Members Can Post Anonymously On This Site
-
Posts
4,764 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
NASA Astronaut Mary L. Cleave. April 8, 1985NASA Retired NASA astronaut Mary Cleave, a veteran of two NASA spaceflights, died Nov. 27. She was 76. A scientist with training in civil and environmental engineering, as well as biological sciences and microbial ecology, Cleave was the first woman to serve as an associate administrator for NASA’s Science Mission Directorate. Born in Southampton, New York, Cleave received a Bachelor of Science degree in biological sciences from Colorado State University, Fort Collins, in 1969, and Master of Science in microbial ecology and a doctorate in civil and environmental engineering, both from Utah State University, Logan, in 1975 and 1979, respectively. “I’m sad we’ve lost trail blazer Dr. Mary Cleave, shuttle astronaut, veteran of two spaceflights, and first woman to lead the Science Mission Directorate as associate administrator,” said NASA Associate Administrator Bob Cabana. “Mary was a force of nature with a passion for science, exploration, and caring for our home planet. She will be missed.” Cleave was selected as an astronaut in May 1980. Her technical assignments included flight software verification in the SAIL (Shuttle Avionics Integration Laboratory), spacecraft communicator on five space shuttle flights, and malfunctions procedures book and crew equipment design. Cleave launched on her first mission, STS-61B, aboard space shuttle Atlantis on Nov. 26,1985. During the flight, the crew deployed communications satellites, conducted two six-hour spacewalks to demonstrate space station construction techniques, operated the Continuous Flow Electrophoresis experiment for McDonnell Douglas and a Getaway Special container for Telesat and tested the Orbiter Experiments Digital Autopilot. Cleave’s second mission, STS-30, which also was on Atlantis, launched May 4, 1989. It was a four-day flight during which the crew successfully deployed the Magellan Venus exploration spacecraft, the first planetary probe to be deployed from a space shuttle. Magellan arrived at Venus in August 1990 and mapped more than 95% of the surface. In addition, the crew also worked on secondary payloads involving indium crystal growth, electrical storms, and Earth observation studies. Cleave transferred from NASA’s Johnson Space Center in Houston to the agency’s Goddard Space Flight Center in Greenbelt, Maryland in May 1991. There, she worked in the Laboratory for Hydrospheric Processes as the project manager for SeaWiFS (Sea-viewing, Wide-Field-of-view-Sensor), an ocean color sensor which monitored vegetation globally. In March 2000, she went to serve as deputy associate administrator for advanced planning in the Office of Earth Science at NASA’s Headquarters in Washington. From August 2005 to February 2007, Cleave was the associate administrator for NASA’s Science Mission Directorate where she guided an array of research and scientific exploration programs for planet Earth, space weather, the solar system, and the universe. She also oversaw an assortment of grant-based research programs and a diverse constellation of spacecraft, from small, principal investigator-led missions to large flagship missions. Cleave’s awards included: two NASA Space Flight medals; two NASA Exceptional Service medals; an American Astronautical Society Flight Achievement Award; a NASA Exceptional Achievement Medal; and NASA Engineer of the Year. Cleave retired from NASA in February 2007. https://go.nasa.gov/3uDCykl -end- Cheryl Warner Headquarters, Washington 202-358-1600 cheryl.m.warner@nasa.gov Courtney Beasley Johnson Space Center, Houston 281-483-5111 courtney.m.beasley@nasa.gov View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA conducted the third RS-25 engine hot fire in a critical 12-test certification series Nov. 29, demonstrating a key capability necessary for flight of the SLS (Space Launch System) rocket during Artemis missions to the Moon and beyond. NASA is conducting the series of tests to certify new manufacturing processes for producing RS-25 engines for future deep space missions, beginning with Artemis V. Aerojet Rocketdyne, an L3Harris Technologies Company and lead engines contractor for the SLS rocket, is incorporating new manufacturing techniques and processes, such as 3D printing, in production of new RS-25 engines. Crews gimbaled, or pivoted, the RS-25 engine around a central point during the almost 11-minute (650 seconds) hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The gimbaling technique is used to control and stabilize SLS as it reaches orbit. During the Nov. 29 test, operators also pushed the engine beyond any parameters it might experience during flight to provide a margin of operational safety. The 650-second test exceeded the 500 seconds RS-25 engines must operate to help power SLS to space. The RS-25 engine also was fired to 113% power level, exceeding the 111% level needed to lift SLS to orbit. The ongoing series will stretch into 2024 as NASA continues its mission to return humans to the lunar surface to establish a long-term presence for scientific discovery and to prepare for human missions to Mars. Four RS-25 engines fire simultaneously to generate a combined 1.6 million pounds of thrust at launch and 2 million pounds of thrust during ascent to help power each SLS flight. NASA and Aerojet Rocketdyne modified 16 holdover space shuttle main engines, all proven flightworthy at NASA Stennis, for Artemis missions I through IV. Every new RS-25 engine that will help power SLS also will be tested at NASA Stennis. RS-25 tests at the site are conducted by a combined team of NASA, Aerojet Rocketdyne, and Syncom Space Services operators. Syncom Space Services is the prime contractor for Stennis facilities and operations. Social Media Stay connected with the mission on social media, and let people know you’re following it on X, Facebook, and Instagram using the hashtags #Artemis, #NASAStennis, #SLS. Follow and tag these accounts: Facebook logo @NASAStennis @NASAStennis Instagram logo @NASAStennis Share Details Last Updated Nov 29, 2023 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 3 min read NASA to Highlight Inclusion During Bayou Classic Event Article 1 week ago 9 min read Lagniappe Article 2 weeks ago 2 min read NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series Article 1 month ago Keep Exploring Discover More Topics from NASA Stennis Doing Business with NASA Stennis About NASA Stennis Visit NASA Stennis NASA Stennis Media Resources View the full article
-
2 min read NASA’s Hubble Space Telescope Pauses Science Due to Gyro Issue Hubble orbiting more than 300 miles above Earth as seen from the space shuttle. NASA NASA is working to resume science operations of the agency’s Hubble Space Telescope after it entered safe mode Nov. 23 due to an ongoing gyroscope (gyro) issue. Hubble’s instruments are stable, and the telescope is in good health. The telescope automatically entered safe mode when one of its three gyroscopes gave faulty readings. The gyros measure the telescope’s turn rates and are part of the system that determines which direction the telescope is pointed. While in safe mode, science operations are suspended, and the telescope waits for new directions from the ground. Hubble first went into safe mode Nov. 19. Although the operations team successfully recovered the spacecraft to resume observations the following day, the unstable gyro caused the observatory to suspend science operations once again Nov. 21. Following a successful recovery, Hubble entered safe mode again Nov. 23. The team is now running tests to characterize the issue and develop solutions. If necessary, the spacecraft can be re-configured to operate with only one gyro. The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing fluctuations. Hubble uses three gyros to maximize efficiency, but could continue to make science observations with only one gyro if required. NASA anticipates Hubble will continue making groundbreaking discoveries, working with other observatories, such as the agency’s James Webb Space Telescope, throughout this decade and possibly into the next. Launched in 1990, Hubble has been observing the universe for more than 33 years. Read more about some of Hubble’s greatest scientific discoveries. Media Contacts: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Alise Fisher NASA Headquarters, Washington, D.C. alise.m.fisher@nasa.gov Share Details Last Updated Nov 29, 2023 Editor Andrea Gianopoulos Contact Location Goddard Space Flight Center Related Terms AstrophysicsAstrophysics DivisionGoddard Space Flight CenterHubble Space TelescopeMissionsScience Mission Directorate Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Stars Stories View the full article
-
3 min read Announcing the New Heliophysics Division Director November 29, 2023 NASA has selected Dr. Joseph Westlake to fill the position of Heliophysics Division Director. Joe will join the Science Mission Directorate and assume his new role on Jan. 16, 2024. I am pleased to have Joe take on the role as the Heliophysics Division Director. Joe has a strong background in heliophysics and planetary science and has already made significant contributions to our efforts by supporting several NASA missions including the Magnetospheric Multiscale mission, the Van Allen Probes, Parker Solar Probe, the Interstellar Boundary Explorer mission, the Juno mission, Cassini and the European Space Agency’s Juice mission to Ganymede. Joe brings with him more than 18 years of scientific, technical, management, and programmatic experience in heliophysics, astrophysics, and planetary science. He is coming to us from the Johns Hopkins University Applied Physics Laboratory (JHUAPL) where he works as a researcher and project scientist for the Interstellar Mapping and Acceleration Probe mission and principal investigator for the Plasma Instrument for Magnetic Sounding, or PIMS, instrument destined for Jupiter’s moon, Europa, onboard the Europa Clipper mission. “I’m very excited to join NASA as the Division Director for Heliophysics,” said Westlake. “I look forward to diving in and working with the vibrant community of scientists and engineers that are uncovering the mysteries of our star.” In 2024, the National Academies will release a new Decadal Survey that lays out a strategy to advance scientific understanding of the Sun, Sun-Earth connections and the origins of space weather, the Sun’s interactions with other bodies in the solar system, the interplanetary medium, and the interstellar medium; Joe’s experience across several scientific disciplines, as well as his leadership and technical experience, uniquely qualifies him for this critical leadership position in the Science Mission Directorate as we embark on an exciting new decade of solar and space physics. I extend my sincere appreciation to Peg Luce who led the Division for nearly a year while the director position was vacant; she has done a stellar job. With nearly 10 years as the deputy director, Peg’s exceptional efforts have brought significant strides within Science Mission Directorate and the broader scientific community. I am thrilled she will continue serving as the Heliophysics Division Deputy Director and helping Joe usher the division into this new era. “The Sun touches everything and the science of heliophysics is helping us unlock its mysteries,” said Peg Luce, deputy division director, Heliophysics Division at NASA Headquarters in Washington. “Joe’s unique experience and insight will help guide the division as we usher in solar max, launch a host of new heliophysics missions, and flow through the Heliophysics Big Year.” Please join me in welcoming Joe to Headquarters! View the full article
-
NASA / Jasmin Moghbeli City lights stretch across the United States like a string of holiday lights in this image taken from the International Space Station on Nov. 10, 2023. At far left, the lights of Chicago, Illinois, are outlined by Lake Michigan. At far right, the Dallas/Fort Worth metropolitan area shines through the clouds while the sun’s first rays start to light up Earth’s atmosphere (at top). Since the space station became operational in November 2000, crew members have produced hundreds of thousands of images of the land, oceans, and atmosphere of Earth. Their photographs of Earth record how the planet changes over time due to human activity and natural events. This allows scientists to monitor disasters and direct response on the ground and study phenomena, from the movement of glaciers to urban wildlife. Explore more images of cities at night taken by astronauts on the space station. Image Credit: NASA/Jasmin Moghbeli View the full article
-
A view of the Earth with Aurora Borealis and an orbital sunrise taken by the Expedition 35 crew aboard the International Space Station.NASA Two small businesses are benefitting from NASA’s expertise as they develop heat shield technologies, cargo delivery systems, and new protective materials for spacecraft and space stations in the growing commercial industry of low Earth orbit operations. The two American companies – Canopy Aerospace Inc. of Littleton, Colorado and Outpost Technologies Corp. of Santa Monica, California – recently announced progress in the development of a new heat shield manufacturing capability and a new cargo transportation system for potential use on the International Space Station and future commercial space stations. “These projects are a great example of how NASA is supporting a growing commercial space industry,” said Angela Hart, manager of NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “There is an entire ecosystem emerging where companies are working together and innovating to meet NASA’s needs and also positioning themselves to reach new customers, so that NASA can be just one of many customers in low Earth orbit.” The companies work with NASA’s Commercial Low Earth Orbit Development Program through SBIR (Small Business Innovation Research) contracts funded by NASA’s Space Technology Mission Directorate. Both contracts are part of an innovative pilot program known as SBIR Ignite, focused on small businesses with commercially viable technology ideas aligned with NASA mission needs that can help support the expanding aerospace ecosystem. Improving heat shields, saving time A piece of Thermal Protection System (TPS) material undergoes high temperature testing at Canopy Aerospace’s facility in Littleton, Colorado. Canopy Aerospace Canopy Aerospace Inc., a venture-funded startup, is collaborating with NASA to develop a new manufacturing system that can improve production of ceramic heat shields – otherwise referred to as thermal protection systems (TPS). In the vacuum of space, spacecraft and space station hardware must withstand extreme cold and heat environments. Upon re-entry to Earth’s atmosphere, these craft in low Earth orbits are exposed to temperatures as high as 3,000 degrees Fahrenheit. To protect spacecraft and space stations during re-entry, engineered TPS are required. NASA developed the first TPS types under the Space Shuttle Program, and similar technologies are still used today to protect the Orion spacecraft as it returns to Earth from space. Canopy’s RHAM (Reusable Heatshields Additive Manufacturing) platform builds on the shuttle program’s heritage methods, but utilizes novel materials, new binding, and heat treatment processes to create a new type of ceramic heat shield and produce it at scale in the commercial sector. As more companies enter the commercial space market, improved heat shield manufacturing methods are critical to driving down launch costs, shortening lead times, and enabling new mission capabilities for future spacecraft. Transporting cargo, saving space A concept infographic depicting the Cargo Ferry cargo transportation vehicle’s launch and return process. Outpost Technologies Outpost Technologies Corp. is collaborating with NASA to develop a new cargo transport vehicle, named Cargo Ferry. The reusable vehicle consists of a payload container for cargo, solar array wings to power the vehicle, a deployable heat shield to protect it on re-entry to Earth’s atmosphere, and a robotic paraglider system to deliver it safely to the ground with “landing pad” precision. Cargo Ferry could transport non-human cargo including science and hardware from space stations back down to Earth more frequently, freeing up vital research and stowage space on board the station. Commercial space stations are expected to be smaller than the International Space Station, thus systems like Cargo Ferry could offer a more versatile and adaptable solution for cargo transportation. NASA is supporting the design and development of multiple commercial space stations with three funded partners, as well as several other partners with unfunded agreements through NASA’s Collaborations for Commercial Space Capabilities-2 project. NASA’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions. For more information about NASA’s commercial space strategy, visit: https://www.nasa.gov/humans-in-space/commercial-space/ Joshua Finch Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov Rebecca Turkington Johnson Space Center, Houston 281-483-5111 rebecca.turkington@nasa.gov Keep Exploring Discover More Topics Low Earth Orbit Economy Commercial Space Humans In Space Space Station Research and Technology View the full article
-
5 min read Ham Radio in Space: Engaging with Students Worldwide for 40 Years In May 2018, a student at Mill Springs Academy in Alpharetta, Georgia, Andrew Maichle, talked to NASA astronaut Scott Tingle on the International Space Station via amateur or ham radio. The experience profoundly affected Maichle, who went on to study electrical engineering at Clemson University in South Carolina. “It was so cool to see in real time the utmost levels of what people in science are able to accomplish, and to talk to and interact with someone at that level,” Maichle recalls. “The space station is an incredible work of engineering and to interact with someone in space was just mind-boggling. I was extraordinarily honored and very lucky to have had the opportunity.” 40 Years of Contact As of November 2023, students have been talking to astronauts in space for 40 years. Crew members on the space shuttle Columbia first used an amateur radio to communicate with people on Earth in 1983. That program, the Shuttle Amateur Radio Experiment (SAREX), ended in 1999. In October 2000, amateur radio equipment launched to the space station along with its first crew members, who deployed it on Nov. 13, 2000. ISS Ham Radio, also known as Amateur Radio on the International Space Station (ARISS), has operated continuously since then. Each year, the program hosts about a hundred contacts. It has now directly connected over 100 crew members with more than 250,000 participants from 49 U.S. states, 63 countries, and every continent. These experiences encourage interest in science, technology, engineering, and mathematics (STEM) education and help inspire the next generation. “The ham radio program represents an amazing opportunity to engage with kids all over the world,” said NASA astronaut Kjell Lindgren, who participated on each of his missions. “It provides the opportunity for educators and ham operators to encourage and inspire their students with STEM topics culminating in a real-time conversation with astronauts living and working on the space station.” Before a scheduled contact, students study related topics. They have about nine minutes to ask questions, often discussing career choices and scientific activities aboard the orbiting laboratory. NASA astronaut Kjell Lindgren talks on the space station’s ham radio set. NASA Inspiration Beyond Education These contacts go beyond inspiring students – sometimes they encourage entire communities. Students at Canterbury School in Fort Myers, Florida, spoke with crew members on Oct. 24, 2022. Just a few weeks earlier, Hurricane Ian displaced 30 percent of the school’s population. “Before the hurricane, our had students spent months building their own satellite tracking antenna,” said Christiana Deeter, science department head at the school. “After the storm, so many people came forward to make sure that we had what we needed. It was a great opportunity for our kids to stop looking around and look up.” The school spoke with NASA astronaut Josh Cassada. “He has kids of his own and was just as excited as our kids were,” said Deeter. “I asked him if he had a message for the families and he talked about coming together as a community and not giving up hope. Our school was on a high the rest of the year.” Canterbury School student Isaac Deeter asks a question during the school’s ham radio contact while student Samantha Pezzi waits her turn. Canterbury School From an Astronaut’s Perspective Ham radio also contributes to astronaut well-being. In addition to scheduled contacts, crew members often crank up the radio during free time to catch calls from around the world. Lindgren spoke to amateur radio operators or “hams” on all seven continents. His favorite memory is connecting with eight-year-old Isabella Payne and her father Matthew Payne in the United Kingdom. “Hearing her young, accented voice cut through the static – I was very impressed to hear her calling the space station,” said Lindgren. “It made my day!” Lindgren’s contact with Payne was on Aug. 2, 2022. On Aug.18, 2023, Payne’s school, St Peter-In-Thanet CE Primary, conducted a scheduled contact with NASA astronaut Jasmin Moghbeli. UK student Isabella Payne, who contacted NASA astronaut Kjell Lindgren via ham radio, is shown on Lindgren’s device floating in the space station.NASA The program also fosters international cooperation. Crew members are trained by multi-national teams. Italian teams designed and built antennas, while German teams built repeater stations that improve ham contacts. Amateur radio even serves as an emergency backup communications network for the space station. How Schools Can Get Involved ARISS is a partnership between NASA, amateur radio organizations, and international space agencies. While there is no cost to a host location for the contact, there may be some equipment-related costs. Scheduling is subject to mission operations and may change, so hosts need to be flexible. The astronaut and the ham radio operator, who is the technical point of contact on the ground, must be licensed. While students do not have to be licensed, many choose to obtain their license after the experience. Information about applying is available at www.ariss.org or can be requested from ariss@arrl.org. The Next 40 Years “I hope the program continues for a long time,” said Maichle. “It is so important for kids trying to figure out what you want to accomplish in life. It is cool to have that memory that sticks with you. It inspires so many people.” And as those involved celebrate 40 years of ham radio in space, some are dreaming even bigger. “I would love for there to be a continued amateur radio presence in human spaceflight,” said Lindgren. “I expect we’ll have a radio on the space station for as long as it operates. Then can we put a ham radio station on the Moon? Now that would be cool.” Melissa Gaskill International Space Station Program Research Office Johnson Space Center Search this database of scientific experiments to learn more about those mentioned above. Space Station Research Explorer. Facebook logo @ISS @ISS_Research@Space_Station Instagram logo @ISS Linkedin logo @NASA Keep Exploring Discover More Topics From NASA Latest News from Space Station Research Education and Outreach ISS National Laboratory For Educators View the full article
-
1 min read Astrobotic’s Peregrine Mission One Download Press Kit (PDF) Keep Exploring Discover More Topics From NASA Commercial Lunar Payload Services Artemis Commercial Space Humans In Space View the full article
-
NASA/Charles Beason Artemis II NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen signed the Orion stage adapter for the SLS (Space Launch System) rocket at NASA’s Marshall Space Flight Center in Huntsville, Alabama, Nov. 27. The hardware is the topmost portion of the SLS rocket that they will launch atop during Artemis II when the four astronauts inside NASA’s Orion spacecraft will venture around the Moon. From left, Artemis II astronauts Jeremy Hansen, Christina Koch, Victor Glover, and Reid Wiseman sign the SLS Orion stage adapter for the Artemis II mission during their visit to NASA’s Marshall Space Flight Center in Huntsville, Alabama, Nov. 27. Image credits: NASA/Charles Beason The Orion stage adapter is a small ring structure that connects NASA’s Orion spacecraft to the SLS rocket’s interim cryogenic propulsion stage and fully manufactured at Marshall. At five feet tall and weighing 1,800 pounds, the adapter is the smallest major element of the SLS rocket. During Artemis II, the adapter’s diaphragm will serve as a barrier to prevent gases created during launch from entering the spacecraft. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. Through Artemis, NASA will explore more of the lunar surface than ever before and prepare for the next giant leap: sending astronauts to Mars. For more on NASA SLS visit: https://www.nasa.gov/sls News Media Contact Corinne Beckinger Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 corinne.m.beckinger@nasa.gov View the full article
-
NASA A model of the Mariner-C spacecraft seems to float in the darkness of space in this photo from a June 1964 Conference on New Technology at NASA’s Glenn Research Center in Cleveland. Mariner-C and Mariner-D were identical spacecraft designed by NASA’s Jet Propulsion Laboratory to fly by Mars and photograph the Martian surface. Mariner-C was launched on Nov. 4, 1964, but the mission ended unsuccessfully two days later. Mariner-D, or Mariner 4, launched on Nov. 28, 1964, and became the first successful mission to Mars, as well as the first mission to photograph a planet from space. Build your own models of spacecraft currently exploring space. Image Credit: NASA View the full article
-
On the left, NASA Ames engineer Evan Kawamura on his first day of sixth grade with teacher Kristen Stoker of Hanalani Schools. On the right, Kawamura reunited with Mrs. Stoker when speaking to her students about his work at NASA. The field of aerial vehicle autonomy focuses on self-reliance, building the flight equivalent of puppets without puppeteers. Behind the scenes, however, is a rich network of people and systems that work together to develop frameworks, test new technologies, and inspire a pipeline of engineers to create the breakthroughs of the future. Encouraging kids to dream big and pursue their STEM passions is especially important to Evan Kawamura, a guidance, navigation and control engineer in the Intelligent Systems Division at NASA’s Ames Research Center in California’s Silicon Valley. Kawamura takes mentorship and STEM outreach as seriously as his work in unmanned aerial vehicles (UAVs) and Advanced Air Mobility (AAM). He extends his duty as an engineer from his office to classrooms across Oahu, Hawaii, where he lives. He has led drone-building workshops, presented about his journey to NASA, and connected with hundreds of students and educators. Most recently, Kawamura returned to his alma mater and reunited with his sixth-grade teacher, Mrs. Kristen Stoker, to talk to her students about his work at NASA. “Since my family, teachers, advisors, mentors, and professors provided me with wonderful opportunities and experiences that inspired and prepared me for engineering, I feel that it’s crucial to continue to inspire the next generation,” he said. “If we do not protect, inspire, and educate our children, then the future is dark and uncertain.” Evan Kawamura, computer guidance, navigation, and control engineer, with two hexacopters in the NASA Unmanned Aircraft System Autonomy Research Complex.Credit: NASA/Dominic Hart Kawamura writes code that helps aerial vehicles launch, fly, and land without intervention from human operators. One of his early proud moments was in the summer of 2019 when, with the help of his team lead and mentor, Corey Ippolito of NASA Ames’ Airborne Science Program, he successfully programmed a six-propellered hexacopter to launch from and return to a defined point in space without a human driver. “It was very rewarding and fulfilling to see our efforts pay off both in simulation and in a real world flight test,” Kawamura said. “The work also became the baseline autonomy code for others on our team and my graduate school research too, so I felt a lot of pressure during development but a huge relief when it worked.” Kawamura comes from a long line of builders and engineers, back to his boatbuilding great-great- grandfather who moved to Hawaii from Japan in 1909 with his nine-year-old son. Evan’s father, a software engineer, bought him science and engineering books, and entertained endless questions about how things work. His grandfather, a contractor who built the house Evan’s dad grew up in, was a fan of origami and spent countless hours teaching Evan to fold boats and planes. His family inspired in him a fascination for the ways different materials could fit together like trains and LEGO to make something new, but sometimes he didn’t get to play with his creations. “I got excited to create a battle with all the paper planes and boats my grandpa and I made,” Kawamura said. “But he fell asleep before we could start playing.” The cool and strange thing is that I see the aloha spirit at NASA Ames, which was one of the main reasons that made me want to work at NASA. Evan kawamura NASA Engineer Kawamura joined Ames as an intern while getting his PhD at University of Hawaii at Manoa. He completed his first internship in 2018, returned in the spring of 2019, and accepted a NASA Pathways internship later that summer. In 2021, Kawamura converted to a remote full-time employee at Ames. All along the way, he relied on the guidance and support of his family, mentors, and teammates. That experience drives him to pay forward the inspiration and encouragement that helped him get where he is today. “Growing up in Hawaii fosters a ‘togetherness’ mindset that is very inclusive and family-oriented,” he said. “Helping others, sharing burdens, and having each other’s backs opens channels of communication to build friendships and foster collaboration, which is what aloha is all about. The cool and strange thing is that I see the aloha spirit at NASA Ames, which was one of the main reasons that made me want to work at NASA.” View the full article
-
(Oct. 4, 2023) — The Roscosmos Progress 84 cargo craft is pictured docked to the International Space Station’s Poisk module.NASA NASA will provide live launch and docking coverage of the Roscosmos Progress 86 cargo spacecraft carrying about three tons of food, fuel, and supplies for the Expedition 70 crew aboard the International Space Station. The unpiloted spacecraft is scheduled to launch at 4:25 a.m. EST on Friday, Dec. 1 (2:25 p.m. Baikonur time), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan. NASA coverage will begin at 4 a.m. on the NASA+ streaming service via the web or the NASA app. Coverage also will air live on NASA Television, YouTube, and on the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media. The Progress spacecraft will be placed into a two-day, 34-orbit journey to the station, leading to an automatic docking to the Poisk module at 6:14 a.m. Sunday, Dec. 3. Coverage of rendezvous and docking will begin at 5:30 a.m. on NASA Television and the agency’s website. The spacecraft will remain at the orbiting laboratory for approximately six months, then undock for a destructive but safe re-entry into Earth’s atmosphere to dispose of trash loaded by the crew. The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 23 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which humans have learned to live and work in space for extended periods of time. The space station is a springboard for the development of commercial destinations in space and a low Earth orbit economy, as well as NASA’s next great leaps in exploration, including Artemis missions to the Moon and eventually Mars. Get breaking news, images, and features from the space station on Instagram, Facebook, and X. Learn more about the space station, its research, and crew, at: https://www.nasa.gov/station -end- Julian Coltre Headquarters, Washington 202-358-1100 julian.n.coltre@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Nov 28, 2023 Related TermsMissionsInternational Space Station (ISS) View the full article
-
4 min read NASA Orbiter Snaps Stunning Views of Mars Horizon This unusual view of the horizon of Mars was captured by NASA’s Odyssey orbiter using its THEMIS camera, in an operation that took engineers three months to plan. It’s taken from about 250 miles above the Martian surface – about the same altitude at which the International Space Station orbits Earth.NASA/JPL-Caltech/ASU The Odyssey orbiter captured clouds and dust in the Red Planet’s skies, along with one of its two tiny moons. Astronauts often react with awe when they see the curvature of the Earth below the International Space Station. Now Mars scientists are getting a taste of what that’s like, thanks to NASA’s 2001 Mars Odyssey orbiter, which completed its 22nd year at the Red Planet last month. The spacecraft captured a series of panoramic images that showcases the curving Martian landscape below gauzy layers of clouds and dust. Stitched end to end, the 10 images offer not only a fresh, and stunning, view of Mars, but also one that will help scientists gain new insights into the Martian atmosphere. The spacecraft took the images in May from an altitude of about 250 miles (400 kilometers) – the same altitude at which the space station flies above Earth. Laura Kerber, deputy project scientist for NASA’s Mars Odyssey orbiter, explains how and why the spacecraft captured a view of the Red Planet similar to the International Space Station’s view of Earth. Credit: NASA/JPL-Caltech “If there were astronauts in orbit over Mars, this is the perspective they would have,” said Jonathon Hill of Arizona State University, operations lead for Odyssey’s camera, called the Thermal Emission Imaging System, or THEMIS. “No Mars spacecraft has ever had this kind of view before.” How It Was Done The reason why the view is so uncommon is because of the challenges involved in creating it. Engineers at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission, and Lockheed Martin Space, which built Odyssey and co-leads day-to-day operations, spent three months planning the THEMIS observations. The infrared camera’s sensitivity to warmth enables it to map ice, rock, sand, and dust, along with temperature changes, on the planet’s surface. It can also measure how much water ice or dust is in the atmosphere, but only in a narrow column directly below the spacecraft. That’s because THEMIS is fixed in place on the orbiter; it usually points straight down. The mission wanted a more expansive view of the atmosphere. Seeing where those layers of water-ice clouds and dust are in relation to each other – whether there’s one layer or several stacked on top of each other – helps scientists improve models of Mars’ atmosphere. “I think of it as viewing a cross-section, a slice through the atmosphere,” said Jeffrey Plaut, Odyssey’s project scientist at JPL. “There’s a lot of detail you can’t see from above, which is how THEMIS normally makes these measurements. NASA’s 2001 Mars Odyssey orbiter used its THEMIS camera to capture this series of images of Phobos, one of the Red Planet’s two tiny moons.NASA/JPL-Caltech Because THEMIS can’t pivot, adjusting the angle of the camera requires adjusting the position of the whole spacecraft. In this case, the team needed to rotate the orbiter almost 90 degrees while making sure the Sun would still shine on the spacecraft’s solar panels but not on sensitive equipment that could overheat. The easiest orientation turned out to be one where the orbiter’s antenna pointed away from Earth. That meant the team was out of communication with Odyssey for several hours until the operation was complete. The Odyssey mission hopes to take similar images in the future, capturing the Martian atmosphere across multiple seasons. Over the Moon To make the most of their effort, the mission also captured imagery of Mars’ little moon Phobos. This marks the seventh time in 22 years that the orbiter has pointed THEMIS at the moon in order to measure temperature variations across its surface. “We got a different angle and lighting conditions of Phobos than we’re used to,” Hill said. “That makes it a unique part of our Phobos dataset.” The new imagery provides insight into the composition and physical properties of the moon. Further study could help settle a debate over whether Phobos, which measures about 16 miles (25 kilometers) across, is a captured asteroid or an ancient chunk of Mars that was blasted off the surface by an impact. NASA is participating with JAXA (Japan Aerospace Exploration Agency) in a sample return mission to Phobos and its sister moon, Deimos, called Mars Moon eXplorer, or MMX. Odyssey’s Phobos imagery will be helpful to scientists working on both Odyssey as well as MMX. More About the Mission THEMIS was built and is operated by Arizona State University in Tempe. JPL is a division of Caltech in Pasadena. For more information about Odyssey: https://mars.nasa.gov/odyssey/ News Media Contacts Andrew Good Jet Propulsion Laboratory, Pasadena, Calif. 818-393-2433 andrew.c.good@jpl.nasa.gov Karen Fox / Alana Johnson NASA Headquarters, Washington 301-286-6284 / 202-358-1501 karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov 2023-174 Share Details Last Updated Nov 28, 2023 Related TermsMars OdysseyInternational Space Station (ISS)Mars MoonsPhobos Explore More 7 min read Science on Station: November 2023 Article 6 days ago 7 min read NASA’s Cold Atom Lab Sets Stage for Quantum Chemistry in Space Article 2 weeks ago 3 min read Investigations launching aboard SpaceX-29 will help humans go farther and stay longer in space The SpaceX-29 commercial resupply spacecraft will deliver numerous physical sciences and space biology experiments, along… Article 3 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
3 min read NASA’s Dragonfly to Proceed with Final Mission Design Work Artist’s Impression: Dragonfly Departs and heads off toward its next landing spot on Titan. Image credit: NASA/Johns Hopkins APL/Steve Gribben NASA’s Dragonfly mission has been authorized to proceed with work on final mission design and fabrication – known as Phase C – during fiscal year (FY) 2024. The agency is postponing formal confirmation of the mission (including its total cost and schedule) until mid-2024, following the release of the FY 2025 President’s Budget Request. Earlier this year, Dragonfly – a mission to send a rotorcraft to explore Saturn’s moon Titan – passed all the success criteria of its Preliminary Design Review. The Dragonfly team conducted a re-plan of the mission based on expected funding available in FY 2024 and estimate a revised launch readiness date of July 2028. The Agency will officially assess the mission’s launch readiness date in mid-2024 at the Agency Program Management Council. “The Dragonfly team has successfully overcome a number of technical and programmatic challenges in this daring endeavor to gather new science on Titan,” said Nicola Fox, associate administrator of NASA’s Science Mission Directorate at NASA headquarters in Washington. “I am proud of this team and their ability to keep all aspects of the mission moving toward confirmation.” Dragonfly takes a novel approach to planetary exploration, for the first time employing a rotorcraft-lander to travel between and sample diverse sites on Titan. Dragonfly’s goal is to characterize the habitability of the moon’s environment, investigate the progression of prebiotic chemistry in an environment where carbon-rich material and liquid water may have mixed for an extended period, and even search for chemical indications of whether water-based or hydrocarbon-based life once existed on Titan. Dragonfly is being designed and built under the direction of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, which manages the mission for NASA. The team includes key partners at NASA’s Goddard Space Flight Center in Greenbelt, Maryland; Lockheed Martin Space in Littleton, Colorado; Sikorsky, a Lockheed Martin company; NASA’s Ames Research Center in Silicon Valley, California; NASA’s Langley Research Center in Hampton, Virginia; Penn State University in State College, Pennsylvania; Malin Space Science Systems in San Diego, California; Honeybee Robotics in Pasadena, California; NASA’s Jet Propulsion Laboratory in Southern California; CNES (Centre National d’Etudes Spatiales), the French space agency, in Paris, France; DLR (German Aerospace Center) in Cologne, Germany; and JAXA (Japan Aerospace Exploration Agency) in Tokyo, Japan. Dragonfly is the fourth mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate. Share Details Last Updated Nov 28, 2023 Editor WILLIAM KEETER Related Terms Dragonfly Planetary Science Planetary Science Division Saturn Science & Research Science Mission Directorate The Solar System View the full article
-
On Nov. 28, 1983, space shuttle Columbia took to the skies for its sixth trip into space on the first dedicated science mission using the Spacelab module provided by the European Space Agency (ESA). The longest shuttle mission at the time also included many other firsts. Aboard Columbia to conduct dozens of science experiments, the first six-person crew of Commander John W. Young, making his record-breaking sixth spaceflight, Pilot Brewster H. Shaw, Mission Specialists Owen K. Garriott and Robert A.R. Parker, and the first two payload specialists, American Byron K. Lichtenberg and German Ulf Merbold representing ESA, the first non-American to fly on a U.S. space mission. During the 10-day Spacelab 1 flight, the international team of astronauts conducted 72 experiments in a wide variety of science disciplines. Left: The STS-9 crew patch. Middle: Official photo of the STS-9 crew of Owen K. Garriott, seated left, Brewster H. Shaw, John W. Young, and Robert A.R. Parker; Byron K. Lichtenberg, standing left, and Ulf Merbold of West Germany representing the European Space Agency. Right: The payload patch for Spacelab 1. In August 1973, NASA and the European Space Research Organization, the forerunner of today’s ESA, agreed on a cooperative plan to build a reusable laboratory called Spacelab to fly in the space shuttle’s cargo bay. In exchange for ESA building the pressurized modules and unpressurized pallets, NASA provided flight opportunities for European astronauts. In December 1977, ESA named physicist Merbold of the Max Planck Institute in West Germany, physicist Wubbo Ockels of The Netherlands, and astrophysicist Claude Nicollier of Switzerland as payload specialist candidates for the first Spacelab mission. In September 1982, ESA selected Merbold as the prime crew member to fly the mission and Ockels as his backup. Nicollier had in the meantime joined NASA’s astronaut class of 1980 as a mission specialist candidate. In 1978, NASA selected biomedical engineer Lichtenberg of the Massachusetts Institute of Technology as its payload specialist with physicist Michael L. Lampton of CalTech as his backup. In April 1982, NASA assigned the orbiter crew of Young, Shaw, Garriott, and Parker. As commander of STS-9, Young made a record-breaking sixth flight into space. The mission’s pilot Shaw, an astronaut from the 1978 class, made his first trip into space. The two mission specialists had a long history with NASA – Garriott, selected as an astronaut in 1965, completed a 59-day stay aboard the Skylab space station in 1973, and Parker, selected in 1967, made his first spaceflight after a 16-year wait. Although the crew included only two veterans, it had the most previous spaceflight experience of any crew up to that time – 84 days between Young’s and Garriott’s earlier missions. Left: Arrival of the Spacelab 1 long module at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers place the Spacelab module and pallet into Columbia’s payload bay in KSC’s Orbiter Processing Facility. Right: The Spacelab pallet, top, pressurized long module, and tunnel in Columbia’s payload bay. The pressurized module for the first Spacelab mission arrived at KSC on Dec. 11, 1981, from its manufacturing facility in Bremen, West Germany. Additional components arrived throughout 1982 as workers in KSC’s Operations and Checkout Building integrated the payload racks into the module. The ninth space shuttle mission saw the return of the orbiter Columbia to space, having flown the first five flights of the program. Since it arrived back at KSC after STS-5 on Nov. 22, 1982, engineers in the Orbiter Processing Facility (OPF) modified Columbia to prepare it for the first Spacelab mission. The completed payload, including the pressurized module, the external pallet, and the transfer tunnel, rolled over to the OPF, where workers installed it into Columbia’s payload bay on Aug. 16, 1983. Left: In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers lift space shuttle Columbia to mate it with its external tank (ET) and solid rocket boosters (SRBs) for the first time. Middle: Space shuttle Columbia’s first trip from the VAB to Launch Pad 39A. Right: In the VAB, workers have disassembled the stack and prepare to reposition the ET with its SRBs. Rollover of Columbia to the Vehicle Assembly Building (VAB) took place on Sept. 24, where workers mated it with an external tank (ET) and two solid rocket boosters (SRBs). Following integrated testing, the stack rolled out to Launch Pad 39A four days later for a planned Oct. 29 liftoff. However, on Oct. 14, managers called off that initial launch attempt after discovering that the engine nozzle of the left hand SRB contained the same material that nearly caused a burn through during STS-8. The replacement of the nozzle required a rollback to the VAB. Taking place on Oct. 17, it marked the first rollback of a flight vehicle in the shuttle’s history. Workers in the VAB demated the vehicle and destacked the left hand SRB to replace its nozzle. Columbia temporarily returned to the OPF on Oct. 19, where workers replaced its fuel cells using three borrowed from space shuttle Discovery and also replaced its waste collection system. Columbia returned to the VAB on Nov. 3 for remating with its ET and SRBs and rolled back out to the launch pad on Nov. 8. Left: The STS-9 crew during their preflight press conference at NASA’s Johnson Space Center in Houston. Middle: On launch day at NASA’s Kennedy Space Center in Florida, the STS-9 astronauts leave crew quarters to board the Astrovan for the ride to Launch Pad 39A. Right: In the VIP stands to watch the STS-9 launch, Steven Spielberg, left, and George Lucas. Liftoff of space shuttle Columbia on STS-9 carrying the first Spacelab science module. Ground track of STS-9’s orbit, inclined 57 degrees to the equator, passing over 80 percent of the world’s land masses. On Nov. 28, 1983, Columbia thundered off KSC’s Launch Pad 39A to begin the STS-9 mission. The shuttle entered an orbit inclined 57 degrees to the equator, the highest inclination U.S. spaceflight at the time, allowing the astronauts to observe about 80 percent of the Earth’s landmasses. Mounted inside Columbia’s payload bay, the first Spacelab 18-foot long module provided a shirt-sleeve environment for the astronauts to conduct scientific experiments in a variety of disciplines. During the Spacelab 1 mission, the STS-9 crew carried out 72 experiments in atmospheric and plasma physics, astronomy, solar physics, materials sciences, technology, astrobiology, and Earth observations. For the first time in spaceflight history, the crew divided into two teams working opposite 12-hour shifts, allowing science to be conducted 24 hours a day. The Tracking and Data Relay Satellite, launched the previous April during the STS-6 mission, and now fully operational, enabled transmission of television and significant amounts of science data to the Payload Operations Control Center, located in the Mission Control Center at NASA’s Johnson Space Center in Houston. Left: View of the Spacelab module in the shuttle’s payload bay. Middle: Several STS-9 crew members struggle to open the hatch to the transfer tunnel. Right: Owen K. Garriott, left, Ulf Merbold, and Byron K. Lichtenberg enter the Spacelab for the first time to begin activating the module. Upon reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Shortly after, following a few tense minutes during which the astronauts struggled with a balky hatch, they opened it, translated down the transfer tunnel, and entered Spacelab for the first time. Garriott, Lichtenberg, and Merbold activated the module and turned on the first experiments. For the next nine days, the Red Team of Young, Parker, and Merbold, and the Blue Team of Shaw, Garriott, and Lichtenberg performed flawlessly to carry out the experiments. Young and Shaw managed the shuttle’s systems while the mission and payload specialists conducted the bulk of the research. With ample consumables available, Mission Control granted them an extra day in space to complete additional science. One afternoon, the astronauts chatted with U.S. President Ronald W. Reagan in the White House and German Chancellor Helmut Kohl, attending the European Community Summit in Athens, Greece. The two leaders praised the astronauts for their scientific work and the cooperation between the two countries that enabled the flight to take place. Left: Robert A.R. Parker, left, Byron K. Lichtenberg, Owen K. Garriott, and Ulf Merbold at work inside the Spacelab module. Middle: Garriott preparing to draw a blood sample from Lichtenberg for one of the life sciences experiments. Right: Garriott, front, and Lichtenberg at work in the Spacelab module. Left: The rotating dome experiment to study visual vestibular interactions. Middle: Owen K. Garriott prepares to place blood samples in a passive freezer. Right: Inflight photograph of the STS-9 crew. A selection of the STS-9 crew Earth observation photographs. Left: The Manicougan impact crater in Quebec, Canada, with the shuttle’s tail visible at upper right. Middle: Hong Kong. Right: Cape Campbell, New Zealand. On Dec. 8, their last day in space, the crew finished the experiments, closed up the Spacelab module, and strapped themselves into their seats to prepare for their return to Earth. Five hours before the scheduled landing, during thruster firings one of Columbia’s five General Purpose Computers (GPC) failed, followed six minutes later by a second GPC. Mission Control decided to delay the landing until the crew could fix the problem. Young and Shaw brought the second GPC back up but had no luck with the first. Meanwhile, one of Columbia’s Inertial Measurement Units, used for navigation, failed. Finally, after eight hours of troubleshooting, the astronauts fired the shuttle’s Orbital Maneuvering System engines to begin the descent from orbit. Young piloted Columbia to a smooth landing on a lakebed runway at Edwards Air Force Base in California’s Mojave Desert, completing 166 orbits around the Earth in 10 days, 6 hours, and 47 minutes, at the time the longest shuttle flight. Shortly before landing, a hydrazine leak caused two of the orbiter’s three Auxiliary Power Units (APU) to catch fire. The fire burned itself out, causing damage in the APU compartment but otherwise not affecting the landing. The astronauts safely exited the spacecraft without incident. On Dec. 14, NASA ferried Columbia back to KSC to remove the Spacelab module from the payload bay. In January 1984, Columbia returned to its manufacturer, Rockwell International in Palmdale, California, where workers spent the next two years refurbishing NASA’s first orbiter before its next mission, STS-61C, in January 1986. Left: John W. Young in the shuttle commander’s seat prior to entry and landing. Middle: Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission. Right: The six STS-9 crew members descend the stairs from the orbiter after their successful 10-day scientific mission. Left: Workers at Edwards Air Force Base in California safe space shuttle Columbia after its return from space. Middle: Atop a Shuttle Carrier Aircraft, Columbia begins its cross country journey to NASA’s Kennedy Space Center in Florida. Right: The STS-9 crew during their postflight press conference at NASA’s Johnson Space Center in Houston. The journal Science published preliminary results from Spacelab 1 in their July 13, 1984, issue. The two Spacelab modules flew a total of 16 times, the last one during the STS-90 Neurolab mission in April 1998. The module that flew on STS-9 and eight other missions is displayed at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia, while the other module resides at the Airbus Defence and Space plant in Bremen, Germany, not on public display. The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia. Enjoy the crew narrate a video about the STS-9 mission. Read Shaw’s, Garriott’s, and Parker’s recollections of the STS-9 mission in their oral histories with the JSC History Office. Share Details Last Updated Nov 28, 2023 Related TermsNASA HistorySpace ShuttleSTS-9 Explore More 9 min read Spacelab 1: A Model for International Cooperation Article 22 hours ago 10 min read Thanksgiving Celebrations in Space Article 6 days ago 12 min read 55 Years Ago: Eight Months Before the Moon Landing Article 2 weeks ago View the full article
-
3 Min Read Webb Telescope: A prominent protostar in Perseus Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). This new Picture of the Month from the NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam). Infrared imaging is powerful in studying newborn stars and their outflows, because the youngest stars are invariably still embedded within the gas and dust from which they are formed. The infrared emission of the star’s outflows penetrates the obscuring gas and dust, making Herbig-Haro objects ideal for observation with Webb’s sensitive infrared instruments. Molecules excited by the turbulent conditions, including molecular hydrogen and carbon monoxide, emit infrared light that Webb can collect to visualise the structure of the outflows. NIRCam is particularly good at observing the hot (thousands of degree Celsius) molecules that are excited as a result of shocks. Image: Protostar in Perseus The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).ESA/Webb, NASA & CSA, T. Ray (Dublin Institute for Advanced Studies) Using ground-based observations, researchers have previously found that for cold molecular gas associated with HH 797, most of the red-shifted gas (moving away from us) is found to the south (bottom right), while the blue-shifted gas (moving towards us) is to the north (bottom left). A gradient was also found across the outflow, such that at a given distance from the young central star, the velocity of the gas near the eastern edge of the jet is more red-shifted than that of the gas on the western edge. Astronomers in the past thought this was due to the outflow’s rotation. In this higher resolution Webb image, however, we can see that what was thought to be one outflow is in fact made up of two almost parallel outflows with their own separate series of shocks (which explains the velocity asymmetries). The source, located in the small dark region (bottom right of center), and already known from previous observations, is therefore not a single but a double star. Each star is producing its own dramatic outflow. Other outflows are also seen in this image, including one from the protostar in the top right of center along with its illuminated cavity walls. HH 797 resides directly north of HH 211 (separated by approximately 30 arcseconds), which was the feature of a Webb image release in September 2023. Media Contacts Laura Betz – laura.e.betz@nasa.gov, Rob Gutro– rob.gutro@nasa.gov NASA’s Goddard Space Flight Center, , Greenbelt, Md. Bethany Downer – Bethany.Downer@esawebb.org ESA/Webb Chief Science Communications Officer Downloads Download full resolution images for this article from ESAWebb.org Related Information Star Formation Piercing the Dark Birthplaces of Massive Stars with Webb Webb Mission – https://science.nasa.gov/mission/webb/ Webb News – https://science.nasa.gov/mission/webb/latestnews/ Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/ Related For Kids What Is a Nebula? What Is a Galaxy? What is the Webb Telescope? SpacePlace for Kids En Español Ciencia de la NASA NASA en español Space Place para niños Keep Exploring Related Topics James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Stars Overview Stars are giant balls of hot gas – mostly hydrogen, with some helium and small amounts of other elements.… Galaxies Overview Galaxies consist of stars, planets, and vast clouds of gas and dust, all bound together by gravity. The largest… Universe Explore the universe: Learn about the history of the cosmos, what it’s made of, and so much more. Share Details Last Updated Nov 28, 2023 Editorsteve sabiaContactLaura Betz Related TermsJames Webb Space Telescope (JWST)Goddard Space Flight CenterNebulaeProtostarsStars View the full article
-
7 min read NASA’s Fermi Mission Nets 300 Gamma-Ray Pulsars … and Counting A new catalog produced by a French-led international team of astronomers shows that NASA’s Fermi Gamma-ray Space Telescope has discovered 294 gamma-ray-emitting pulsars, while another 34 suspects await confirmation. This is 27 times the number known before the mission launched in 2008. This visualization shows 294 gamma-ray pulsars, first plotted on an image of the entire starry sky as seen from Earth and then transitioning to a view from above our galaxy. The symbols show different types of pulsars. Young pulsars blink in real time except for the Crab, which pulses slower than in real time because its rate is only slightly lower than the video’s frame rate. Millisecond pulsars remain steady, pulsing too quickly to see. The Crab, Vela, and Geminga were among the 11 gamma-ray pulsars known before Fermi launched. Other notable objects are also highlighted. Distances are shown in light-years (abbreviated ly). Download high-resolution video and images from NASA’s Scientific Visualization Studio. Credit: NASA’s Goddard Space Flight Center “Pulsars touch on a wide range of astrophysics research, from cosmic rays and stellar evolution to the search for gravitational waves and dark matter,” said study coordinator David Smith, research director at the Bordeaux Astrophysics Laboratory in Gironde, France, which is part of CNRS (the French National Center for Scientific Research). “This new catalog compiles full information on all known gamma-ray pulsars in an effort to promote new avenues of exploration.” The catalog was published on Monday, Nov. 27, in The Astrophysical Journal Supplement. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Narrow beams of energy emerge from hot spots on the surface of a neutron star in this artist’s concept. When one of these beams sweeps past Earth, astronomers detect a pulse of light. Credit: NASA’s Goddard Space Flight Center Conceptual Image Lab Pulsars are a type of neutron star, the city-sized leftover of a massive sun that has exploded as a supernova. Neutron stars, containing more mass than our Sun in a ball less than 17 miles wide, represent the densest matter astronomers can study directly. They possess strong magnetic fields, produce streams of energetic particles, and spin quickly – 716 times a second for the fastest known. Pulsars, in addition, emit narrow beams of energy that swing lighthouse-like through space as the objects rotate. When one of these beams sweeps past Earth, astronomers detect a pulse of emission. The new catalog represents the work of 170 scientists across the globe. A dozen radio telescopes carry out regular monitoring of thousands of pulsars, and radio astronomers search for new pulsars within gamma-ray sources discovered by Fermi. Other researchers have teased out gamma-ray pulsars that have no radio counterparts through millions of hours of computer calculation, a process called a blind search. More than 15 years after its launch, Fermi remains an incredible discovery machine, and pulsars and their neutron star kin are leading the way. Elizabeth Hays Fermi Project Scientist Of the 3,400 pulsars known, most of them observed via radio waves and located within our Milky Way galaxy, only about 10% also pulse in gamma rays, the highest-energy form of light. Visible light has energies between 2 and 3 electron volts. Fermi’s Large Area Telescope can detect gamma rays with billions of times this energy, and other facilities have observed emission thousands of times greater still from the nearby Vela pulsar, the brightest persistent source in the sky for Fermi. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This movie shows the Vela pulsar in gamma rays detected by the Large Area Telescope aboard NASA’s Fermi observatory. A single pulsar cycle is repeated. Bluer colors indicate gamma rays with higher energies. Credit: NASA/DOE/Fermi LAT Collaboration The Vela pulsar and its famous sibling in the Crab Nebula are young, solitary objects, formed about 11,000 and 970 years ago, respectively. Their emissions arise as their magnetic fields spin through space, but this also gradually slows their rotation. The younger Crab pulsar spins nearly 30 times a second, while Vela clocks in about a third as fast. The Old and the Restless Paradoxically, though, pulsars that are thousands of times older spin much faster. One example of these so-called millisecond pulsars (MSPs) is J1824-2452A. It whirls around 328 times a second and, with an age of about 30 million years, ranks among the youngest MSPs known. Thanks to a great combination of gamma-ray brightness and smooth spin slowdown, the MSP J1231-1411 is an ideal “timer” for use in gravitational wave searches. By monitoring a collection of stable MSPs, astronomers hope to link timing changes to passing low-frequency gravitational waves – ripples in space-time – that cannot be detected by current gravitational observatories. It was discovered in one of the first radio searches targeting Fermi gamma-ray sources not associated with any known counterpart at other wavelengths, a technique that turned out to be exceptionally successful. “Before Fermi, we didn’t know if MSPs would be visible at high energies, but it turns out they mostly radiate in gamma rays and now make up fully half of our catalog,” said co-author Lucas Guillemot, an associate astronomer at the Laboratory of Physics and Chemistry of the Environment and Space and the University of Orleans, France. Along Come the Spiders The presence of MSPs in binary systems offers a clue to understanding the age-spin paradox. Left to itself, a pulsar’s emissions slow it down, and with slower spin its emissions dim. But if closely paired with a normal star, the pulsar can pull a stream of matter from its companion that, over time, can spin up the pulsar. “Spider” systems offer a glimpse of what happens next. They’re classified as redbacks or black widows – named for spiders known for consuming their mates. Black widows have light companions (less than about 5% of the Sun’s mass), while redbacks have heavier partners. As the pulsar spins up, its emissions and particle outflows become so invigorated that – through processes still poorly understood – it heats and slowly evaporates its companion. The most energetic spiders may fully evaporate their partners, leaving only an isolated MSP behind. J1555-2908 is a black widow with a surprise – its gravitational web may have ensnared a passing planet. An analysis of 12 years of Fermi data reveals long-term spin variations much larger than those seen in other MSPs. “We think a model incorporating the planet as a third body in a wide orbit around the pulsar and its companion describes the changes a little better than other explanations, but we need a few more years of Fermi observations to confirm it,” said co-author Colin Clark, a research group leader at the Max Planck Institute for Gravitational Physics in Hannover, Germany. Other curious binaries include the so-called transitional pulsars, such as J1023+0038, the first identified. An erratic stream of gas flowing from the companion to the neutron star may surge, suddenly forming a disk around the pulsar that can persist for years. The disk shines brightly in optical light, X-rays, and gamma rays, but pulses become undetectable. When the disk again vanishes, so does the high-energy light and the pulses return. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This artist’s concept illustrates a possible model for the transitional pulsar J1023. When astronomers can detect pulses in radio (green), the pulsar’s energetic outflow holds back its companion’s gas stream. Sometimes the stream surges, creating a bright disk around the pulsar that can persist for years. The disk shines brightly in X-rays, and gas reaching the neutron star produces jets that emit gamma rays (magenta), obscuring the pulses until the disk eventually dissipates. Credit: NASA’s Goddard Space Flight Center Some pulsars don’t require a partner to switch things up. J2021+4026, a young, isolated pulsar located about 4,900 light-years away, underwent a puzzling “mode change” in 2011, dimming its gamma rays over about a week and then, years later, slowly returning to its original brightness. Similar behavior had been seen in some radio pulsars, but this was a first in gamma rays. Astronomers suspect the event may have been triggered by crustal cracks that temporarily changed the pulsar‘s magnetic field. Farther afield, Fermi discovered the first gamma-ray pulsar in another galaxy, the neighboring Large Magellanic Cloud, in 2015. And in 2021, astronomers announced the discovery of a giant gamma-ray flare from a different type of neutron star (called a magnetar) located in the Sculptor galaxy, about 11.4 million light-years away. “More than 15 years after its launch, Fermi remains an incredible discovery machine, and pulsars and their neutron star kin are leading the way,” said Elizabeth Hays, the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Explore the Fermi gamma-ray pulsar catalog on WorldWide Telescope Max Planck Institute release By Francis Reddy NASA’s Goddard Space Flight Center, Greenbelt, Md. Media contact: Claire Andreoli claire.andreoli@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. (301) 286-1940 Share Details Last Updated Nov 28, 2023 Editor Francis Reddy Location Goddard Space Flight Center Related Terms Astrophysics Binary Stars Fermi Gamma-Ray Space Telescope Gamma Rays Goddard Space Flight Center Neutron Stars Pulsars Stars The Universe Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
SSE-Cassini Home Cassini Top 10 Images of 2011 Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini Top 10 Images of 2011 Where were you during the storm? In 2011, NASA’s Cassini spacecraft circled Saturn for a front-row view of the huge storm there. One of those looks made the mission scientists’ list of Top 10 images of 2011. What else made the list? Check it out. Groovy Enceladus Churning Psychedelia Hiding Little Brother Quintet of Moons A Day in the Life Catching Its Tail Helene, Close up Enceladus ‘Footprint’ on Saturn Saturn’s Radio Period Crossover Equatorial Titan Clouds Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
SSE-Cassini Home Cassini Top 10 Images of 2012 Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini Top 10 Images of 2012 As the Cassini spacecraft roams the Saturnian system, each year it opens new windows on an amazing corner of our solar system. Images of mighty Saturn, its majestic rings, and the dynamic moons continue to stun us, offering ever-changing vistas that are truly inspiring. This collection of 10 best images was selected by the scientists on the mission. You can imagine their pride. A Splendor Seldom Seen Vortex at Saturn’s North Pole Tiny Tethys Gray Egg Obscured by Rings Colorful Colossuses and Changing Hues Titan’s Colorful South Polar Vortex Classic Trails or Mini-Jets Enceladus Plume (Raw image) Closest Dione Flyby Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
SSE-Cassini Home Cassini Top 10 Images of 2013 Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini Top 10 Images of 2013 We’ve shared 150 press images through 40 news releases and special features during 2013. As the Cassini science team members look forward to a great 2014 and beyond, here’s a look back at their top ten 10 images of the year. ‘Tis the Season Fire and Ice Titan’s North — Unannotated The Day the Earth Smiled Jewel of the Solar System Titan’s Northern Lakes: Salt Flats? (Annotated version) Marvelous Mini-Jet The Day the Earth Smiled: Sneak Preview (annotated) Spring at the North Pole The Rose Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
SSE-Cassini Home Cassini 10 Years at Saturn Top… Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini 10 Years at Saturn Top Images The Cassini team is proud to celebrate 10 years since arriving at Saurn with this collection of images selected by members of the team. Enceladus North Pole Montage Peering Through Titan’s Haze Water World Created with GIMP Enceladus Up-Close Saturnian Snowman A Fractured Pole Imminent Approach to Dione Red Arcs on Tethys Spongy Surface Serene Saturn Simulations of the Tendrils Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
SSE-Cassini Home Cassini Top 10 Images of 2014 Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini Top 10 Images of 2014 As the Cassini science team members look forward to a great 2015 and beyond, here’s a look back at their top 10 images of 2014. Translucent Rings Color Map of Mimas (2014) Circling Saturn Specular Spectacular Mysterious Changing Feature in Ligeia Mare — Unannotated The Odd Trio Shepherd and Flock Encroaching Shadow Arrival and Departure at Phoebe Blue Orb on the Horizon Keep Exploring Discover More Topics From NASA Science Missions Solar System Exploration Skywatching Eclipses View the full article
-
SSE-Cassini Home Cassini Top 10 Images – 2015 Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini Top 10 Images – 2015 As the Cassini science team members look forward to a great 2016 and beyond, here’s a look back at their top 10 images of 2015. Enceladus North Pole Montage Peering Through Titan’s Haze Water World Created with GIMP Enceladus Up-Close Saturnian Snowman A Fractured Pole Imminent Approach to Dione Red Arcs on Tethys Spongy Surface Serene Saturn Simulations of the Tendrils Keep Exploring Discover More Topics From NASA Science Missions Solar System Exploration Skywatching Eclipses View the full article
-
NASA Administrator Bill Nelson delivers remarks before the ribbon cutting ceremony to open NASA’s Earth Information Center, Wednesday, June 21, 2023, at the Mary W. Jackson NASA Headquarters building in Washington. The Earth Information Center is new immersive experience that combines live data sets with cutting-edge data visualization and storytelling to allow visitors to see how our planet is changing. NASA/Joel Kowsky NASA Administrator Bill Nelson and other agency leaders will participate in the 28th United Nations Climate Change Conference of the Parties (COP28) beginning Thursday, Nov. 30, through Tuesday, Dec. 12, in Dubai, United Arab Emirates. This global conference brings together countries committed to addressing climate change, which is a key priority for the Biden-Harris Administration and NASA. For the first time, a NASA administrator will attend, joining an expected 70,000 participants, world leaders, and representatives from nearly 200 countries. Throughout the conference, parties will review the implementation of the United Nations Framework Convention on Climate Change, the Kyoto Protocol and, also for the first time, provide a comprehensive assessment of progress since adopting the Paris Agreement. In addition to Nelson, NASA participants in the conference include: Kate Calvin, NASA’s chief scientist and senior climate advisor Susie Perez Quinn, NASA’s chief of staff Karen St. Germain, director, NASA Earth Science Division Nadya Vinogradova Shiffer, program scientist, ocean physics, NASA Earth Science Division Laura Rogers, associate program manager, ecological conservation, NASA Langley Research Center Wenying Su, senior research scientist, climate science, NASA Langley Research Center Ben Hamlington, research scientist, sea level and ice, NASA Jet Propulsion Laboratory During the conference, Nelson will participate in the first Space Agency Leaders’ Summit, which aims to demonstrate a collective commitment toward strengthening global climate initiatives and promoting sustainable space operations. Throughout the conference, NASA leaders also will participate in additional events and presentations at the NASA Hyperwall, a main attraction at the U.S. Center showing how the agency’s climate science and research helps model and predict ocean health, heat waves, wildfires, hurricanes, floods, and droughts, among its other Earth-related research. NASA will provide a hyperwall presentation every day, some with interagency partners, between Sunday, Dec. 3, and Monday, Dec. 11. Climate adaptation and mitigation efforts require robust climate observations and research. NASA’s unique vantage point from space provides critical information to advance understanding of our changing planet. With more than two dozen satellites and instruments in orbit, NASA’s climate data – which is openly and freely available to anyone – provides insight on how the planet is changing and measure key climate indicators, such as greenhouse gas emissions, rising sea level and clouds, and precipitation. A full schedule of U.S. Center events at COP28 is available at: https://www.state.gov/u-s-center-at-cop28-schedule/ -end- Faith McKie Headquarters, Washington 202-262-8342 faith.d.mckie@nasa.gov Share Details Last Updated Nov 27, 2023 LocationNASA Headquarters Related TermsClimate ChangeBill NelsonEarth View the full article
-
3 min read NASA to Showcase Earth Science Data at COP28 This illustration shows the international Surface Water and Ocean Topography (SWOT) satellite in orbit over Earth. SWOT’s main instrument, KaRIn, helps survey the water on more than 90% of Earth’s surface. Credit: NASA/JPL-Caltech. NASA/JPL-Caltech With 26 Earth-observing satellite missions, as well as instruments flying on planes and the space station, NASA has a global vantage point for studying our planet’s oceans, land, ice, and atmosphere and deciphering how changes in one drive change in others. The agency will share that knowledge and data at the 28th U.N. Climate Change Conference of the Parties (COP28), which brings international parties together to accelerate action toward the goals of the Paris Agreement and the U.N. Framework Convention on Climate Change. COP28 will be held at the Expo City in Dubai, United Arab Emirates from Thursday, Nov. 30 to Tuesday, Dec. 12. All U.S. events at COP28 are open to the local press and will be live-streamed on the U.S. Center at COP28 website and the U.S. Center YouTube channel. NASA takes a full-picture approach to understanding all areas of our home planet using our vast satellite fleet and the data collected from their observations. The agency’s data is open-source and available for the public and scientists to study. NASA is showcasing the data at COP28 to share the different ways it can be used globally. The agency’s complete collection of Earth data can be found here. The scientific research and understanding developed from NASA’s Earth observations are made into predictive models. Those models can be used to develop applications and actionable science to inform individuals including civic leaders and planners, resource managers, emergency managers, and communities looking to mitigate and adapt to climate change. These satellites and models are augmented by the observations made from the International Space Station. The inclined, low Earth orbit from the station provides variable views and lighting over more than 90 percent of the inhabited surface of the Earth, a useful complement to sensor systems on satellites in higher-altitude polar orbits. Closer to the surface, NASA’s aviation research is focused on advancing technologies for more efficient airplane flight, including hybrid-electric propulsion, advanced materials, artificial intelligence, and machine learning. Technological advances in these areas have the potential to reduce human impacts on climate and air quality. Hyperwall At the U.S. Center at COP28, in-person visitors can see the NASA Hyperwall where NASA scientists will provide live presentations showing how the agency’s work supports the Biden-Harris Administration’s agenda to encourage a governmentwide approach to climate change. During the hyperwall talks, NASA leaders, scientists and interagency partners will discuss the agency’s end-to-end research about our planet. This includes designing new instruments, satellites, and systems to collect and freely distribute the most complete and precise data possible about Earth’s land, ocean, and atmospheric system. A full schedule of NASA’s hyperwall talks is available. Katherine Rohloff Headquarters, Washington 202-358-1600 katherine.a.rohloff@nasa.gov Share Details Last Updated Nov 27, 2023 Editor Contact Related Terms Climate Change Earth Keep Exploring Discover More Topics From NASA Earth Your home. Our Mission. And the one planet that NASA studies more than any other. Climate Change NASA is a global leader in studying Earth’s changing climate. Explore Earth Science Earth Science Data View the full article