Jean Marc Gantier, Marianne Michaels, Les Hamlet, Melina Thévenot, 2nd row (l-r): Kevin Apps, Nikolaj Stevnbak Andersen, Rebekah Russwurm, Jörg Schümann, Guoyou Sun, Tom Bickle 3rd row (l-r): Michiharu Hyogo, Katharina Doll, Hugo Durantini-Luca, Yadukrishna Raghu, Hiro Higashimura, 4th row (l-r): Ben Pumphrey, Zbigniew Wedracki, Guillaume Colin, Anya Frazer, Dan Caselden 4th row (l-r): Kristin Grant, Maurizio Ventura, Harshdeep Singh, Celso Pessanha Machado, Austin Rothermich 6th row (l-r): Edoardo Antonini, Peter Jalowiczor, Leopold Gramaize, Hunter Brooks, William Pendrill The Backyard Worlds: Planet 9 and Backyard Worlds: Cool Neighbors projects invite members of the public to search images from NASA’s Wide-Field Infrared Survey Explorer (WISE) mission to find new objects among the nearest stars. These projects share a science team and many volunteers–a total of more than 175,000 participants from more than 167 countries. Last week, the combined efforts of this giant Backyard Worlds team reached an incredible milestone: a total of 10,000,000 classifications of WISE mission image sets. Since 2017, when the first Backyard Worlds project (Planet 9) launched, these projects have discovered more than 3800 nearby objects, including 12% of all the known stellar and substellar objects out to a distance of 60 light years. Those objects include many rare brown dwarfs, balls of gas that are not massive enough to become stars. Among them are roughly 15 Y dwarfs–the rarest kind of brown dwarf (only about 50 are known). The discoveries also include an entirely new kind of object, the “extreme T subdwarfs,” relics from our Galaxy’s earliest days. This work has resulted in 20 refereed publications, with more than 40 volunteers named as co-authors on those refereed publications. It has also led to 11 research notes and 25 presentations at meetings of the American Astronomical Society. Several project volunteers have participated in observing runs at NASA’s Infrared Telescope Facility and even won time on NASA’s James Webb Space Telescope. Best of all, there’s much more data to explore, and the WISE mission continues to scan the skies! So come join the fun and make your own discoveries at backyardworlds.org and coolneighbors.org! Facebook logo @DoNASAScience @DoNASAScience Share Details Last Updated Nov 16, 2023 Related Terms Astrophysics Citizen Science View the full article
-
Even growing up in the heart of Washington, D.C., stargazer Oliver Ortiz felt a connection to space from a young age and always wondered what was beyond the city lights. Now a seasoned engineer with Northrop Grumman, he is contributing to a new era of space exploration with Gateway, humanity’s first space station in lunar orbit, and a critical part of NASA’s Artemis missions that will establish a long-term presence at the Moon. Oliver Ortiz poses for a portrait, Wednesday, Aug. 23, 2023, at the NASA Headquarters Mary W. Jackson Building in Washington. Photo Credit: (NASA/Bill Ingalls) Ortiz leads Northrop Grumman’s systems engineering team focused on the integration of Gateway’s foundational elements, HALO (Habitation and Logistics Outpost) and the Power and Propulsion Element. HALO is set to launch with the Power and Propulsion Element on a SpaceX Falcon Heavy rocket ahead of the Artemis IV mission, providing living quarters and the space station’s power and orbital control. He embarked on his engineering journey at the University of Maryland College Park, obtaining both his undergraduate and master’s degrees in aerospace engineering. He joined Northrop Grumman as an intern in 2014 and quickly rose through the ranks, shaping his career in systems engineering while making significant contributions to various space programs, including commercial resupply missions to the International Space Station. Ortiz’s path to the world of space engineering was not clear. He first set out to be an astronomer, but changed course toward a career in engineering that now has him leading a team of engineers responsible for ensuring the systems of Gateway’s first two elements are well-integrated and ready to be the building blocks of the lunar outpost. “I’ve loved space since I was in elementary school and initially wanted to be an astronomer,” said Ortiz. “My undergrad English professor was married to an astronomer and offered to introduce me to her husband. It was in that coffee shop meet and greet that I realized I did not want to be an astronomer. I wanted to be an aerospace engineer and I’m forever grateful that he and fate pointed me in the direction of my true passion.” It was Ortiz’s involvement in designing Next Step-1, a precursor to HALO, that defined his current trajectory when Northrop Grumman was chosen as Gateway’s prime contractor responsible for designing and fabricating HALO. Since 2016, Ortiz has dedicated his career to the creation of the world’s first habitat designed to support sustainable life outside Earth orbit. “Sustainability for me means we can learn enough from living on and around the Moon that we can ultimately go to Mars,” Ortiz said. “The Moon is the steppingstone to what’s next and we have to learn how to build a safe environment in an economically efficient way.” Built with commercial and international partnerships, Gateway is a vital component of the Artemis missions, helping NASA and its partners test the technologies and capabilities for a sustained human presence in deep space. Primary article author: Tiffany Travis P View the full article
-
Live Video from the International Space Station (Official NASA Stream)
-
2 min read NASA Selects Awardees for New Aviation Maintenance Challenge NASA is addressing a key challenge for sustaining the future of aviation – the skills that will be needed by aviation maintenance technicians working on new kinds of aircraft with new technologies. NASA / Lillian Gipson / Getty Images NASA has selected three university-led teams for the first round of a new technical challenge pursuing innovative aviation maintenance practices. These university teams will receive funding from NASA for a two-year research term exploring aviation maintenance challenges related to NASA’s strategic vision for aeronautics. The awardees will research new maintenance techniques and procedures, as well as how aviation maintenance technical schools could amend or expand their activities to educate students on these new practices. Their work will culminate in a final report outlining potential solutions for future aviation maintenance including new educational curricula, new standards and technologies, and other anticipated challenges associated with new types of aircraft such as drones, air taxis, or ultra-efficient airliners. In the spirit of similar NASA awards, the university teams will engage students from multiple levels and include them in meaningful work and research. Not only will graduate and undergraduate students be included, but also students at aviation maintenance technical schools. Each awardee must also collaborate with industry partners to best understand the needs of the aviation industry and maintenance ecosystem, as well as work with real-world technology. “This new award expands NASA’s university research partnerships,” said Koushik Datta, manager for the University Innovation project overseeing the awards. “Now even more students, including those from aviation maintenance schools, can participate in NASA’s aeronautics research.” The three teams and their topics are: Clemson University “Revolutionizing the Future of Aviation Maintenance: A Workforce Development Plan to Navigate the Complexities of a New Aviation Maintenance Ecosystem” University of California, Davis “Future Aviation Maintenance Technical Challenges for Electric and Hybrid-Powered Fixed Wing and Electric Vertical Takeoff and Landing Aircraft” Wichita State University “Adoption of Transformative Technologies and Workforce Development for Maintenance and Repair of Advanced Air Mobility Airframe Structures” Complete details on this award and other solicitations, such as what to include in a proposal and how to submit it, can be found on the NASA Aeronautics Research Mission Directorate solicitations page. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 2 min read Modeling Turbofan Engines to Understand Aircraft Noise Article 22 hours ago 4 min read NASA Completes Key Step in Aviation Safety Research Article 2 weeks ago 4 min read NASA, Partners Explore Sustainable Fuel’s Effects on Aircraft Contrails Article 2 weeks ago Keep Exploring Discover More Topics From NASA Missions Humans In Space Solar System Exploration Solar System Overview Our solar system has one star, eight planets, five officially recognized dwarf planets, at least 290 moons,… Explore NASA’s History Share Details Last Updated Nov 16, 2023 Editor Lillian Gipson Contact Jim Bankejim.banke@nasa.gov Related Terms AeronauticsAeronautics Research Mission DirectorateFlight InnovationTransformative Aeronautics Concepts ProgramUniversity Innovation View the full article
-
9 Min Read Temperatures Across Our Solar System An illustration of our solar system. Planets and other objects are not to scale. Credits: NASA What’s the weather like out there? We mean waaaay out there in our solar system – where the forecast might not be quite what you think. Let’s look at the mean temperature of the Sun, and the planets in our solar system. The mean temperature is the average temperature over the surface of the rocky planets: Mercury, Venus, Earth, and Mars. Dwarf planet Pluto also has a solid surface. But since the gas giants don’t have a surface, the mean is the average temperature at what would be equivalent at sea level on Earth. An illustration of planets in our solar system showing their mean temperatures. Planets and dwarf planet Pluto are not to scale. NASA Let’s start with our Sun. You already know the Sun is hot. OK, it’s extremely hot! But temperatures on the Sun also are a bit puzzling. An image of the Sun taken Oct. 30, 2023, by NASA’s Solar Dynamics Observatory. NASA/SDO The hottest part of the Sun is its core, where temperatures top 27 million°F (15 million°C). The part of the Sun we call its surface – the photosphere – is a relatively cool 10,000° F (5,500°C). In one of the Sun’s biggest mysteries, the Sun’s outer atmosphere, the corona, gets hotter the farther it stretches from the surface. The corona reaches up to 3.5 million°F (2 million°C) – much, much hotter than the photosphere. So some temperatures on the Sun are a bit upside down. How about the planets? Surely things are cooler on the planets that are farther from the Sun. Well, mostly. But then there’s Venus. As it sped away from Venus, NASA’s Mariner 10 spacecraft captured this seemingly peaceful view of a planet the size of Earth, wrapped in a dense, global cloud layer. But, contrary to its serene appearance, the clouded globe of Venus is a world of intense heat, crushing atmospheric pressure and clouds of corrosive acid. NASA/JPL-Caltech Venus is the second closest planet to the Sun after Mercury, with an average distance from the Sun of about 67 million miles (108 million kilometers). It takes sunlight about six minutes to travel to Venus. Venus also is Earth’s closest neighbor and is similar in size. It has even been called Earth’s twin. But Venus is shrouded in clouds and has a dense atmosphere that acts as a greenhouse and heats the surface to above the melting point of lead. It has a mean surface temperature of 867°F (464°C). So Venus – not Mercury – is the hottest planet in our solar system. Save that bit of info for any future trivia contests. Maybe Venus is hotter, but Mercury is the closest planet to the Sun. Surely it gets hot, too? Mercury as seen from NASA’s MESSENGER, the first spacecraft to orbit Mercury. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington Mercury is about 36 million miles (57 million kilometers) from the Sun. From this distance, it takes sunlight about three minutes to travel to Mercury. Even though it’s sitting right next to the Sun – relatively speaking – Mercury gets extremely cold at night. It has a mean surface temperature of 333°F (167°C). Daytime temperatures get much hotter than the mean, and can reach highs of 800°F (430°C). But without an atmosphere thick enough to hold in the heat at night, temperatures can dip as low as -290°F (-180°C). Ahhh, Earth. We know about the weather here, right? Even Earth has some temperatures you may not have heard about. An image of Earth from the Deep Space Climate Observatory, or DSCOVR. NASA Earth is an average of 93 million miles (150 million kilometers) from the Sun. It takes about eight minutes for light from the Sun to reach our planet. Our homeworld is a dynamic and stormy planet with everything from clear, sunny days, to brief rain showers, to tornados, to raging hurricanes, to blizzards, and dust storms. But in spite of its wide variety of storms – Earth generally has very hospitable temperatures compared to the other planets. The mean surface temperature on Earth is 59°F (15°C). But Earth days have some extreme temperatures. According to NOAA, Death Valley holds the record for the world’s highest surface air temperature ever recorded on Earth: 134°F (56.7°C) observed at Furnace Creek (Greenland Ranch), California, on July 10, 1913. Earth’s lowest recorded temperature was -128.6°F (89.2°C) at Vostok Station, Antarctica, on July 21, 1983, according to the World Meteorological Organization. NASA missions have found lots of evidence that Mars was much wetter and warmer, with a thicker atmosphere, billions of years ago. How about now? Side-by-side animated images show how a 2018 global dust storm enveloped the Red Planet. The images were taken by NASA’s Mars Reconnaissance Orbiter (MRO). NASA/JPL-Caltech/MSSS Mars is an average distance of 142 million miles (228 million kilometers) from the Sun. From this distance, it takes about 13 minutes for light to travel from the Sun to Mars. The median surface temperature on Mars is -85°F (-65°C). Because the atmosphere is so thin, heat from the Sun easily escapes Mars. Temperatures on the Red Planet range from the 70s°F (20s°C) to -225°F (-153°C). Occasionally, winds on Mars are strong enough to create dust storms that cover much of the planet. After such storms, it can be months before all of the dust settles. Two NASA rovers on Mars have weather stations. You can check the daily temps at their locations: Mars Weather Report From Perseverance Curiosity Daily Weather Report The ground temperature around the Perseverance rover ranges from about -136°F to 62°F (-93°C to 17°C). The air temperature near the surface ranges from about -118°F to 8°F (-83°C to -13°C). As planets move farther away from the Sun, it really cools down fast! Since gas giants Jupiter and Saturn don’t have a solid surface, temperatures are taken from a level in the atmosphere equal in pressure to sea level on Earth. The same goes for the ice giants Uranus and Neptune. NASA’s Juno spacecraft took this image during a flyby of Jupiter. This view highlights Jupiter’s most famous weather phenomenon, the persistent storm known as the Great Red Spot. Citizen scientist Kevin M. Gill created this image using data from the spacecraft’s JunoCam imager. Enhanced image by Kevin M. Gill (CC-BY) based on images provided courtesy of NASA/JPL-Caltech/SwRI/MSSS Jupiter’s stripes and swirls are beautiful, but they are actually cold, windy clouds of ammonia and water, floating in an atmosphere of hydrogen and helium. The planet’s iconic Great Red Spot is a giant storm bigger than Earth that has raged for hundreds of years. The mean temperature on Jupiter is -166°F (-110°C). Jupiter is an average distance of 484 million miles (778 million kilometers) from the Sun. From this distance, it takes sunlight 43 minutes to travel from the Sun to Jupiter. Jupiter has the shortest day in the solar system. One day on Jupiter takes only about 10 hours (the time it takes for Jupiter to rotate or spin around once), and Jupiter makes a complete orbit around the Sun (a year in Jovian time) in about 12 Earth years (4,333 Earth days). Jupiter’s equator is tilted with respect to its orbital path around the Sun by just 3 degrees. This means the giant planet spins nearly upright and does not have seasons as extreme as other planets do. As we keep moving out into the solar system, we come to Saturn – the sixth planet from the Sun and the second largest planet in our solar system. Saturn orbits the Sun from an average distance of 886 million miles (1.4 billion kilometers). It takes sunlight 80 minutes to travel from the Sun to Saturn. This series of images from NASA’s Cassini spacecraft shows the development of the largest storm seen on Saturn since 1990. These true-color and composite near-true-color views chronicle the storm from its start in late 2010 through mid-2011, showing how the distinct head of the storm quickly grew large but eventually became engulfed by the storm’s tail. NASA/JPL-Caltech/Space Science Institute Like fellow gas giant Jupiter, Saturn is a massive ball made mostly of hydrogen and helium and it doesn’t have a true surface. The mean temperature is -220°F (-140°C). In addition to the bone-chilling cold, the winds in the upper atmosphere of Saturn reach 1,600 feet per second (500 meters per second) in the equatorial region. In contrast, the strongest hurricane-force winds on Earth top out at about 360 feet per second (110 meters per second). And the pressure – the same kind you feel when you dive deep underwater – is so powerful it squeezes gas into a liquid. This colorful movie made with images from NASA’s Cassini spacecraft is the highest-resolution view of the unique six-sided jet stream at Saturn’s north pole known as “the hexagon.” NASA/JPL-Caltech/SSI/Hampton University Saturn’s north pole has an interesting atmospheric feature – a six-sided jet stream. This hexagon-shaped pattern was first noticed in images from the Voyager I spacecraft and was more closely observed by the Cassini spacecraft. Spanning about 20,000 miles (30,000 kilometers) across, the hexagon is a wavy jet stream of 200-mile-per-hour winds (about 322 kilometers per hour) with a massive, rotating storm at the center. There is no weather feature like it anywhere else in the solar system. Crane your neck to the side while we go check out the weather on Uranus, the sideways planet. This is an image of the planet Uranus taken by the spacecraft Voyager 2 in 1986. NASA/JPL-Caltech The seventh planet from the Sun with the third largest diameter in our solar system, Uranus is very cold and windy. It has a mean temperature of -320°F (-195°C). Uranus rotates at a nearly 90-degree angle from the plane of its orbit. This unique tilt makes Uranus appear to spin sideways, orbiting the Sun like a rolling ball. And like Saturn, Uranus has rings. The ice giant is surrounded by 13 faint rings and 27 small moons. Now we move on to the last major planet in our solar system – Neptune. What’s the weather like there? Well you would definitely need a windbreaker if you went for a visit. Dark, cold, and whipped by supersonic winds, giant Neptune is the eighth and most distant major planet orbiting our Sun. The mean temperature on Neptune is -330°F (-200°C). And not to be outdone by Jupiter and its Great Red Spot, Neptune has the Great Dark Spot – and Scooter. Yep, Scooter. Voyager 2 photographed these features on Neptune in 1989. NASA/JPL-Caltech This photograph of Neptune was created from two images taken by NASA’s Voyager 2 spacecraft in August 1989. It was the first and last time a spacecraft came close to Neptune. The image shows three of the features that Voyager 2 monitored. At the north (top) is the Great Dark Spot, accompanied by bright, white clouds that undergo rapid changes in appearance. To the south of the Great Dark Spot is the bright feature that Voyager scientists nicknamed “Scooter.” Still farther south is the feature called “Dark Spot 2,” which has a bright core. More than 30 times as far from the Sun as Earth, Neptune is not visible to the naked eye. In 2011, Neptune completed its first 165-year orbit of the Sun since its discovery. That wraps up forecasting for the major planets. But there is one more place we need to check out. Beyond Neptune is a small world, with a big heart – dwarf planet Pluto. New Horizons scientists use enhanced color images to detect differences in the composition and texture of Pluto’s surface. NASA/JHUAPL/SwRI With a mean surface temperature of -375°F (-225°C), Pluto is considered too cold to sustain life. Pluto’s interior is warmer, however, and some think there may be an ocean deep inside. From an average distance of 3.7 billion miles (5.9 billion kilometers) away from the Sun, it takes sunlight 5.5 hours to travel to Pluto. If you were to stand on the surface of Pluto at noon, the Sun would be 1/900 the brightness it is here on Earth. There is a moment each day near sunset here on Earth when the light is the same brightness as midday on Pluto. So the next time you’re complaining about the weather in your spot here on Earth, think about Pluto and all the worlds in between. Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
2 Min Read NSSC Small Business Program The NSSC Small Business Office is responsible for providing outreach and liaison support to industry (both large and small businesses) and other members of the private sector. These activities are accomplished through a combination of individual counseling sessions, dissemination of information on upcoming NSSC procurement opportunities, and participation in local small business outreach events. The NSSC small business specialist also serves as the primary advisor to the NSSC acquisition community on all matters related to small business. The Vision of the NSSC Small Business Office is to promote and integrate all small businesses into the competitive base of contactors that pioneer the future of space exploration, scientific discovery, and aeronautics research. The Mission of the NSSC Small Business Office is to: Advise the NSSC acquisition community on all matters related to small business Promote the development and management of NASA programs that assists all categories of small business Develop small businesses in high-tech areas that includes technology transfer and commercialization of technology Provide small business maximum practicable opportunities to participate in NSSC prime contracts and subcontracts It is important to note the NSSC small business specialist: Cannot assist contractors in the preparation of proposals Cannot in any way guarantee receipt of a contract award Serves as an advisor to the Contracting Officer who has final authority over contractual matters Is not involved in the personnel decisions of a contractor, including the hiring of new employees The Office of Small Business Programs (OSBP) website will identify the following: How to do Business with NASA Business Development and Technology Small Business Program How to Partner with NASA Outreach Awards and Achievement NSSC Small Business Goals Small Business Resources Office of Small Business Programs (OSBP) NASA Vendor Database Small Business Administration (SBA) Small Business Marketing Guide SBA Table of Small Business Size Standards Acquisition Forecast View the full article
-
3 min read NASA’s Hubble Measures the Size of the Nearest Transiting Earth-Sized Planet This is an artist’s concept of the nearby exoplanet LTT 1445Ac, which is the size of Earth. The planet orbits a red dwarf star. The star is in a triple system, with two closely orbiting red dwarfs seen at upper right. The black dot in front of the bright light-red sphere at image center is planet LTT 1445Ac transiting the face of the star. The planet has a surface temperature of roughly 500 degrees Fahrenheit. In the foreground at lower left is another planet in the system, LTT 1445Ab. The view is from 22 light-years away, looking back toward our Sun, which is the bright dot at lower right. Some of the background stars are part of the constellation Boötes. NASA, ESA, Leah Hustak (STScI) NASA’s Hubble Space Telescope has measured the size of the nearest Earth-sized exoplanet that passes across the face of a neighboring star. This alignment, called a transit, opens the door to follow-on studies to see what kind of atmosphere, if any, the rocky world might have. The diminutive planet, LTT 1445Ac, was first discovered by NASA’s Transiting Exoplanet Survey Satellite (TESS) in 2022. But the geometry of the planet’s orbital plane relative to its star as seen from Earth was uncertain because TESS does not have the required optical resolution. This means the detection could have been a so-called grazing transit, where a planet only skims across a small portion of the parent star’s disk. This would yield an inaccurate lower limit of the planet’s diameter. “There was a chance that this system has an unlucky geometry and if that’s the case, we wouldn’t measure the right size. But with Hubble’s capabilities we nailed its diameter,” said Emily Pass of the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts. Hubble observations show that the planet makes a normal transit fully across the star’s disk, yielding a true size of only 1.07 times Earth’s diameter. This means the planet is a rocky world, like Earth, with approximately the same surface gravity. But at a surface temperature of roughly 500 degrees Fahrenheit, it is too hot for life as we know it. The planet orbits the star LTT 1445A, which is part of a triple system of three red dwarf stars that is 22 light-years away in the constellation Eridanus. The star has two other reported planets that are larger than LTT 1445Ac. A tight pair of two other dwarf stars, LTT 1445B and C, lies about 3 billion miles away from LTT 1445A, also resolved by Hubble. The alignment of the three stars and the edge-on orbit of the BC pair suggests that everything in the system is co-planar, including the known planets. “Transiting planets are exciting since we can characterize their atmospheres with spectroscopy, not only with Hubble but also with the James Webb Space Telescope. Our measurement is important because it tells us that this is likely a very nearby terrestrial planet. We are looking forward to follow-on observations that will allow us to better understand the diversity of planets around other stars,” said Pass. This research has been accepted for publication in The Astronomical Journal. The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C. Media Contacts: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Ray Villard Space Telescope Science Institute, Baltimore, Maryland Science Contact: Emily Pass Center for Astrophysics | Harvard & Smithsonian, Cambridge, Massachusetts Share Details Last Updated Nov 16, 2023 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Earth-like Exoplanets Exoplanets Goddard Space Flight Center Hubble Space Telescope Missions Science & Research Science Mission Directorate Terrestrial Exoplanets TESS (Transiting Exoplanet Survey Satellite) The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Exoplanets Stars Stories Our Solar System View the full article
-
Farther and Faster: NASA's Journey to the Moon with Artemis
-
NASA’s Jim Free and Cathy KoernerNASA NASA Administrator Bill Nelson announced Wednesday Jim Free’s promotion to associate administrator for the agency at NASA Headquarters in Washington, effective when his predecessor Bob Cabana retires on Sunday, Dec. 31. Since September 2021, Free has served as the associate administrator for NASA’s Exploration Systems Development Mission Directorate (ESDMD). Nelson also announced Free’s deputy, Catherine Koerner, will succeed him as the next head of the mission directorate. “So many of us in the NASA family have worked with Jim and have been inspired by his character and intellect. Pam, Bob, and I strongly believe that his wealth of experience and expertise will bring exceptional guidance and perspective to our leadership team in his new role as associate administrator, enhancing our collective efforts toward achieving bold goals for the benefit of all humanity,” said Administrator Nelson. “Cathy’s experience as the ESDMD deputy associate administrator – including her leadership in establishing and defining future space exploration architectures while overseeing the development of our deep space transportation systems – has prepared her for this new role as associate administrator for ESDMD. Cathy’s leadership will help NASA continue to extend humanity’s reach in the cosmos. Congratulations, Jim and Cathy!” As associate administrator, Free will become NASA’s third highest-ranking executive, as well as highest-ranking civil servant. This role serves as a senior advisor to Nelson and Deputy Administrator Pam Melroy. When he assumes his role, Free also will lead the agency’s 10 center directors, and five mission directorate associate administrators at NASA Headquarters. He will act as the agency’s chief operating officer for more than 18,000 employees and an annual budget of more than $25 billion. Before his appointment to associate administrator of Exploration Systems Development in 2021, Free spent several years in various private sector roles. He left NASA in 2017 after serving as the agency’s deputy associate administrator for technical in the Human Exploration and Operations Mission Directorate at NASA Headquarters. Prior to joining NASA Headquarters, he worked his way up to center director at NASA’s Glenn Research Center in Ohio, where he was responsible for planning, organizing, and directing the activities required in accomplishing the missions assigned to the center. Free has served a variety of roles at NASA centers since beginning his career in 1990 at the Goddard Space Flight Center in Greenbelt, Maryland. A native of Northeast Ohio, Free earned his bachelor’s degree in aeronautics from Miami University in Oxford, Ohio, and his master’s degree in space systems engineering from Delft University of Technology in the Netherlands. Free is the recipient of the Presidential Rank Award, NASA Distinguished Service Medal, NASA Outstanding Leadership Medal, NASA Exceptional Service Medal, NASA Significant Achievement Medal, and numerous other awards. In her new role as the associate administrator for the Exploration Systems Development Mission Directorate, Koerner will assume responsibility for the development of NASA’s Moon to Mars architecture, defining and managing the systems development for Artemis missions, and planning for integrated deep space exploration approach. As deputy associate administrator for the mission directorate, Koerner provides leadership and management of human spaceflight development and operations related to NASA’s Moon and Mars exploration goals. She currently is responsible for establishing and defining future space exploration architectures while overseeing development of new space transportation systems and supporting capabilities that are critical for human-led deep space exploration and scientific research. Prior to her positions at NASA Headquarters, Koerner was NASA’s Orion Program manager at NASA Johnson, where she was responsible for oversight of design, development, and testing of the Orion spacecraft. Before leading the Orion Program, Koerner served as the director of Human Health and Performance Directorate, focusing on enhancing crew health and performance and mitigating risks associated with human spaceflight. As a former NASA flight director, Koerner led teams in NASA’s mission control during space shuttle and International Space Station missions. She also previously held several leadership positions within the space station program during its assembly phase and managed NASA’s cargo resupply services contracts for it, helping foster a commercial space industry in low Earth orbit. Before Johnson, she worked at NASA’s Jet Propulsion Laboratory in Southern California. Koerner earned her Bachelor of Science and Master of Science degrees in aeronautical and astronautical engineering from the University of Illinois at Urbana-Champaign. She has received numerous awards including a Presidential Rank Award in 2019, two Outstanding Leadership Medals (2006, 2013), NASA’s Exceptional Service Medal (2007), Johnson’s Center Director Commendation (2017) and numerous Group Achievement Awards. For more about NASA’s missions, visit: https://www.nasa.gov -end- Jackie McGuinness / Cheryl Warner Headquarters, Washington 202-358-1600 jackie.mcguinness@nasa.gov / cheryl.m.warner@nasa.gov Share Details Last Updated Nov 15, 2023 Editor Jennifer M. Dooren Location NASA Headquarters Related Terms NASA Headquarters View the full article
-
The Color of Space: New Series Coming Soon to NASA+
-
27 Min Read The Marshall Star for November 15, 2023 Commercial Crew Program’s Plaque Hanging Tradition Continues, Celebrating Work Done by Marshall Team By Celine Smith NASA’s Marshall Space Flight Center participated in a new tradition last December to honor engineers for their exceptional efforts on CCP (Commercial Crew Program) missions to the International Space Station continued Nov. 13, with a third plaque hanging at the HOSC (Huntsville Operations Support Center). Team members are nominated at Marshall, Johnson Space Center, and Kennedy Space Center – centers that support CCP – to hang the plaque of the mission they supported. David Gwaltney, LVSO (Launch Vehicle Systems Office) technical assistant, was selected to hang the plaque for Crew-5, and Jonathan Carman, deputy SpaceX Falcon 9 lead engineer, was selected to hang the plaque for Crew-6. The Crew-5 mission launched in October of 2022. Crew-6 launched earlier this year in March. Dave Gwaltney, left, Launch Vehicle Systems Office technical assistant and Lisa McCollum, Marshall’s Commercial Crew Program Launch Vehicle Safety Office deputy manager, hold the Crew-5 mission plaque together as they smile.NASA/Charles Beason Gwaltney was chosen for the support he provided as a technical assistant for LVSO on the Crew-5 mission. While hardware for the mission was in transit it was damaged. He was critical to ensuring the proper inspections and analysis were completed. He then relayed the risk assessments to the program for acceptance. Gwaltney’s expertise led him to accurately pinpoint major areas of risks and understand them for a successful mission. “We had good communication lines and an experienced team that allowed us to be ready for what we needed to do,” Gwaltney said. Crew-5 was the first CCP mission to be led by a female commander, Nicole Mann. Mann also became the first indigenous woman to fly with NASA. Anna Kikina became the first Russian cosmonaut to fly on a U.S. commercial rocket during this mission as well. Carman was recognized for his coordination of the second launch attempt for the Crew-6 mission that took place during a severe weather warning at HOSC. Carman took preventative measures to ensure the launch was a success. He collaborated with Mission Management and Integration, HOSC personnel, and the Marshall support team. He relocated the launch operations team to the storm shelter while preserving open lines of communication. Jonathan Carman, left, deputy SpaceX Falcon 9 lead engineer, shakes hands with McCollum before he hangs the Crew-6 mission plaque. NASA/Charles Beason “It’s an honor to have people count on me to take on the role and have trust in me,” Carman said. “I learned that good coordination and teamwork is always a recipe for success.” The launch of Crew-6 was the first time a Crew Dragon capsule was reused for a fourth time. The mission also featured the first United Arab Emirates astronaut. “Both Dave and Jonathan have consistently gone above and beyond to meet the need and make sure that the crew has a safe flight to station,” said Lisa McCollum, Marshall’s CCP LVSO deputy manager. The second plaque hanging took place at HOSC on April 20 earlier this year. Ken Schrock, an avionics system engineer, hung the plaque for the Crew-3 mission, Patrick Mills, liquid propulsion systems engineer, hung the Crew-4 plaque, and Megan Hines, system safety engineer, hung the OFT-2 plaque. Schrock was selected for critically assessing autonomous flight termination system test products and analyzing their reports for the Crew-3 mission. He also monitors Falcon 9 fleet launches for any issues that could be applicable to other CCP missions. From left, Patrick Mills, liquid propulsion systems engineer, Megan Hines, systems safety engineer, and Ken Schrock, an avionics systems engineer, smile together after hanging their CCP plaques April 20.NASA/Charles Beason Mills was honored with a plaque hanging for his repair work on Falcon 9’s first stage booster for its fourth launch on the Crew-4 mission. After static fire, the team identified repairs that would be needed before flight. Mills played a key role in measuring the risk of the leaks caused. He led the team that decided patching them would be a suitable resolution preventing any spraying during the engine start up. Hines was recognized for her safety and mission assurance work on the OFT-2 mission. Due to most of the team being focused on the reused components in the Crew-4 mission, Hines coordinated all the OFT-2 safety and mission assurance work. During the mission she provided support on-console during the launch. The flight met all test objectives, completing the first docking of the Starliner to the space station. “I’m really proud of this team and how much work, heart and effort goes into each flight,” McCollum said. “It’s important for the folks across the agency and the public to know what our team is doing behind the scenes to make these missions happen.” Smith, a Media Fusion employee, supports the Marshall Office of Communications. › Back to Top National WWII Museum Brings Valor Outreach Event to Michoud Veterans By Heather Keller Veterans from the multi-tenant workforce at NASA’s Michoud Assembly Facility attended a panel discussion featuring two Congressional Medal of Honor recipients Nov. 1 in Michoud’s Hero’s Way – a hall lined with the mission patches for every NASA mission, along with crew photos and mission details. When the National WWII Museum in New Orleans learned they would be hosting the week-long Medal of Honor Convention in 2023, they began exploring ideas for local Valor Outreach opportunities. Michoud’s beginnings as an aircraft factory producing C-76 and C-46 cargo planes in support of WWII, in addition to its current operations supporting the space program, as well as housing multiple government agencies, including U.S. Coast Guard Base New Orleans, made it a prime location for the event. From left, NASA’s Michoud Assembly Facility Director Lonnie Dutreix, Maj. Gen. David Mize (Ret.), Col. Harvey C. “Barney” Barnum Jr. (Ret.), and Capt. Florent A. “Flo” Groberg (Ret.) participate in a panel discussion during a Valor Outreach event for veterans Nov. 1. NASA/Michael DeMocker “NASA Michoud is a foundation of the American space program and a marvel of scientific and engineering capability,” said event moderator and retired U.S. Marine Corps Gen. David Mize, who now serves as chairman of the Mayor’s Military Advisory Committee of New Orleans. “It is truly an underappreciated American jewel.” The event afforded a unique opportunity to the attendees to be with the “heroic unicorns of the U.S. military,” according to Mize, noting, “there are about 343 million people in the U.S. … 16.2 million living veterans … two million personnel on active and reserve duty,” yet there are only 65 living Medal of Honor recipients. The Medal of Honor recipients, retired U.S. Army Capt. Florent Groberg and retired U.S. Marine Corps Col. Harvey Barnum, Jr., visited Michoud as part of the Congressional Medal of Honor Society Valor Outreach Program. They spoke of their individual experiences serving the country in combat and in their civilian life following retirement. Topics of discussion included patriotism, leadership, and a comparison between the foreign affairs from WWII to today, among others. The pair fielded questions from the audience, which was exclusively made up of Michoud veterans, and those currently serving onsite at USCG Base New Orleans. Both panelists spoke on the weight of the medal, and the struggle of being celebrated as a war hero while their comrades gave the ultimate sacrifice. “The medal is not ours,” said Groberg, a veteran of the War on Terrorism. “We’re recipients of the medal. We’re a courier of the medal. There’s a story behind each and every one of our medals, that include many, many other people aside from us. Now we have a platform to tell those stories.” Groberg continued with the names of the four soldiers who lost their lives in Afghanistan on the day he earned his accolade, a personal mission he’s adopted to honor their memory. Freddie Grass, left, safety manager for Boasso Construction, visits with Mize and Barnum during a factory tour at Michoud. Grass has four Purple Hearts, while Mize has the Distinguished Superior Service Medal.NASA/Michael DeMocker Barnum, a veteran of the Vietnam War, spoke about the 365 Medal of Honor recipients who were alive when he was decorated in 1967. At that time there were honorees who served as far back as the Banana Wars of the 1890s, who became his mentors, and taught him the importance of being a caretaker of the medal. He compared the honor to a brotherhood, saying they have all become family. “Many of us go to the White House when a new recipient is awarded, and then we also gather at Arlington when we say ‘goodbye,’” Barnum said. “It’s the greatest fraternity that anybody could ever be a member of.” To Groberg and Barnum, the greatest honor is knowing that their peers nominated them for the recognition, though they noted one aspect where the society falls short. “We need a woman,” Groberg said. “We had some women that went out who walked the walk with us, they fought with us, they did some incredible work, and some of them didn’t come home.” Drawing on their experience, Groberg and Barnum urged their fellow veterans to talk about their experiences and recalled how opening up to those around them aided in both their physical and emotional recovery. When asked if they would do it all over again by a Michoud employee, both men agreed they would, without hesitation; however, when asked if they would ever consider going to space, they had a difference of opinion. “Not me,” Barnum said. “I’ve always wondered why people jump out of good airplanes.” Groberg, a former Boeing employee said, “A hundred percent… this is the future …especially with ya’ll building the rockets. Count me in.” Following the panel discussion, the Medal of Honor recipients enjoyed a lunch with Michoud leadership, a small contingency of Michoud veterans, and USCG personnel. Finishing out the day, the WW II staff and Medal of Honor recipients enjoyed a tour of America’s rocket factory while engaging MAF veterans along the tour route. Keller, a Manufacturing Technical Solutions Inc. employee, works in communications at Michoud Assembly Facility. › Back to Top Greg Chavers Named Strategic Architect, Integration Manager of Marshall’s Science and Technology Office Greg Chavers has been named as the strategic architect and integration manager in the Science and Technology Office at NASA’s Marshall Space Flight Center. Chavers is returning to Marshall following his role as Mars Campaign Office director in the Moon to Mars Program Office, Exploration Systems Development Mission Directorate, at NASA Headquarters from April to November 2023. In that role, he led risk reduction and technology development of systems that will lead to human Mars missions. The technologies are being demonstrated on the ground, in Low Earth orbit on the International Space Station, and will be demonstrated on the Moon on future Artemis missions. Greg Chavers, strategic architect and integration manager in the Science and Technology Office at NASA’s Marshall Space Flight Center.NASA Before leading the Mars Campaign Office, Chavers was director of the Technical Integration Office at headquarters, starting in 2022. In that role, he led an office consisting of about 70 civil servants and more than 50 support contractors including senior leaders and executives that influence the investments of multi-billions of dollars across all human spaceflight destinations. In 2020, he was appointed assistant deputy associate administrator for the Human Explorations Office, Systems Engineering and Integration, also at headquarters. From 2019-2020, Chavers was deputy program manager for HLS (Human Lander Systems) at Marshall. He was formulation manager at headquarters for HLS from 2018-2019. In 2012, Chavers was named Lander Technologies project manager. He joined NASA in 1991 in the Systems Analysis and Integration Lab in Marshall’s Engineering Directorate. Chavers spent more than 20 years in the Engineering Directorate before transitioning to project management in Marshall’s flight projects office. A native of Flomaton, Alabama, Chavers received a bachelor’s degree in aerospace from Auburn University, and a master’s in astrophysics and a doctorate in physics from the University of Alabama. He and his wife of 33 years, Denise, live in Decatur. They have three children and two grandchildren. › Back to Top Rocket Exhaust on the Moon: NASA Supercomputers Reveal Surface Effects Through Artemis, NASA plans to explore more of the Moon than ever before with human and robotic missions on the lunar surface. Because future landers will be larger and equipped with more powerful engines than the Apollo landers, mission risks associated with their operation during landing and liftoff is significantly greater. With the agency’s goal to establish a sustained human presence on the Moon, mission planners must understand how future landers interact with the lunar surface as they touch down in unexplored moonscapes. Landing on the Moon is tricky. When missions fly crew and payloads to the lunar surface, spacecraft control their descent by firing rocket engines to counteract the Moon’s gravitational pull. This happens in an extreme environment that’s hard to replicate and test on Earth, namely, a combination of low gravity, no atmosphere, and the unique properties of lunar regolith – the layer of fine, loose dust and rock on the Moon’s surface. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Researchers at NASA’s Marshall Space Flight Center produced a simulation of the Apollo 12 lander engine plumes interacting with the lunar surface. This animation depicts the last half-minute of descent before engine cut-off, showing the predicted forces exerted by plumes on a flat computational surface. Known as shear stress, this is the amount of lateral, or sideways, force applied over a set area, and it is the leading cause of erosion as fluids flow across a surface. Here, the fluctuating radial patterns show the intensity of predicted shear stress. Lower shear stress is dark purple, and higher shear stress is yellow. (NASA/Patrick Moran and Andrew Weaver) Each time a spacecraft lands or lifts off, its engines blast supersonic plumes of hot gas toward the surface and the intense forces kick up dust and eject rocks or other debris at high speeds. This can cause hazards like visual obstructions and dust clouds that can interfere with navigation and science instrumentation or cause damage to the lander and other nearby hardware and structures. Additionally, the plumes can erode the surface under the lander. Although craters were not formed for Apollo-scale landers, it is unknown how much the larger landers being planned for upcoming Artemis missions will erode the surface and whether they will rapidly cause cratering in the landing zone, posing a risk to the lander’s stability and astronauts aboard. To improve its understanding of plume-surface interactions, also known as PSI, researchers at NASA’s Marshall Space Flight Center have developed new software tools to predict PSI environments for NASA projects and missions, including the Human Landing System, Commercial Lunar Payload Services initiative, and future Mars landers. These tools are already being used to predict cratering and visual obscuration on upcoming lunar missions and are helping NASA minimize risks to spacecraft and crew during future landed missions. The team at Marshall recently produced a simulation of the Apollo 12 lander engine plumes interacting with the surface and the predicted erosion that closely matched what happened during landing. This animation depicts the last half-minute of descent before engine cut-off, showing the predicted forces exerted by plumes on a flat computational surface. Known as shear stress, this is the amount of lateral, or sideways, force applied over a set area, and it is the leading cause of erosion as fluids flow across a surface. Here, the fluctuating radial patterns show the intensity of predicted shear stress. Lower shear stress is dark purple, and higher shear stress is yellow. These simulations were run on the Pleaides supercomputer at the NASA Advanced Supercomputing facility at NASA’s Ames Research Center over several weeks of runtime, generating terabytes of data. NASA is showcasing 42 of the agency’s computational achievements at SC23, the international supercomputing conference, Nov. 12-17, in Denver, Colorado. For more technical information, visit: https://www.nas.nasa.gov/sc23. Used for this research, the framework for the Descent Interpolated Gas Granular Erosion Model, or DIGGEM, was funded through NASA’s Small Business Innovation Research program within NASA’s STMD (Space Technology Mission Directorate) in Washington, and by the Stereo Cameras for Lunar Plume Surface Studies project that is managed by NASA’s Langley Research Center, also funded by STMD. The Loci/CHEM+DIGGEM code was further refined through direct support for flight projects within the Human Landing System program funded by NASA’s ESDMD (Exploration Systems Development Mission Directorate) in Washington as well as the Strategy and Architecture Office in ESDMD. › Back to Top I am Artemis: Eric Bordelon As a child, Eric Bordelon had posters of the space shuttle in his room. Now, he takes photos and video for NASA as a multimedia specialist at NASA’s Michoud Assembly Facility. Known as NASA’s Rocket Factory, the site is where structures for NASA’s Apollo, shuttle, and now, NASA’s SLS (Space Launch System) rocket and Orion spacecraft are produced for Artemis missions. Bordelon joined the NASA team in 2007 working with the external tank program for the space shuttle at Michoud. One of Bordelon’s favorite aspects of the job is being a part of the storytelling involving Michoud’s rich history, including documenting the facility transition from the Space Shuttle Program to the SLS Program. Eric Bordelon, a multimedia specialist at NASA’s Michoud Assembly Facility, stands in front of a weld confidence article that forms part of the liquid oxygen tank for the SLS (Space Launch System) rocket’s future exploration upper stage.NASA/Steven Seipel “Many people don’t realize that Michoud has been around since the 40s and NASA has been here since the 60s,” Bordelon said. “A part of my job I really love is meeting and taking photos of the people working behind the scenes on the rocket. They’re turning bolts, welding, spraying foam, and are artists in their own way. One of my goals is to learn what each of these people do, so I can help tell their stories.” Bordelon grew up in Destrehan, Louisiana, a suburb of New Orleans, and initially dreamed about being a sound recording engineer. He attended Loyola University New Orleans where he studied music business but soon after went to work for a print shop. During his time there, he met several photographers and soon picked up a new hobby: photography. He purchased his first digital camera in 2005 and started taking photos around New Orleans. When the job at NASA opened, he decided to see if that hobby could turn into a career. Fast forward to 2022: That young boy with space posters on his wall grew up to be a part of the Artemis Generation. Though he had been capturing how rockets came together for years at Michoud, Bordelon had not seen a launch. That changed in 2022 with Artemis I. Not only did Bordelon watch his first launch at NASA’s Kennedy Space Center, but he also photographed and documented it for NASA. “I watched this powerful rocket’s core stage be built at Michoud,” Bordelon said. “When I first saw the SLS rocket fully assembled with Orion atop, sitting on the launch pad ready for its inaugural flight for Artemis I, I had to pause, take a minute, and revel in just how amazing it was to be a small part of that.” During Artemis I launch activities in 2022, he captured a stunning photo of the Sun behind the SLS rocket as a Florida storm rolled in. The photo – with its purple, pink, and orange hues – was selected for one of NASA’s “Picture of the Year” awards. Read other I am Artemis features. › Back to Top Arkansas City Welcomes Marshall to Discuss 2024 Total Solar Eclipse The contiguous United States will see only one total solar eclipse between now and the year 2044, and the citizens of Russellville, Arkansas, are ready. On Monday, April 8, 2024, the Moon will pass between the Sun and Earth, providing an opportunity for those in the path of the Moon’s shadow to see a total solar eclipse, including the Sun’s outer atmosphere, or corona. With more than 100,000 tourists expected to visit Russellville for this rare experience, elected officials and industry leaders hosted a team of NASA experts from Marshall Space Flight Center to discuss educational outreach opportunities. More than 1,000 people attended a free solar eclipse presentation in Russellville, Arkansas, featuring experts from NASA’s Marshall Space Flight Center, Oct. 30.Joshua Mashon “Having NASA involved elevates the importance of this eclipse and amplifies the excitement for our community,” said Russellville Mayor Fred Teague. “We are thankful for the rich discussions and insight provided by NASA, and we look forward to hosting them again during the April eclipse.” Due to the length of the eclipse totality in Russellville, NASA is planning to host part of the agency’s live television broadcast from the city, as well as conduct several scientific presentations and public outreach events for visitors. Additional factors for selecting Russellville included access to a large university, and proximity to Little Rock – the state’s capital – to engage media outlets and key stakeholders representing industry and academia. The day-long Oct. 30 visit helped NASA learn how the city is preparing for the massive influx of tourists and news media personnel. Christie Graham, director of Russellville Tourism, explained the city’s commitment to the eclipse and how their planning processes started more than a year in advance. “Months ago, we created our solar eclipse outreach committee, consisting of key stakeholders and thought leaders from across the city,” Graham said. “We’ve developed advanced communication and emergency management plans which will maximize our city’s resources and ensure everyone has a safe and memorable viewing experience.” Adam Kobelski, a solar astrophysicist with Marshall, shares tips to safely view a total solar eclipse. Many U.S. cities, including Russellville, Arkansas, are planning watch parties to view the April 2024 total solar eclipse.Joshua Mashon This visit also provided NASA an opportunity to share important heliophysics messaging with the public, including the next generation of scientists, engineers, and explorers. To learn how best to interact with local students, Marshall team members met with the Russellville School District Superintendent Ginni McDonald and Arkansas Tech University Acting Interim President Russell Jones. “Leveraging the eclipse to provide quality learning opportunities will be a valuable and unforgettable experience for all,” McDonald said. “Our staff enjoyed discussing best strategies and look forward to sharing NASA educational content with our students.” The team also discussed internship opportunities available for students to work at NASA centers across the nation, as well as how to get involved in NASA’s Artemis student challenges, sophisticated engineering design challenges available for middle school, high school, college and university students. “Our university serves nearly 10,000 students, many pursuing a variety of STEM (science, technology, engineering, and math) degrees, including mechanical and electrical engineering, biological and computer sciences, nursing, and more,” Jones said. “It is important our students learn of the many unique opportunities available with NASA and how they can get involved.” Following the NASA public presentation about the April 2024 total solar eclipse, Kobelski chats with guests interested in learning more about NASA and heliophysics.NASA/Christopher Blair The agency’s visit concluded with a free public presentation at The Center for The Arts, where more than 1,000 attendees gained insight on the upcoming eclipse from Dr. Adam Kobelski, a solar astrophysicist at Marshall. Following the presentation, Marshall team members participated in a question-and-answer session with audience members of all ages. Overall, the visit proved valuable for everyone with NASA team members remarking how enthusiastic and prepared both Russellville and the university are to support the eclipse event. “It was a refreshing reminder of the public’s excitement for the science we conduct at NASA,” Kobelski said. “This experience established my overall confidence in their readiness to successfully host a quality viewing experience for everyone.” The April eclipse is part of the Heliophysics Big Year, a global celebration of solar science and the Sun’s influence on Earth and the entire solar system. Everyone is encouraged to participate in solar science events such as watching solar eclipses, experiencing an aurora, participating in citizen science projects, and other fun Sun-related activities. Cities across the nation are planning eclipse watch parties and other celebrations to commemorate the event. Weather permitting, the April 2024 total eclipse will be visible across 13 states, from Texas to New York. Learn more about the 2024 eclipse. › Back to Top NASA Project Manager Helps Makes Impact in Southeast Asia with SERVIR By Celine Smith “As the seedlings were placed in the water, I felt a moment of déjà vu,” NASA scientist Tony Kim said. “I was taken back to when I was a child playing in similar fields in South Korea. It felt like I was meant to be there bringing space to village with satellite data.” As he looked at rice fields while visiting Bhutan in September 2023, Kim savored the chance to do something meaningful across Southeast Asia and also in his native country. Having seen his childhood home turn from rice fields to a city, Kim knows the importance of sustainably using the land. Tony Kim in South Korea’s Songdo Central Park standing in front of the statue “Cruising Together” created by Han Jeong-ho.NASA/Tony Kim In Bhutan, Kim and research partners are identifying rice paddies, estimating crop production, predicting shortages, and gauging the health of each harvest. He represents NASA as an international project manager for SERVIR, a partnership between NASA and USAID (U.S. Agency for International Development). It is a flagship program for Earth Action in NASA’s Earth Sciences Division, created in 2005 and rooted at NASA’s Marshall Space Flight Center. SERVIR – which means “to serve” in Spanish – aids more than 50 nations in Asia, Africa, and Latin America in their efforts to address issues like food and water security, droughts, and the negative effects of climate change. SERVIR assists regional, national, and local institutions by using NASA satellite data, models, and products to manage resources sustainably. NASA and USAID launched its SERVIR Mekong hub in 2015 at the ADPC(Asian Disaster Preparedness Center) in Bangkok, Thailand. The hub has been renamed SERVIR Southeast Asia as of this year. Other SERVIR hubs are in the Himalayas, West Africa, and the Amazon. In addition to Bhutan, Kim also traveled back home to Seoul, South Korea – nearly 20 years since his last visit – to represent SERVIR Southeast Asia. “When I went back to Korea, I felt like a kid going back in time,” Kim said. Kim, back row fifth from the right, pictured with other attendees during the 2023 PEER (Partnerships for Enhanced Engagement in Research) Bhutan Symposium where Bhutanese scientists funded by USAID (U.S. Agency for International Development). present their research. Kim’s presentation was, “Advancing STEM in Bhutan through Increased Earth Observation Capacity.”Royal Society for Protection of Nature Bhutan The USAID RDMA (Regional Development Mission for Asia), which funds SERVIR Southeast Asia requested Kim’s presence for a meeting with Korean leaders. He discussed the value of NASA satellite data for environmental decision-making with the Korean Ministry of Environment and USAID RDMA, as well as opportunities for collaboration to solve water issues in the Indo-Pacific region and natural resource management in the Lower Mekong sub-region. “Korea recovered from war in the 1950’s and developed very quickly as a powerhouse for technology products. Now Korea is helping other developing countries in Asia,” Kim said. “I am so proud of my home country and my adopted country (through NASA) helping people around the world to use satellite data in productive ways.” Kim was eight years old in 1974 when his family moved from the southern edge of Seoul to the suburbs of Chicago. “Our parents immigrated to the United States to give us the opportunity to better ourselves through education,” he said. After high school, he went to the University of Illinois, where he pursued a degree in aeronautical and astronautical engineering. After graduation, he joined Marshall as a propulsion engineer, testing cryogenic fluid management techniques for advanced rocket propulsion systems. From there, Kim’s 33-year NASA journey led him through a variety of roles. He served in 1992 as an operations controller for two Spacelab missions. In 1996, he led an operation team for the International Space Station Furnace Facility. From 1998-2001, he was a payload operations manager for space station science payloads. Tony Kim, SERVIR Science Coordination Office project manager, International Flagship Program for Earth Action.NASA Marshall selected Kim to study at Auburn University in 1997, where he earned his master’s degree in material science. Afterwards, Kim attended the International Space University. Then, he led the ALTUS Cumulus Electrification Study, where an uninhabited aerial vehicle was used to study lightning during a thunderstorm. Kim was selected in 2003 for the NASA Administrator’s Fellowship Program to teach a design engineering course at Texas A&M in Kingsville for one year. He spent the next year at NASA Headquarters in Washington. Kim returned to Marshall as a deep throttling rocket engine technology manager and then deputy manager for advanced nuclear thermal propulsion technology development. In 2016, Kim served as deputy program manager for Centennial Challenges, NASA’s premier, large-prize program. Kim worked with Bradley University and Caterpillar in Peoria, Illinois, to conduct NASA’s 3D-printed Habitat Challenge. “SERVIR was the only organization that could have taken me away from Centennial Challenges,” Kim said. Kim and his wife, Sonya, live in Huntsville, Alabama, and have three grown children. He said the lessons his parents imparted remain as true today as when he was a small child. “They taught us to work hard, keep your commitments, and care about what you do and the people you do it with,” he said. “If you do those things, you’ll find success.”Smith, a Media Fusion employee, supports the Marshall Office of Communications. › Back to Top Juno Finds Jupiter’s Winds Penetrate in Cylindrical Layers Gravity data collected by NASA’s Juno mission indicates Jupiter’s atmospheric winds penetrate the planet in a cylindrical manner, parallel to its spin axis. A paper on the findings was recently published in the journal Nature Astronomy. The violent nature of Jupiter’s roiling atmosphere has long been a source of fascination for astronomers and planetary scientists, and Juno has had a ringside seat to the goings-on since it entered orbit in 2016. During each of the spacecraft’s 55 to date, a suite of science instruments has peered below Jupiter’s turbulent cloud deck to uncover how the gas giant works from the inside out. NASA’s Juno captured this view of Jupiter during the mission’s 54th close flyby of the giant planet on Sept. 7. The image was made with raw data from the JunoCam instrument that was processed to enhance details in cloud features and colors.Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Tanya Oleksuik CC BY NC SA 3.0 One way the Juno mission learns about the planet’s interior is via radio science. Using NASA’s Deep Space Network antennas, scientists track the spacecraft’s radio signal as Juno flies past Jupiter at speeds near 130,000 mph, measuring tiny changes in its velocity – as small as 0.01 millimeter per second. Those changes are caused by variations in the planet’s gravity field, and by measuring them, the mission can essentially see into Jupiter’s atmosphere. Such measurements have led to numerous discoveries, including the existence of a dilute core deep within Jupiter and the depth of the planet’s zones and belts, which extend from the cloud tops down approximately 1,860 miles. To determine the location and cylindrical nature of the winds, the study’s authors applied a mathematical technique that models gravitational variations and surface elevations of rocky planets like Earth. At Jupiter, the technique can be used to accurately map winds at depth. Using the high-precision Juno data, the authors were able to generate a four-fold increase in the resolution over previous models created with data from NASA’s trailblazing Jovian explorers Voyager and Galileo. “We applied a constraining technique developed for sparse data sets on terrestrial planets to process the Juno data,” said Ryan Park, a Juno scientist and lead of the mission’s gravity science investigation from NASA’s Jet Propulsion Laboratory. “This is the first time such a technique has been applied to an outer planet.” The measurements of the gravity field matched a two-decade-old model that determined Jupiter’s powerful east-west zonal flows extend from the cloud-level white and red zones and belts inward. But the measurements also revealed that rather than extending in every direction like a radiating sphere, the zonal flows go inward, cylindrically, and are oriented along the direction of Jupiter’s rotation axis. How Jupiter’s deep atmospheric winds are structured has been in debated since the 1970s, and the Juno mission has now settled the debate. This illustration depicts findings that Jupiter’s atmospheric winds penetrate the planet in a cylindrical manner and parallel to its spin axis. The most dominant jet recorded by NASA’s Juno is shown in the cutout: The jet is at 21 degrees north latitude at cloud level, but 1,800 miles (3,000 kilometers) below that, it’s at 13 degrees north latitude.Image credit: NASA/JPL-Caltech/SSI/SWRI/MSSS/ASI/ INAF/JIRAM/Björn Jónsson CC BY 3.0 “All 40 gravity coefficients measured by Juno matched our previous calculations of what we expect the gravity field to be if the winds penetrate inward on cylinders,” said Yohai Kaspi of the Weizmann Institute of Science in Israel, the study’s lead author and a Juno co-investigator. “When we realized all 40 numbers exactly match our calculations, it felt like winning the lottery.” Along with bettering the current understanding of Jupiter’s internal structure and origin, the new gravity model application could be used to gain more insight into other planetary atmospheres. Juno is currently in an extended mission. Along with flybys of Jupiter, the solar-powered spacecraft has completed a series of flybys of the planet’s icy moons Ganymede and Europa and is in the midst of several close flybys of Io. The Dec. 30 flyby of Io will be the closest to date, coming within about 930 miles of its volcano-festooned surface. “As Juno’s journey progresses, we’re achieving scientific outcomes that truly define a new Jupiter and that likely are relevant for all giant planets, both within our solar system and beyond,” said Scott Bolton, the principal investigator of the Juno mission at the Southwest Research Institute in San Antonio. “The resolution of the newly determined gravity field is remarkably similar to the accuracy we estimated 20 years ago. It is great to see such agreement between our prediction and our results.” NASA’s Jet Propulsion Laboratory, a division of Caltech, manages the Juno mission for the principal investigator, Scott J. Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate. Lockheed Martin Space in Denver built and operates the spacecraft. Read more about Juno. › Back to Top View the full article
-
For the 13th consecutive year, NASA received an unmodified, or “clean,” opinion from an external auditor on its fiscal year 2023 financial statements. NASA’s financial statements and budgetary reporting have received the highest possible audit opinion, certifying that it adheres to Generally Accepted Accounting Principles for federal agencies. These financial statements provide a comprehensive overview of the agency’s financial activities and disclosures for fiscal years 2023 and 2022. The audit opinion reaffirms NASA’s responsible stewardship of American tax dollars. “For the 13th consecutive year, NASA continues to deliver an accurate and transparent report of our fiscal operations as we explore the unknown in air and space,” said NASA Administrator Bill Nelson. “Under the leadership of NASA’s Chief Financial Officer Margaret Vo Schaus, NASA will continue to uphold the American public’s trust in our goals and missions and ensure best financial reporting practices, which are critical to the agency’s success.” In addition to the independent auditor’s opinion, the Agency Financial Report includes crucial supplementary information and preliminary top-level performance results, among other essential details. “NASA continues to uphold the highest standards for prudent financial management, data integrity, and reliable financial reporting,” said NASA Chief Financial Officer Margaret Vo Schaus. “Our Agency Financial Report provides valuable insights into NASA’s financial performance as we further U.S. leadership in space and aeronautics; address the climate crisis; foster greater diversity, equity, inclusion, and accessibility; and drive economic growth.” The 2023 Agency Financial Report accounts for the agency’s mission and performance goals per its strategic plan and highlights the benefits it brings to all. The report details NASA’s advancements in achieving its long-term priorities, such as the utilization of NASA’s James Webb Space Telescope; advancing climate change research; securing America’s position in space technology; and accomplishing the historic feat of landing the first woman and person of color on the Moon through the Artemis program, as a step towards human exploration of Mars. For more information on NASA’s budget, visit: https://www.nasa.gov/budget -end- Abbey Donaldson Headquarters, Washington 202-358-1600 abbey.a.donaldson@nasa.gov Share Details Last Updated Nov 15, 2023 Location NASA Headquarters Related Terms Office of the Chief Financial Officer (OCFO) View the full article
-
Goddard’s Office of the Chief Technologist named engineer Steven Denis as the FY23 Internal Research and Development (IRAD) Innovator of the Year, an honor the office bestows annually on individuals who demonstrate the best in innovation. Kevin DenisCredit: NASA / Christopher Gunn Denis demonstrated persistence and innovation in developing hair-thin photon sieves to focus extreme ultraviolet light – a difficult wavelength to capture. Thin membranes matter for solar science, he said, because these sieves transmit up to seven times more light than thicker materials. Denis’s work will open new ways to study the Sun in better detail and understand its influence on Earth and the solar system. Working closely with solar scientists over many years through Goddard ’s IRAD, or Internal Research and Development program, Denis developed new ways to create wider and thinner membranes of silicon and niobium. These photon sieves, created in Goddard’s Detector Development Laboratory, are so thin they must be supported by a honeycomb lattice of thicker silicon to prevent tearing. Etched with microscopic holes in a circular pattern, they refract light similar to Fresnel lenses used in lighthouses. Extreme ultraviolet light passing through this sieve is bent gradually inward to a distant receiver. Photon sieves like this are cut from a single wafer of silicon or niobium to focus extreme ultraviolet light – a difficult wavelength to capture.NASA / Christopher Gunn “It’s a sheer physical challenge to construct sieves with such precision,” said Goddard heliophysicist Dr. Doug Rabin. “Their smallest features are a few microns across. Kevin has really responded to that challenge with very creative solutions.” Denis’s photon sieves should eventually be able to resolve features near the surface of the Sun 10 to 50 times smaller than can be seen today with the Solar Dynamics Observatory’s EUV imager, Rabin said. Denis takes inspiration from working closely with scientists to overcome barriers to advancing their field, he said. “With this project in particular, scientists Rabin and Adrian Daw have done a great job using the sieves in near-term science applications while we push the technology for larger and more capable missions.” Denis’s work was highlighted in Physics Today, a publication of the American Institute for Physics, for its importance in advancing pivotal technology that can address outstanding questions of how coronal heating and acceleration happens in the Sun’s lower atmosphere. With two patents already awarded based on this project, Denis is submitting a new application for his latest fabrication process. While he continues to push the limits of engineering, Denis said he is looking forward to seeing them used in missions of increasing complexity and capability. “It’s a great motivation to see they are going to be used for new science.” By Karl B. Hille NASA’s Goddard Space Flight Center in Greenbelt, Md. Share Details Last Updated Nov 15, 2023 Related Terms GeneralGoddard Space Flight CenterOffice of Technology, Policy and Strategy (OTPS)People of GoddardPeople of NASAScience-enabling TechnologyTechnology Explore More 4 min read NASA Telescope Data Becomes Music You Can Play Article 27 mins ago 2 min read Modeling Turbofan Engines to Understand Aircraft Noise Article 47 mins ago 5 min read Webb Follows Neon Signs Toward New Thinking on Planet Formation Article 5 hours ago View the full article
-
4 min read NASA Telescope Data Becomes Music You Can Play For millennia, musicians have looked to the heavens for inspiration. Now a new collaboration is enabling actual data from NASA telescopes to be used as the basis for original music that can be played by humans. Since 2020, the “sonification” project at NASA’s Chandra X-ray Center has translated the digital data taken by telescopes into notes and sounds. This process allows the listener to experience the data through the sense of hearing instead of seeing it as images, a more common way to present astronomical data. A musical ensemble performs soundscape that composer Sophie Katsner created using data sonifications from NASA’s Chandra, Hubble and Spitzer space telescopes. Based in Montreal, Ensemble Éclat is dedicated to the performance of contemporary classical music and promoting the works of emerging composers. A new phase of the sonification project takes the data into different territory. Working with composer Sophie Kastner, the team has developed versions of the data that can be played by musicians. “It’s like a writing a fictional story that is largely based on real facts,” said Kastner. “We are taking the data from space that has been translated into sound and putting a new and human twist on it.” This pilot program focuses on data from a small region at the center of our Milky Way galaxy where a supermassive black hole resides. NASA’s Chandra X-ray Observatory, Hubble Space Telescope, and retired Spitzer Space Telescope have all studied this area, which spans about 400 light-years across. The Galactic Center sonification, using data from NASA’s Chandra, Hubble and Spitzer space telescopes, has been translated into a new composition with sheet music and score. Working with a composer, this soundscape can be played by musicians. The full score and sheet music for individual instruments is available at: https://chandra.si.edu/sound/symphony.htmlComposition: NASA/CXC/SAO/Sophie Kastner We’ve been working with these data, taken in X-ray, visible, and infrared light, for years,” said Kimberly Arcand, Chandra visualization and emerging technology scientist. “Translating these data into sound was a big step, and now with Sophie we are again trying something completely new for us.” In the data sonification process, computers use algorithms to mathematically map the digital data from these telescopes to sounds that humans can perceive. Human musicians, however, have different capabilities than computers. Kastner chose to focus on small sections of the image in order to make the data more playable for people. This also allowed her to create spotlights on certain parts of the image that are easily overlooked when the full sonification is played. “I like to think of it as creating short vignettes of the data, and approaching it almost as if I was writing a film score for the image,” said Kastner. “I wanted to draw listener’s attention to smaller events in the greater data set.” The result of this trial project is a new composition based upon and influenced by real data from NASA telescopes, but with a human take. “In some ways, this is just another way for humans to interact with the night sky just as they have throughout recorded history,” says Arcand. “We are using different tools but the concept of being inspired by the heavens to make art remains the same.” Kastner hopes to expand this pilot composition project to other objects in Chandra’s data sonification collection. She is also looking to bring in other musical collaborators who are interested in using the data in their pieces. Sophie Kastner’s Galactic Center piece is entitled “Where Parallel Lines Converge.” If you are a musician who wants to try playing this sonification at home, check out the sheet music at: https://chandra.si.edu/sound/symphony.html. The piece was recorded by Montreal based Ensemble Éclat conducted by Charles-Eric LaFontaine on July 19, 2023 at McGill University. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. For more Chandra images, multimedia and related materials, visit: Megan Watzke Chandra X-ray Center Cambridge, Mass. 617-496-7998 Jonathan Deal Marshall Space Flight Center Huntsville, Ala. 256-544-0034 Keep Exploring Discover More Topics From NASA Chandra News Galaxies Our galaxy, the Milky Way, is typical: it has hundreds of billions of stars, enough gas and dust to make… Universe Explore the universe: Learn about the history of the cosmos, what it’s made of, and so much more. NASA Astrophysics The science goals of the SMD Astrophysics Division are breathtaking: we seek to understand the universe and our place in… View the full article
-
2 min read Modeling Turbofan Engines to Understand Aircraft Noise To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This simulation shows the complex flow of air particles through the Source Diagnostic Test turbofan engine. By simulating the fan’s rotations, researchers can target design innovations and modifications to reduce the impact of fan noise on people living and working in areas with heavy air traffic. Credit: Timothy Sandstrom, Luis Fernandes/NASA Ames Research Center Airplane engines are loud – just ask anyone who lives near an airport. Increased air traffic from next-generation aircraft has the potential for even more disruptive noise. Researchers and engineers at NASA are working to reduce noise generated by turbofan engines, but each new design requires certification and testing to understand how much noise it will generate during takeoff and approach. Using the Pleiades supercomputer at the NASA Advanced Supercomputing facility at the agency’s Ames Research Center in California’s Silicon Valley, researchers have developed software that can model different engine configurations in a more timely and economic manner. Generating accurate simulations of rotating geometry, like a turbofan, requires time-consuming computations. Using NASA’s Launch, Ascent, and Vehicle Aerodynamics software, the team used a sliding mesh technique, which reduces the amount of runtime mapping procedures by analytically matching stationary and rotating points on the modeling grid. The simulation is based on the Source Diagnostic Test fan, a simplified turbofan engine model used for physical tests. By using a simulation instead of a physical model, testing will require less time and expense, opening the door to easier testing and certification of turbofan engine designs that lower fuel burn and reduce emissions without increased noise levels. NASA is showcasing 42 of the agency’s computational achievements at SC23, the international supercomputing conference, Nov. 12-17, 2023, in Denver, Colorado. For more technical information, visit: https://www.nas.nasa.gov/sc23. For news media: Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom. About the AuthorTara Friesen Share Details Last Updated Nov 15, 2023 Related Terms AeronauticsAmes Research CenterGeneral Explore More 4 min read Volunteers Worldwide Successfully Tracked NASA’s Artemis I Mission Article 6 hours ago 4 min read Rocket Exhaust on the Moon: NASA Supercomputers Reveal Surface Effects Article 1 day ago 5 min read Five Ways NASA Supercomputing Takes Missions from Concept to Reality Article 2 days ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
Our world is facing many urgent challenges, such as climate change, water insecurity, and food insecurity. Maintaining and improving quality of life around the world requires bringing together innovators across disciplines and countries to find creative solutions. One critical tool for understanding and improving the urgent challenges facing our world is Earth observation data, meaning data that is gathered in outer space about life here on Earth! Earth observation data provides accurate and publicly accessible information on our atmosphere, oceans, ecosystems, land cover, and built environment. The United States and its partners have a long history of exploring outer space and making satellite, airborne, and in-situ sensor datasets openly available to all. Your goal in this challenge is to create a visualization using Earth observation data that advances at least one of the following Sustainable Development Goals (SDGs): 2: Zero Hunger 6: Clean Water and Sanitation 13: Climate Action By participating, you can be part of NASA’s initiative to Transform to Open Science and to make Earth observation data available to all. Award: 10-day Space Study program, with travel, lodging, and tuition covered. Open Date: November 15, 2023 Close Date: January 26, 2024 For more information, visit: https://www.drivendata.org/competitions/256/ View the full article
-
NASA / William R. Pogue Astronaut William R. Pogue, Skylab 4 pilot, recorded this wide scene of his crewmates, astronauts Edward G. Gibson (left), science pilot, and Jerry P. Carr (right), commander, on the other end of the orbital workshop on Feb. 1, 1974. Also in the frame are parts of three spacesuits, used on several EVA sessions during the third and final mission on the Skylab space station. Skylab 4 launched on Nov. 16, 1973. Pogue, Gibson, and Carr were the first all-rookie crew since Gemini 8 in 1966. The crew continued the science program begun by the previous two Skylab crews, including biomedical investigations on the effects of long-duration space flight on the human body, Earth observations using the Earth Resources Experiment Package, and solar observations with instruments mounted on the Apollo Telescope Mount. Added to their science program were observations of the comet Kohoutek, discovered earlier in the year and predicted to make its closest approach to the Sun in December. Watch a recap of Skylab’s legacy as a major stepping stone to the successful construction and operation of the International Space Station and future long-duration human missions to asteroids, Mars and other destinations. Image Credit: NASA/William R. Pogue View the full article
-
7 min read NASA’s Cold Atom Lab Sets Stage for Quantum Chemistry in Space This animation depicts six finely tuned lasers used inside NASA’s Cold Atom Lab to slow down atoms, lowering their temperature. Scientists can now use the lab to see how different types of atoms interact with each other at these cold temperatures. NASA/JPL-Caltech The remotely operated facility aboard the International Space Station has created another tool that researchers can use to probe the fundamental nature of the world around us. For the first time in space, scientists have produced a quantum gas containing two types of atoms. Accomplished with NASA’s Cold Atom Laboratory aboard the International Space Station, the achievement marks another step toward bringing quantum technologies currently available only on Earth into space. Quantum tools are already used in everything from cellphones to GPS to medical devices. In the future, they could be used to enhance the study of planets, including our own, and help solve mysteries of the universe while deepening our understanding of the fundamental laws of nature. The new work, performed remotely by scientists on Earth, is described in the Nov. 16 issue of the journal Nature. With this new capability, the Cold Atom Lab can now study not only the quantum properties of individual atoms, but also quantum chemistry, which focuses on how different types of atoms interact and combine with each other in a quantum state. Researchers will be able to conduct a wider range of experiments with Cold Atom Lab and learn more about the nuances of performing them in microgravity. That knowledge will be essential for harnessing the one-of-a-kind facility to develop new space-based quantum technologies. Quantum Chemistry The physical world around us depends on atoms and molecules staying bound together according to an established set of rules. But different rules can dominate or weaken depending on the environment the atoms and molecules are in – like microgravity. Scientists using the Cold Atom Lab are exploring scenarios where the quantum nature of atoms dominates their behaviors. For example, instead of acting like solid billiard balls, the atoms and molecules behave more like waves. In one of those scenarios, the atoms in two- or three-atom molecules can remain bound together but grow increasingly far apart, almost as though the molecules are getting fluffy. To study these states, scientists first need to slow the atoms down. They do this by cooling them to fractions of a degree above the lowest temperature matter can reach, far colder than anything found in the natural universe: absolute zero, or minus 459 degrees Fahrenheit (minus 273 degrees Celsius). NASA’s Cold Atom Lab lets scientists investigate the quantum nature of atoms in the freedom of microgravity. Learn how quantum science has led to the development of everyday technologies like cellphones and computers, and how Cold Atom Lab is paving the way for new breakthroughs. Credit: NASA/JPL-Caltech Physicists have created these fluffy molecules in cold atom experiments on the ground, but they are extremely fragile and either break apart quickly or collapse back down to a normal molecular state. For that reason, enlarged molecules with three atoms have never been directly imaged. In the microgravity of the space station, the fragile molecules can exist for longer and potentially get larger, so physicists are excited to start experimenting with the Cold Atom Lab’s new capability. These types of molecules likely don’t occur in nature, but it’s possible they could be used to make sensitive detectors that can reveal subtle changes in the strength of a magnetic field, for example, or any of the other disturbances that cause them to break apart or collapse. “What we’re doing with cold atom science in general is looking for and learning about new tools that nature gives us,” said Jason Williams of NASA’s Jet Propulsion Laboratory in Southern California, project scientist for the Cold Atom Lab and a co-author on the new study. “It’s like we’ve discovered a hammer and we’re just starting to investigate all the ways we could use it.” A Modern Mystery One possible way of using a quantum gas with two types of atoms would be to test something called the equivalence principle, which holds that gravity affects all objects the same way regardless of their mass. It’s a principle that many physics teachers will demonstrate by putting a feather and a hammer in a sealed vacuum chamber and showing that, in the absence of air friction, the two fall at the same rate. In 1971, Apollo 15 astronaut David Scott did this experiment on the Moon’s surface without the need for a vacuum chamber. Using an instrument called an atom interferometer, scientists have already run experiments on Earth to see if the equivalence principle holds true at atomic scales. Using a quantum gas with two types of atoms and an interferometer in the microgravity of the space station, they could test the principle with more precision than what’s possible on Earth. Doing so, they might learn whether there’s a point where gravity doesn’t treat all matter equally, indicating Albert Einstein’s general theory of relativity contains a small error that could have big implications. The equivalence principle is part of the general theory of relativity, the backbone of modern gravitational physics, which describes how large objects, like planets and galaxies, behave. But a major mystery in modern physics is why the laws of gravity don’t seem to match up with the laws of quantum physics, which describe the behaviors of small objects, like atoms. The laws of both fields have proven to be correct again and again in their respective size realms, but physicists have been unable to unite them into a single description of the universe as a whole. Looking for features of gravity not explained by Einstein’s theory is one way to search for a means of unification. Better Sensors Scientists already have ideas to go beyond testing fundamental physics in microgravity inside the Cold Atom Lab. They have also proposed space-based experiments that could use a two-atom interferometer and quantum gases to measure gravity with high precision in order to learn about the nature of dark energy, the mysterious driver behind the accelerating expansion of the universe. What they learn could lead to the development of precision sensors for a wide range of applications. The quality of those sensors will depend on how well scientists understand the behavior of these atoms in microgravity, including how those atoms interact with each other. The introduction of tools to control the atoms, like magnetic fields, can make them repel each other like oil and water or stick together like honey. Understanding those interactions is a key goal of the Cold Atom Lab. More About the Mission A division of Caltech in Pasadena, JPL designed and built Cold Atom Lab, which is sponsored by the Biological and Physical Sciences (BPS) division of NASA’s Science Mission Directorate at the agency’s headquarters in Washington. BPS pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomena under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth. To learn more about Cold Atom Lab, go here: https://coldatomlab.jpl.nasa.gov/ News Media Contact Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e.cofield@jpl.nasa.gov 2023-170 Share Details Last Updated Nov 15, 2023 Related Terms Biological & Physical SciencesCold Atom Laboratory (CAL)Fundamental PhysicsInternational Space Station (ISS)ISS ResearchJet Propulsion LaboratoryPhysical Sciences Explore More 6 min read NASA Data Reveals Possible Reason Some Exoplanets Are Shrinking Article 51 mins ago 4 min read Trailblazing New Earth Satellite Put to Test in Preparation for Launch Article 1 day ago 3 min read Time Is Running Out to Add Your Name to NASA’s Europa Clipper Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
8 Min Read Satellite Data Can Help Limit the Dangers of Windblown Dust Dust storms present a growing threat to the health and safety of U.S. populations. A new model, powered by NASA and NOAA satellite data, provides important early warnings. Credits: Stock Footage Provided by Pond5/EnglerAerial Interstate 10, an artery that cuts through the rural drylands of southern New Mexico, is one of the country’s deadliest roadways. On one stretch of the highway, just north of a dry lakebed called Lordsburg Playa, fatal collisions occur with such regularity that officials often call it the “dust trap.” It’s a fitting name. Since 1967, at least 55 deaths in the area have been linked to dust storms. This stretch of Interstate 10 offers a concentrated example of the hazards that dust storms carry. But across the U.S. Great Plains, levels of windblown dust have increased steadily, by about 5% each year between 2000 and 2018, contributing to a decline in air quality and an increase in fatal collisions. “Dust storms are appearing with greater frequency for reasons that include extended drought conditions and urban sprawl, which disrupt the fragile biotic crust of the desert,” said John Haynes, program manager for NASA’s Health and Air Quality Applied Sciences Team. As reduced rainfall in arid regions and warmer weather become regular fixtures of the U.S. climate, experts expect the trend to continue. Dust storms can cause traffic accidents, negatively impact air quality, and even carry pathogens that cause diseases. /wp-content/plugins/nasa-blocks/assets/images/article-templates/anne-mcclain.jpg john Haynes Program manager for NASA Health and Air Quality Applied Sciences Team On the ground, dust storms form menacing palls that can swallow entire cities whole. From space, dust storms can be observed moving across continents and oceans, revealing their tremendous scale. It’s from this vantage point, high above the clouds, that NASA and NOAA have Earth-observing satellites that help scientists and first responders track windblown dust. Daniel Tong, professor of atmospheric chemistry and aerosols at George Mason University, working closely with NASA’s Health and Air Quality Applied Sciences Team, leads a NASA-funded effort to improve the country’s dust forecasting capabilities. Tong’s forecasting system relies on an algorithm called FENGSHA, which means “windblown dust” in Mandarin. By plugging real-time satellite data into a complex model of Earth’s atmosphere – one that accounts for site-specific variables like soil type, wind speed, and how Earth’s surface interacts with winds – the system churns out hourly forecasts that can predict dust storms up to three days in advance. On March 16, 2021, images acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite show large dust plumes sweeping across New Mexico, Texas, and Mexico. Credit: NASA Earth Observatory NASA/NOAA FENGSHA was initially developed using a dust observation method trained by NASA’s Aqua and Terra satellites. It’s these “space truths,” as Tong calls them, that make reliable forecasting possible. Comparing the model’s predictions with satellite imagery from real dust storms allows the team to identify shortcomings and improve accuracy. The most recent version of the model includes data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA-NOAA Suomi-NPP, NOAA-20, and NOAA-21 satellites, which observe each location on the planet at least twice a day. Currently, the dust monitoring system is available to all 122 of the National Weather Service’s regional forecasting offices. When a forecast calls for dust, local teams assess each case individually and decide whether to send out alerts. These could involve a warning to transit authorities or weather alerts sent directly to people’s phones. “Dust storms cause traffic accidents, negatively impact air quality, and even carry pathogens that cause diseases,” Haynes said. “Early warning systems empower individuals to take necessary actions, such as sheltering indoors or clearing roadways until the storm passes.” The Benefits of Early Warning On May 1, 2023, high winds in Illinois sent a dark cloud of dust creeping along Interstate 55, the state’s main throughway. Visibility was reduced to zero in a matter of minutes – leaving drivers with little time to react. The resulting collision involved 72 vehicles and killed eight people. Dozens more were hospitalized. In some hotspots for dust, officials are taking steps to minimize the damage. On Interstate 10 in New Mexico and Arizona, for example, drivers are now met with 100 miles of roadside warning signs that urge them to pull over when dust is detected. But Interstate 55, in Illinois, isn’t a hotspot. No one saw the storm coming. And as dust claims new territory, local ground-based solutions may not provide sufficient coverage. This is why satellite-based forecasting is essential, said Morgan Gorris, an Earth system scientist and geohealth expert at Los Alamos National Laboratory. “When we see a dust storm developing in radar returns or on dust sensors, people are already on the road, and it’s more difficult to make safety decisions.” Tong hopes to see forecasts used more frequently in commercial trucking “to prevent delays, traffic jams, and accidents,” he said. Notably, semi-trucks or tractor-trailers are involved in almost all fatal collisions involving dust. By rerouting or delaying truck drivers, the worst accidents could be avoided. Tong also promotes advanced forecasting as a way to reduce the frequency and intensity of dust storms. Storms like the one in Illinois – which rose from the overworked soil of the surrounding farmland – might be preventable. “If we know that there might be a dust storm tomorrow, farmers might stop tilling their land,” he said. Most fatal collisions are the result of smaller, quick-forming dust storms. But larger storms carry additional hazards. Billowing plumes of dust lofted from loose soil or desert floors by high-speed winds can reach thousands of feet into the air and travel hundreds of miles, affecting the respiratory health of populations across great distances. Valley fever —an infectious disease caused by a soil-dwelling fungus endemic to the arid and semi-arid climates of Texas, New Mexico, Arizona, and California — is also a threat. The fungus is harmless in the ground, but airborne spores can lead to infections that are sometimes fatal. The Centers for Disease Control and Prevention reported more than 200,000 infections of Valley fever since 1998. The current infection rate is about 10 times higher than that of the West Nile Virus, a vector-transmitted disease that often receives far more attention. An Image of Baja, CA, taken from the International Space Station depicts strong winds blowing dust into the Pacific Ocean. Valley fever cases have been discovered off the California coast among populations of bottle-nosed dolphins and other marine mammals, a sign that windblown dust could be carrying the fungus to non-endemic regions of the country. Credit: NASA “The areas where we see dust storms and the areas endemic to Valley fever are both expanding,” said Gorris, who also warns that the expanding reach of dust storms might unearth new airborne diseases. “We don’t yet know what other biology is in the soil that might infect us.” It’s not just what’s in the soil. Even when traces of chemical or biological toxins are absent, the soil itself can be a significant irritant. “People think that it’s a natural phenomenon carrying natural material, so it’s probably innocuous,” said Thomas E. Gill, professor of Earth and environmental sciences at the University of Texas at El Paso. But that’s not the case. Fine grains of dust can penetrate deep into lung tissue and are linked to an increase in respiratory illness and premature death. According to a global study conducted by atmospheric scientists at NASA’s Goddard Space Flight Center, 2.89 million premature deaths were connected to PM2.5 in 2019 – and 22% of those deaths were attributed to dust. Most at risk were children and those with pre-existing conditions like asthma. A New Way to See an Old Problem In the 1930s, during the Dust Bowl years, severe drought and poor land management sent deadly “black blizzards” sweeping across the landscape. From Texas to Nebraska, wind stripped the soil of vital nutrients, generating massive dust storms that blocked out the Sun for days at a time and reached as far east as New York City – where the sky was dark enough for streetlights to switch on in the middle of the day. Some scientists claim that the threat of a “dust bowl 2.0” is imminent. Urban sprawl, industrial-scale agriculture, wildfires, drought, and a warming climate can all strip the land of vegetation and remove moisture from the soil. But it can be difficult to draw a hard line from these individual sources to their cumulative effects. “We have to continue developing our understanding of the consequences on our communities and come up with better ways to protect citizens,” Tong said. The next generation of FENGSHA will soon be integrated into an atmospheric model developed by NASA called the Goddard Chemistry Aerosol Radiation and Transport (GOCART). Features of Earth’s surface like rocks, vegetation, and uneven soil all influence how much dust the wind can kick up. As a result, both the amount of dust in the air and the direction that windblown dust travels are often governed by what’s on the ground. GOCART’s ability to model these surface features will improve the accuracy of the forecasting system, said Barry Baker, an atmospheric physicist and lead of chemical modeling for the National Oceanic and Atmospheric Administration who led the research to operation transition of FENGSHA for NOAA’s oceanic and atmospheric research team. The ultimate goal, though, he added, is a geostationary satellite. Polar-orbiting satellites pass over each spot of the globe twice a day; a geostationary satellite could hover over the U.S. and monitor dust around the clock, tracking storms as they develop and grow. Each year, 182 million tons of dust escapes into the atmosphere from the Sahara. This image captured by the VIIRS instrument on the NOAA-20 satellite captures the tremendous scale of African dust. Credit: NASA Earth Observatory. Despite its hazards, windblown dust is a fundamental feature of the atmosphere and a critical ingredient for life on Earth. Dust from the Saharan Desert carries life-sustaining nutrients across the Atlantic Ocean to the Amazon rainforest, roughly 1,600 miles away. It also feeds the vast algal ecosystems that teem near the surface of Earth’s oceans, which in turn support a diverse menagerie of marine life. Even if we could rid the planet of dust, we would not want to. “There’s no way to contain the situation; you can’t just eliminate the desert,” Tong said. “But what we can do is increase awareness and try to help those who are impacted most.” Share Details Last Updated Nov 15, 2023 Related Terms Dust Storms Earth Natural Disasters Uncategorized Explore More 10 min read A Tale of Three Pollutants Freight, smoke, and ozone impact the health of both Chicago residents and communities downwind. A… Article 3 weeks ago 5 min read NASA Maps Air Quality in Ozone Hot Spot Scientists are flying an airborne campaign out of NASA’s Langley Research Center in Hampton, Virginia… Article 2 years ago View the full article
-
6 min read NASA Data Reveals Possible Reason Some Exoplanets Are Shrinking This artist’s concept shows what the sub-Neptune exoplanet TOI-421 b might look like. In a new study, scientists have found new evidence suggesting how these types of planets can lose their atmospheres. NASA, ESA, CSA, and D. Player (STScI) A new study could explain the ‘missing’ exoplanets between super-Earths and sub-Neptunes. Some exoplanets seem to be losing their atmospheres and shrinking. In a new study using NASA’s retired Kepler Space Telescope, astronomers find evidence of a possible cause: The cores of these planets are pushing away their atmospheres from the inside out. Exoplanets (planets outside our solar system) come in a variety of sizes, from small, rocky planets to colossal gas giants. In the middle lie rocky super-Earths and larger sub-Neptunes with puffy atmospheres. But there’s a conspicuous absence – a “size gap” – of planets that fall between 1.5 to 2 times the size of Earth (or in between super-Earths and sub-Neptunes) that scientists have been working to better understand. This video explains the differences between the main types of exoplanets, or planets outside our solar system. Credit: NASA/JPL-Caltech “Scientists have now confirmed the detection of over 5,000 exoplanets, but there are fewer planets than expected with a diameter between 1.5 and 2 times that of Earth,” said Caltech/IPAC research scientist Jessie Christiansen, science lead for the NASA Exoplanet Archive and lead author of the new study in The Astronomical Journal. “Exoplanet scientists have enough data now to say that this gap is not a fluke. There’s something going on that impedes planets from reaching and/or staying at this size.” Researchers think that this gap could be explained by certain sub-Neptunes losing their atmospheres over time. This loss would happen if the planet doesn’t have enough mass, and therefore gravitational force, to hold onto its atmosphere. So sub-Neptunes that aren’t massive enough would shrink to about the size of super-Earths, leaving the gap between the two sizes of planets. But exactly how these planets are losing their atmospheres has remained a mystery. Scientists have settled on two likely mechanisms: One is called core-powered mass loss; and the other, photoevaporation. The study has uncovered new evidence supporting the first. This infographic details the main types of exoplanets. Scientists have been working to better understand the “size gap,” or conspicuous absence, of planets that fall between super-Earths and sub-Neptunes.NASA/JPL-Caltech Solving the Mystery Core-powered mass loss occurs when radiation emitted from a planet’s hot core pushes the atmosphere away from the planet over time, “and that radiation is pushing on the atmosphere from underneath,” Christiansen said. The other leading explanation for the planetary gap, photoevaporation, happens when a planet’s atmosphere is essentially blown away by the hot radiation of its host star. In this scenario, “the high-energy radiation from the star is acting like a hair dryer on an ice cube,” she said. While photoevaporation is thought to occur during a planet’s first 100 million years, core-powered mass loss is thought to happen much later – closer to 1 billion years into a planet’s life. But with either mechanism, “if you don’t have enough mass, you can’t hold on, and you lose your atmosphere and shrink down,” Christiansen added. For this study, Chistiansen and her co-authors used data from NASA’s K2, an extended mission of the Kepler Space Telescope, to look at the star clusters Praesepe and Hyades, which are 600 million to 800 million years old. Because planets are generally thought to be the same age as their host star, the sub-Neptunes in this system would be past the age where photoevaporation could have taken place but not old enough to have experienced core-powered mass loss. So if the team saw that there were a lot of sub-Neptunes in Praesepe and Hyades (as compared to older stars in other clusters), they could conclude that photoevaporation hadn’t taken place. In that case, core-powered mass loss would be the most likely explanation of what happens to less massive sub-Neptunes over time. In observing Praesepe and Hyades, the researchers found that nearly 100% of stars in these clusters still have a sub-Neptune planet or planet candidate in their orbit. Judging from the size of these planets, the researchers think they have retained their atmospheres. This differs from the other, older stars observed by K2 (stars more than 800 million years old), only 25% of which have orbiting sub-Neptunes. The older age of these stars is closer to the timeframe in which core-powered mass loss is thought to take place. From these observations, the team concluded that photoevaporation could not have taken place in Praesepe and Hyades. If it had, it would have occurred hundreds of millions of years earlier, and these planets would have little, if any, atmosphere left. This leaves core-powered mass loss as the leading explanation for what likely happens to the atmospheres of these planets. Christiansen’s team spent more than five years building the planet candidate catalog necessary for the study. But the research is far from complete, she said, and it is possible that the current understanding of photoevaporation and/or core-powered mass loss could evolve. The findings will likely be put to the test by future studies before anyone can declare the mystery of this planetary gap solved once and for all. This study was conducted using the NASA Exoplanet Archive, which is operated by Caltech in Pasadena under contract with NASA as part of the Exoplanet Exploration Program, which is located at NASA’s Jet Propulsion Laboratory in Southern California. JPL is a division of Caltech. More About the Mission On Oct. 30, 2018, Kepler ran out of fuel and ended its mission after nine years, during which it discovered more than 2,600 confirmed planets around other stars along with thousands of additional candidates astronomers are working to confirm. NASA’s Ames Research Center in Silicon Valley, California, manages the Kepler and K2 missions for NASA’s Science Mission Directorate. JPL managed Kepler mission development. Ball Aerospace & Technologies Corporation operated the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. For more information about the Kepler and K2 missions, visit: https://science.nasa.gov/mission/kepler News Media Contacts Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e.cofield@jpl.nasa.gov Karen Fox / Alise Fisher NASA Headquarters, Washington 202-358-1257 / 202-358-2546 karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov Written by Chelsea Gohd 2023-169 Share Details Last Updated Nov 15, 2023 Related Terms Exoplanet ScienceExoplanetsJet Propulsion LaboratoryKepler / K2Neptune-Like ExoplanetsSuper-Earth Exoplanets Explore More 5 min read Webb Follows Neon Signs Toward New Thinking on Planet Formation Article 2 hours ago 4 min read Trailblazing New Earth Satellite Put to Test in Preparation for Launch Article 24 hours ago 3 min read Time Is Running Out to Add Your Name to NASA’s Europa Clipper Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article