Jump to content

All Activity

This stream auto-updates

  1. Yesterday
  2. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain! NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on March 18, 2025 — sol 4484, or Martian day 4,484 of the Mars Science Laboratory mission — at 11:54:13 UTC. NASA/JPL-Caltech Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick Earth planning date: Wednesday, March 19, 2025 This terrain is a tricky drive, with rocks angled chaotically all around. One of our geologists remarked that they wouldn’t like to even walk over this without solid boots coming way up over the ankles — this is definitely the kind of terrain to result in twisted and broken ankles! So it wasn’t too unexpected that the drive we had planned on Monday cut short after 18 meters (about 59 feet). Fortunately, we ended up both at a workspace with abundant bedrock and in an orientation that allowed us to pass SRAP (our “Slip Risk Assessment Process”). The rover planners were quickly able to find a spot to brush, so we have a coordinated target on “Palm Grove,” one of the laminated rocks in the lower half of the accompanying image. APXS and MAHLI will look at this target on the first sol of the plan, and then ChemCam LIBS and Mastcam will look at it on the second sol. Although the bulk of the bedrock is relatively nodule free, ChemCam will look at the nodular target “Refugio” to compare to the more dominant, nodule-poor bedrock. On Monday, our workspace included some very interesting layers in the bedrock that might represent preserved sand ripples, but sadly, as Conor reported on Monday, we didn’t pass SRAP, which precluded any contact science. However, today we ended up near rocks that had similar layer geometry, and will acquire a MAHLI “Dog’s Eye” or mosaic image of these rocks at “Duna Vista” and two Mastcam 5×3 mosaics (“Bayside Trail” and “Oso Flaco”) on other examples. Mastcam is taking several other images here. A 14×3 mosaic will capture the “nearfield” or area close to the rover, and a set of four further images focus on four distinct trough features, to help us better understand ongoing modification of the surface. Further afield, the “Quartz Hill” and “Pino Alto” mosaics look at areas of fragmented bedrock which may be similar to the “Humber Park” outcrop we analyzed this past weekend. Even further from the rover, ChemCam will acquire RMI (Remote Micro Imager) images of the “Boxworks” and an almost circular depression (“Torote Bowl”) whose origin is not clear. The environmental theme group (ENV) planned a Mastcam tau (to look at dust in the atmosphere) and a Navcam dust-devil survey (to look for dust devils!) for the first sol of the plan. On the second sol, we fill out the movies with Navcam movies looking toward the south of the crater (suprahorizon, cloud shadow, and zenith movies) and a Mastcam sky survey. In between the movies on the second sol, our drive is planned to take us another 34 meters (about 112 feet)… but we will have to see how far our intrepid rover will make it on this tricky terrain. Slow and steady will win this race! Share Details Last Updated Mar 21, 2025 Related Terms Blogs Explore More 3 min read Shocking Spherules! Article 2 hours ago 4 min read Sols 4484-4485: Remote Sensing on a Monday Article 1 day ago 2 min read Sols 4481-4483: Humber Pie Article 3 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  3. NASA

    Shocking Spherules!

    Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read Shocking Spherules! Written by Alex Jones, Ph.D. candidate at Imperial College London Last week the Perseverance Science Team were astonished by a strange rock comprised of hundreds of millimeter-sized spheres… and the team are now working hard to understand their origin. This image from NASA’s Mars Perseverance rover, a fusion-processed SuperCam Remote Micro Imager (RMI) mosaic, shows part of the “St. Pauls Bay” target, acquired from the lower Witch Hazel Hill area of the Jezero crater rim. The image reveals hundreds of strange, spherical-shaped objects comprising the rock. Perseverance acquired this image on March 11, 2025, or sol 1442 — Martian day 1,442 of the Mars 2020 mission. NASA/JPL-Caltech/LANL/CNES/IRAP. It has now been two weeks since Perseverance arrived at Broom Point, situated at the lower slopes of the Witch Hazel Hill area, on the Jezero crater rim. Here, a series of light- and dark- toned bands were visible from orbit, and just last week the rover successfully abraded and sampled one of the light-toned beds. It was from this sampling workspace where Perseverance spied a very strange texture in a nearby rock… The rock, named “St. Pauls Bay” by the team, appeared to be comprised of hundreds of millimeter-sized, dark gray spheres. Some of these occurred as more elongate, elliptical shapes, while others possessed angular edges, perhaps representing broken spherule fragments. Some spheres even possessed tiny pinholes! What quirk of geology could produce these strange shapes? This isn’t the first time strange spheres have been spotted on Mars. In 2004, the Mars Exploration Rover Opportunity spotted so-called, “Martian Blueberries” at Meridiani Planum, and since then, the Curiosity rover has observed spherules in the rocks of Yellowknife Bay at Gale crater. Just a few months ago, Perseverance itself also spied popcorn-like textures in sedimentary rocks exposed in the Jezero crater inlet channel, Neretva Vallis. In each of these cases, the spherules were interpreted as concretions, features that formed by interaction with groundwater circulating through pore spaces in the rock. Not all spherules form this way, however. They also form on Earth by rapid cooling of molten rock droplets formed in a volcanic eruption, for instance, or by the condensation of rock vaporized by a meteorite impact. NASA’s Mars Perseverance rover acquired this image of the “St. Pauls Bay” target (the dark-toned float block in the right of the view) using its Left Mastcam-Z camera, one of a pair of cameras located high on the rover’s remote-sensing mast. Perseverance acquired this image on March 13, 2025 — sol 1444, or Martian day 1,444 of the Mars 2020 mission — at the local mean solar time of 11:57:49. NASA/JPL-Caltech/ASU Each of these formation mechanisms would have vastly different implications for the evolution of these rocks, so the team is working hard to determine their context and origin. St. Pauls Bay, however, was float rock — a term used by geologists to describe something that is not in-place. The team are now working to link the spherule-rich texture observed at St. Pauls Bay to the wider stratigraphy at Witch Hazel Hill, and initial observations have provided tantalizing indications that it could be linked to one of the dark-toned layers identified by the team from orbit. Placing these features in geologic context will be critical for understanding their origin, and determining their significance for the geological history of the Jezero crater rim and beyond! Share Details Last Updated Mar 21, 2025 Related Terms Blogs Explore More 4 min read Sols 4484-4485: Remote Sensing on a Monday Article 1 day ago 2 min read Sols 4481-4483: Humber Pie Article 3 days ago 3 min read Sols 4479-4480: What IS That Lumpy, Bumpy Rock? Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  4. Last week
  5. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A NASA researcher and innovation architect from the Convergent Aeronautics Solutions project Discovery team collaborating at a whiteboard during a visit to Chapel Hill, N.C. on Aug. 13, 2024.NASA / Ariella Knight Convergent Aeronautics Solutions (CAS) Discovery identifies problems worth solving for the benefit of all. We formulate “convergent” problems—across multiple disciplines and sectors—and build footholds toward potentially transformative opportunities in aeronautics. As aeronautics rapidly advances, it is increasingly intersecting with other sectors like energy, healthcare, emergency response, economic resilience, the space economy, and more. CAS Discovery builds new innovation tools and methods, a workforce adept at innovation methods, and transdisciplinary teams of researchers within and beyond NASA that conduct regular “Discovery sprints”—expeditions into cross-sector topic areas that could beneficially transform aeronautics and humanity. WHAT is Discovery? Participatory It is difficult to understand and effectively address stakeholders’ needs & capabilities without engaging them. Discovery, in consultation with key NASA offices and other government agencies, has honed mechanisms to lawfully and respectfully engage and invite participation from stakeholders, communities, industry, NGOs and government to collaboratively formulate complex societal challenges tied to aviation. Convergent Typical organizational structures limit convergence across knowledge boundaries. CAS Discovery is intentionally cross-sector and transdisciplinary because the most impactful ideas often lie at the intersection of boundaries, the borderlands where multiple disciplines and communities come together. We work to emerge multi-sector, system-of-systems challenges that integrate political, economic, social, technological, environmental, legal and ethical trends, needs, and capabilities. Future-Focused Organizations have a tendency of being driven by short-term thinking and relatively short time horizons. CAS Discovery uses strategic foresight methods to examine 20 to 50-year time horizons, systematically ingesting and synthesizing signals and trends from aero and non-aero sources to envision a variety of scenarios to uncover opportunities for the future of aeronautics. Ecosystemic We study the ecosystems that are part of aeronautics and aerospace. This helps in broadening consideration of impacts while practicing foresight. It enhances our awareness of the environment and gives stakeholders the ability to see ripple effects across technologies, economies, communities, etc. We seek to benefit the wellness of the entire ecosystem while also benefiting the constituents. A group of NASA researchers and leaders from the Convergent Aeronautics Solutions project Discovery team at the agency’s Glenn Research Center in Cleveland, on April 30, 2024.NASA / Ricaurte Chock WHO is Discovery? NASA Researchers They are the engine that propels CAS Discovery. Our cross-center Discovery sprint and foresight teams are composed of researchers from NASA’s Ames Research Center and Armstrong Flight Research Center in California, Glenn Research Center in Cleveland, and Langley Research Center in Virginia. Researchers from Outside of NASA They collaborate with us as subject matter experts or Discovery sprint team members to contribute their backgrounds in fields less common within NASA, such as energy, economics, anthropology, and other areas. This collaboration happens through many mechanisms, such as freelancing, crowdsourcing, interviews, webinars, and podcasts. Stakeholders They are engaged in various ways and to different degrees, often co-envisioning potential futures, co-formulating problems, and co-designing solutions. Innovation Architects They are the glue that holds CAS Discovery together and the anti-glue that keeps our teams from getting stuck. They come from a wide range of experience, each bringing deep expertise in leading transdisciplinary teams and stakeholders through processes and methods from strategic foresight, complex systems design, human-centered design, and more. CAS Center Integration Leads (CILs) They work with NASA line management at each Aeronautics center to bring NASA researchers and potential new PIs into CAS. CILs also host annual Wicked Wild idea pitch events to bring new problem areas and solution ideas into CAS Discovery and early Execution phases. Ames Research Center CIL: Ty Huang Armstrong Flight Research Center CIL: Matt Kearns Glenn Research Center CIL: Jeffrey Chin Langley Research Center CIL: Devin Pugh-Thomas CAS Discovery Leads They oversee Discovery sprint and strategic foresight teams, topics, and processes; new tools and continuous improvement experiments; and the overall health of the CAS innovation front-end pipeline and related strategic outputs. Discovery Lead: Eric Reynolds Brubaker, Langley Research Center Foresight Lead: Vikram Shyam, Glenn Research Center Sample Discovery Publications COMING SOON: Links to Technical Memorandums and conference papers. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 2 min read NASA Concludes Wind Study Article 2 years ago 3 min read NASA Armstrong Supports Wind Study Article 2 years ago 4 min read NASA Interns Help Identify Aviation Solutions to Health Care Challenges Article 2 years ago Keep Exploring Discover More Topics From NASA Convergent Aeronautics Solutions Science Missions Aeronautics STEM Explore NASA’s History Share Details Last Updated Mar 21, 2025 EditorJim BankeContactDiana Fitzgeralddiana.r.fitzgerald@nasa.gov Related TermsConvergent Aeronautics Solutions View the full article
  6. Stunning Solar Prominences Captured with LUNT LS50THa Telescope | H-alpha Solar Observation
  7. NASA Science Live: Aurora Glow, Electric Flow & the EZIE Mission
  8. 4 min read NASA to Launch Three Rockets from Alaska in Single Aurora Experiment Three NASA-funded rockets are set to launch from Poker Flat Research Range in Fairbanks, Alaska, in an experiment that seeks to reveal how auroral substorms affect the behavior and composition of Earth’s far upper atmosphere. The experiment’s outcome could upend a long-held theory about the aurora’s interaction with the thermosphere. It may also improve space weather forecasting, critical as the world becomes increasingly reliant on satellite-based devices such as GPS units in everyday life. Colorful ribbons of aurora sway with geomagnetic activity above the launch pads of Poker Flat Research Range. NASA/Rachel Lense The University of Alaska Fairbanks (UAF) Geophysical Institute owns Poker Flat, located 20 miles north of Fairbanks, and operates it under a contract with NASA’s Wallops Flight Facility in Virginia, which is part of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The experiment, titled Auroral Waves Excited by Substorm Onset Magnetic Events, or AWESOME, features one four-stage rocket and two two-stage rockets all launching in an approximately three-hour period. Colorful vapor tracers from the largest of the three rockets should be visible across much of northern Alaska. The launch window is March 24 through April 6. The mission, led by Mark Conde, a space physics professor at UAF, involves about a dozen UAF graduate student researchers at several ground monitoring sites in Alaska at Utqiagvik, Kaktovik, Toolik Lake, Eagle, and Venetie, as well as Poker Flat. NASA delivers, assembles, tests, and launches the rockets. “Our experiment asks the question, when the aurora goes berserk and dumps a bunch of heat in the atmosphere, how much of that heat is spent transporting the air upward in a continuous convective plume and how much of that heat results in not only vertical but also horizontal oscillations in the atmosphere?” Conde said. Confirming which process is dominant will reveal the breadth of the mixing and the related changes in the thin air’s characteristics. “Change in composition of the atmosphere has consequences,” Conde said. “And we need to know the extent of those consequences.” Most of the thermosphere, which reaches from about 50 to 350 miles above the surface, is what scientists call “convectively stable.” That means minimal vertical motion of air, because the warmer air is already at the top, due to absorption of solar radiation. A technician with NASA’s Wallops Flight Facility sounding rocket office works on one of the payload sections of the rocket that will launch for the AWESOME campaign. NASA/Lee Wingfield When auroral substorms inject energy and momentum into the middle and lower thermosphere (roughly 60 to 125 miles up), it upsets that stability. That leads to one prevailing theory — that the substorms’ heat is what causes the vertical-motion churn of the thermosphere. Conde believes instead that acoustic-buoyancy waves are the dominant mixing force and that vertical convection has a much lesser role. Because acoustic-buoyancy waves travel vertically and horizontally from where the aurora hits, the aurora-caused atmospheric changes could be occurring over a much broader area than currently believed. Better prediction of impacts from those changes is the AWESOME mission’s practical goal. “I believe our experiment will lead to a simpler and more accurate method of space weather prediction,” Conde said. Two two-stage, 42-foot Terrier-Improved Malemute rockets are planned to respectively launch about 15 minutes and an hour after an auroral substorm begins. A four-stage, 70-foot Black Brant XII rocket is planned to launch about five minutes after the second rocket. The first two rockets will release tracers at altitudes of 50 and 110 miles to detect wind movement and wave oscillations. The third rocket will release tracers at five altitudes from 68 to 155 miles. Pink, blue, and white vapor traces should be visible from the third rocket for 10 to 20 minutes. Launches must occur in the dawn hours, with sunlight hitting the upper altitudes to activate the vapor tracers from the first rocket but darkness at the surface so ground cameras can photograph the tracers’ response to air movement. By Rod Boyce University of Alaska Fairbanks Geophysical Institute NASA Media Contact: Sarah Frazier Share Details Last Updated Mar 21, 2025 Related Terms Sounding Rockets Goddard Space Flight Center Heliophysics Heliophysics Division Heliophysics Research Program Science & Research Science Mission Directorate Sounding Rockets Program Uncategorized Wallops Flight Facility Explore More 2 min read Hubble Captures a Neighbor’s Colorful Clouds Article 7 hours ago 11 min read The Earth Observer Editor’s Corner: January–March 2025 Article 24 hours ago 5 min read Celebrating 25 Years of Terra Article 24 hours ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  9. Explore This Section RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact RPS Systems Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM Power to Explore Contest FAQ 4 min read NASA Reveals Semifinalists of Power to Explore Challenge A word cloud showing “superpowers” of the 45 semifinalists. NASA/David Lam NASA selected 45 student essays as semifinalists of its 2024-2025 Power to Explore Challenge, a national competition for K-12 students featuring the enabling power of radioisotopes. Contestants were challenged to explore how NASA has powered some of its most famous science missions and to dream up how their personal “superpower” would energize their success on their own radioisotope-powered science mission to explore one of the nearly 300 moons of our solar system. The competition asked students to learn about radioisotope power systems (RPS), a type of “nuclear battery” that NASA uses to explore the harshest, darkest, and dustiest parts of our solar system. RPS have enabled many spacecraft to explore a variety of these moons, some with active volcanoes, methane lakes, and intricate weather patterns similar to Earth. Many of these moons remain a mystery to us. This year’s submissions to NASA’s Power to Explore Challenge were immensely enthralling, and we’re thrilled that the number of entries reached a record high. Carl Sandifer II Program Manager, NASA Radioisotope Power Systems Program In 275 words or less, students wrote about a mission of their own that would use these space power systems to explore any moon in our solar system and described their own power to achieve their mission goals. The Power to Explore Challenge offered students the opportunity to learn more about these reliable power systems, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest set a record, receiving 2,051 submitted entries from all 50 states, Guam, U.S. Virgin Islands, American Samoa, Northern Mariana Islands, Puerto Rico, and the Department of Defense Education Activity (DoDEA) Overseas. “This year’s submissions to NASA’s Power to Explore Challenge were immensely enthralling, and we’re thrilled that the number of entries reached a record high,” said Carl Sandifer II, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland. “It was particularly interesting to see which moons the students selected for their individual essays, and the mysteries they hope to unravel. Their RPS-powered mission concepts always prove to be innovative, and it’s a joy to learn about their ‘superpowers’ that exemplify their path forward as the next generation of explorers.” Entries were split into three categories: grades K-4, 5-8, and 9-12. Every student who submitted an entry received a digital certificate, and over 4,859 participants who signed up received an invitation to the Power Up with NASA virtual event. Students learned about what powers the NASA workforce utilizes to dream big and work together to explore. Speakers included Carl Sandifer II, Dr. Wanda Peters, NASA’s deputy associate administrator for programs in the Science Mission Directorate and Dr. Zibi Turtle, principal investigator for NASA’s Dragonfly mission from the John Hopkins Applied Physics Laboratory. Fifteen national semifinalists in each grade category (45 semifinalists total) have been selected. These participants also will receive a NASA RPS prize pack. Finalists for this challenge will be announced on April 23. Grades K-4 Vihaan Akhoury, Roseland, NJ Ada Brolan, Somerville, MA Ashwin Cohen, Washington D.C Unnathi Chandra Devavarapu, San Marcos, CA Levi Fisher, Portland, OR Tamanna Ghosh, Orlando, FL Ava Goodison, Arnold, MD Anika Lal, Pflugerville, TX Diya Loganathan, Secaucus, NJ Mini M, Ann Arbor, MI Mark Porter, Temple Hills, MD Rohith Thiruppathy, Canton, MI Zachary Tolchin, Guilford CT Kavin Vairavan, West Windsor Township, NJ Terry Xu, Arcadia, CA Grades 5-8 Chowdhury Wareesha Ali, Solon OH Caydin Brandes, Los Angeles, CA Caleb Braswell, Crestview, FL Lilah Coyan, Spokane, WA Ashwin Dhondi Kubeer, Phoenix, AZ Jonathan Gigi, Cypress, TX Gagan Girish, Portland, OR Maggie Hou, Snohomish, WA Sanjay Koripelli, Louisville, KY Isaiah Muniz, South Orange, NJ Sarabhesh Saravanakumar, Bothell, WA Eliya Schubert, Katonah, NY Gabriel Traska, Fort Woth, TX Jaxon Verbeck, Riggins, ID Krish Vinodhkumar, Monrovia, MD Grades 9-12 Samaria Berry, Kinder, LA David Cai, Saipan, MP Reggie Castro, Saipan, MP Ryan Danyow, Rutland City, VT Faiz Karim, Jericho, NY Sakethram Kuncha, Chantilly, VA Katerina Morin, Miami, FL Emilio Olivares, Edmond, OK Kairat Otorov, Trumbull, CT Dev Rai, Herndon, VA Shaurya Saxena, Irving, TX Saanvi Shah, Bothell, WA Niyant Sithamraju, San Ramon, CA Anna Swenson, Henderson, NV Alejandro Valdez, Orlando, FL About the Challenge The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate. Kristin Jansen NASA’s Glenn Research Center View the full article
  10. NASA

    Making Ripples

    NASA/George Shelton A dolphin swims through the water in the Launch Complex 39 Area turn basin at NASA’s Kennedy Space Center in Florida on Nov. 6, 2007. The turn basin was carved out of the Banana River when NASA Kennedy was built. Dolphins are a frequent sight in the rivers around Kennedy, which shares a boundary with the Merritt Island Wildlife Nature Refuge. The refuge was established in 1963 for the protection of migratory birds. Consisting of 140,000 acres, the refuge provides a wide variety of habitats: coastal dunes, saltwater marshes, managed impoundments, scrub, pine flatwoods, and hardwood hammocks. These habitats provide a home for more than 1,500 species of plants and animals and 15 federally listed species. Image credit: NASA/George Shelton View the full article
  11. NASA astronaut and Pilot for NASA’s SpaceX Crew-10 mission Nichole Ayers is pictured training inside a mockup of a Dragon cockpit at the company’s facilities in Hawthorne, California. Credit: SpaceX Students from Richmond Hill, New York,will have the chance to connect with NASA astronauts Anne McClain and Nichole Ayers as they answer prerecorded science, technology, engineering, and mathematics-related questions from aboard the International Space Station. Watch the 20-minute space-to-Earth call at 12 p.m. EDT on Wednesday, March 26, on NASA+ and learn how to watch NASA content on various platforms, including social media. The event, open to students and their families, will be hosted by Richmond Hill High School, a New York City public high school in Queens South, District 27. The school’s goal is to inspire their students to pursue STEM careers. Media interested in covering the event must contact Lilly Donaldson at Lily@arttechnically.org by 5 p.m., Monday, March 24. For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network. Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery. See videos and lesson plans highlighting space station research at: https://www.nasa.gov/stemonstation -end- Abbey Donaldson Headquarters, Washington 202-358-1600 Abbey.a.donaldson@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Mar 21, 2025 LocationNASA Headquarters Related TermsLearning ResourcesIn-flight Education DownlinksOutside the Classroom View the full article
  12. Technicians with NASA and Lockheed Martin fitted three spacecraft adapter jettison fairing panels onto the service module of the agency’s Orion’s spacecraft. The operation completed on Wednesday, March 19, 2025, inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The European-built service module is the powerhouse that will propel the spacecraft to the Moon. Its four solar array wings which were installed to its exterior in early March. The latest addition of fairing panels on Orion’s service module will protect the solar array wings, shielding them from the heat, wind, and acoustics of launch and ascent, and also help redistribute the load between Orion and the massive thrust of the SLS (Space Launch System) rocket during liftoff and ascent. Once the spacecraft is above the atmosphere, the three fairing panels will separate from the service module, allowing the wings to unfurl. In addition to power, the service module will provide propulsion and life support including thermal control, air, and water for the Artemis II test flight, NASA’s first mission with crew under the Artemis campaign that will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. Image credit: NASA/Glenn Benson View the full article
  13. Researchers utilizing publicly available Synthetic Aperture Radar (SAR) data from Capella Space and Umbra have uncovered significant hidden structures within and beneath the CFR Pyramid on the Giza Plateau. The study reveals five distinct "Zed" structures located above what was previously believed to be the pharaoh’s burial chamber, resembling similar formations found in the Khufu Pyramid. These structures are connected by geometric pathways, with additional secondary formations identified through satellite imaging. Source and credit images: The Reese report / The Kafre Research Project. Most notably, eight vertically aligned cylindrical structures, arranged in two parallel rows from north to south, extend 648 meters underground. These formations merge into two massive cubic structures, each approximately 80 meters per side. Tomographical analysis indicates that the cylindrical structures function as hollow wells surrounded by descending spiral pathways. Further research suggests that these subterranean formations are not limited to the CFR Pyramid but extend beneath the Khufu and Menkaure pyramids as well, reaching depths of approximately two kilometers. The study marks a groundbreaking advancement in the understanding of the Giza Plateau’s underground complexity, The discoveries surrounding the CFR Pyramid represent just the tip of a vast and complex structure beneath the Giza Plateau.If confirmed, this discovery could challenge mainstream Egyptology’s belief that the pyramids were simply royal tombs. 🚨🇪🇬SCIENTISTS CLAIM MASSIVE UNDERGROUND STRUCTURES BENEATH GIZA PYRAMIDS New radar imaging research suggests a 2-kilometer underground complex beneath the Giza pyramids, featuring interconnected chambers, spiraling wells, and massive cubic structures. Using Synthetic Aperture… pic.twitter.com/P1OY4gdl7L — Mario Nawfal (@MarioNawfal) March 20, 2025 View the full article
  14. Northrop Grumman’s Cygnus spacecraft is pictured in the grips of the Canadarm2 robotic arm shortly after its capture Credit: NASA After delivering more than 8,200 pounds of supplies, scientific investigations, commercial products, hardware, and other cargo to the orbiting laboratory for NASA and its international partners, Northrop Grumman’s uncrewed Cygnus spacecraft is scheduled to depart the International Space Station on Friday, March 28. Watch NASA’s live coverage of undocking and departure at 6:30 a.m. EDT on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. This mission was the company’s 21st commercial resupply mission to the space station for NASA. Flight controllers on the ground will send commands for the space station’s Canadarm2 robotic arm to detach Cygnus from the Unity module’s Earth-facing port, then maneuver the spacecraft into position for release at 6:55 a.m. NASA astronaut Nichole Ayers will monitor Cygnus’ systems upon its departure from the space station. Cygnus – filled with trash packed by the station crew – will be commanded to deorbit on Sunday, March 30, setting up a re-entry where the spacecraft will safely burn up in Earth’s atmosphere. The Northrop Grumman spacecraft arrived at the space station Aug. 6, 2024, following launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Get breaking news, images, and features from the space station on the station blog, Instagram, Facebook, and X. Learn more about Cygnus’ mission and the International Space Station at: https://www.nasa.gov/station -end- Julian Coltre / Josh Finch Headquarters, Washington 202-358-1100 julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Share Details Last Updated Mar 21, 2025 LocationNASA Headquarters Related TermsInternational Space Station (ISS)Humans in SpaceJohnson Space CenterNASA Headquarters View the full article
  15. Video: 00:02:46 The high-performance computing (HPC) environment will be available for scientific research and technological development activities, supporting all ESA programmes as well as the researchers and small- and medium-enterprises from Member States. View the full article
  16. Week in images: 17-21 March 2025 Discover our week through the lens View the full article
  17. 4 Min Read 3D Printing: Saving Weight and Space at Launch The first metal part 3D printed in space. Credits: ESA Science in Space March 2025 Additive manufacturing, also known as 3D printing, is regularly used on the ground to quickly produce a variety of devices. Adapting this process for space could let crew members create tools and parts for maintenance and repair of equipment on the spot, rather than trying to bring along every item that might be needed. The ability to manufacture things in space is especially important in planning for missions to the Moon and Mars because additional supplies cannot quickly be sent from Earth and cargo capacity is limited. Research on the International Space Station is helping to develop the capability to address multiple needs using 3D printing. NASA astronaut Jeanette Epps configures the Metal 3D Printer to produce experimental samples from stainless steel.NASA Metal 3D Printer, a current investigation from ESA (European Space Agency), tests 3D printing of small metal parts in microgravity. Results could improve understanding of the function, performance, and operations of 3D printing in space with metal, as well as the quality, strength, and characteristics of printed parts. This work also could benefit applications on Earth that use metal, such as the automotive, aeronautical, and maritime industries. Printing with plastic NASA Astronaut Butch Wilmore holds a ratchet wrench created with the 3D Printing in Zero-G printer.NASA 3D Printing in Zero-G sent the first 3D printer, developed by NASA’s Marshall Space Flight Center and Redwire (formerly Made in Space), to the space station in 2014. The printer used a process that feeds a continuous thread of plastic through a heated extruder and onto a tray layer by layer to create an object. The investigation produced more than a dozen parts, including a ratchet wrench, showing that researchers could send a design from the ground to the system on the station more than 200 miles above. Comparing the parts made in space with those made on the ground showed that microgravity had no significant effect on the process. Redwire then developed the Additive Manufacturing Facility (AMF), sent to the station in 2015. Researchers evaluated its mechanical performance and found improvements in tension strength and flexibility compared to the earlier demonstration, helping to further the technology for this type of manufacturing on Earth and in space. In 2015 and 2016, Portable On Board 3D Printer tested an automated printer developed by the Italian Space Agency to produce plastic objects in space. The investigation provided insight into how the material behaves in microgravity, which could support development of European additive manufacturing technology for use in space. Printing with other materials NASA astronaut Anne McClain installs the Refabricator in Feb. 2019.NASA Another approach is recycling plastic – for example, turning a used 3D-printed wrench into a spoon and creating items from the plastic bags and packing foam needed to send supplies to space. This technology could help reduce the amount of raw material at launch and cut down on the volume of waste that must be disposed of on long journeys. The Refabricator, a machine created by Tethers Unlimited Inc, tested this approach and successfully manufactured its first object. Some issues occurred in the bonding process, likely caused by microgravity, but assessment of the material could help determine whether there are limits to how many times plastic can be re-used. Ultimately, researchers plan to create a database of parts that can be manufactured using the space station’s capabilities. The Redwire Regolith Print facility before launch to the space station.Redwire Space Redwire Regolith Print (RRP) tested another kind of feedstock for 3D manufacturing in orbit, a simulated version of regolith, the dust present on the surface of the Moon and other planetary bodies. Results could lead to development of technology for using regolith to construct habitats and other structures rather than bringing raw materials from Earth. The space station also has hosted studies of a form of 3D printing called biological printing or bioprinting. This process uses living cells, proteins, and nutrients as raw materials to potentially produce human tissues for treating injury and disease, which could benefit future crews and patients on Earth. Other manufacturing techniques tested on the orbiting lab include producing optical fibers and growing crystals for synthesizing pharmaceuticals and fabricating semiconductors. View the full article
  18. Video: 00:09:13 Meet Andrea Patassa—test pilot, aviator, passionate outdoor adventurer, and Member of ESA’s Astronaut Reserve. In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training. ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond. This interview was recorded in November 2024. You can also listen to this episode on all major podcast platforms. Keep exploring with ESA Explores! View the full article
  19. Image: Inner space engineering View the full article
  20. Since the Space Force stood up five years ago, it has delivered warfighting effects to the point that the U.S. can now contest the space domain, Space Force Chief of Space Operations Gen. B. Chance Saltzman said. View the full article
  21. Within the exercise environment, the CJSpOC facilitated the operational command and control of combined space forces in the Korean theater to achieve the combined forces commander's objectives. View the full article
  22. Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read Hubble Captures a Neighbor’s Colorful Clouds This NASA/ESA Hubble Space Telescope image features part of the Small Magellanic Cloud. ESA/Hubble & NASA, C. Murray Download this image Say hello to one of the Milky Way’s neighbors! This NASA/ESA Hubble Space Telescope image features a scene from one of the closest galaxies to the Milky Way, the Small Magellanic Cloud (SMC). The SMC is a dwarf galaxy located about 200,000 light-years away. Most of the galaxy resides in the constellation Tucana, but a small section crosses over into the neighboring constellation Hydrus. Thanks to its proximity, the SMC is one of only a few galaxies that are visible from Earth without the help of a telescope or binoculars. For viewers in the southern hemisphere and some latitudes in the northern hemisphere, the SMC resembles a piece of the Milky Way that has broken off, though in reality it’s much farther away than any part of our own galaxy. With its 2.4-meter mirror and sensitive instruments, Hubble’s view of the SMC is far more detailed and vivid than what humans can see. Researchers used Hubble’s Wide Field Camera 3 to observe this scene through four different filters. Each filter permits different wavelengths of light, creating a multicolored view of dust clouds drifting across a field of stars. Hubble’s view, however, is much more zoomed-in than our eyes, allowing it to observe very distant objects. This image captures a small region of the SMC near the center of NGC 346, a star cluster that is home to dozens of massive young stars. Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli (claire.andreoli@nasa.gov) NASA’s Goddard Space Flight Center, Greenbelt, MD Share Details Last Updated Mar 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Magellanic Clouds The Universe Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble’s Night Sky Challenge Hearing Hubble Reshaping Our Cosmic View: Hubble Science Highlights View the full article
  23. Image: The Copernicus Sentinel-2 mission takes us over the Sequoia and Kings Canyon National Parks in California’s Sierra Nevada mountains. View the full article
  24. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read Sols 4484-4485: Remote Sensing on a Monday NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 17, 2025 — sol 4483, or Martian day 4,483 of the Mars Science Laboratory mission — at 09:38:17 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University Earth planning date: Monday, March 17, 2025 Last week I was in Houston, Texas, at the Lunar and Planetary Science Conference. The mid-March weather in Houston is often more like mid-summer weather here in Toronto, so it has been a bit of a shock coming home to temperatures that are hovering around freezing rather than being in the upper 20s (degrees Celsius, or the low to mid 80s for those of you still using Fahrenheit). Still, Toronto is positively balmy compared to Gale Crater, where temperatures usually range between minus 80°C and minus 20°C (or minus 110°F to minus 5°F) during this part of the year. These cold temperatures and their associated higher demands on the rover’s available power for heating are continuing to motivate many of the decisions that we make during planning. We received the double good news this morning that the weekend’s drive completed successfully, including the mid-drive imaging of the other side of “Humber Park” that Michelle mentioned in Friday’s blog, and that our estimates of the weekend plan’s power consumption ended up being a little conservative. So we started planning exactly where we wanted to be, and with more power to play around with than we had expected. Yay! The weekend’s drive left us parked in front of some rocks with excellent layering and interesting ripples that we really wanted to get a closer look at with MAHLI. (See the cover image for a look at these rocks as seen by Navcam.) Sadly, we also ended up parked in such a way that presented a slip hazard if the arm was unstowed. As much as we would have loved to get close-up images of these rocks, we love keeping Curiosity’s arm safe even more, so we had to settle for a remote sensing-only plan instead. Both the geology and mineralogy (GEO) and the environmental science (ENV) teams took full advantage of the extra power gifted to us today to create a plan packed full of remote sensing observations. Because we’re driving on the first sol of this two-sol plan, any “targeted” observations, i.e. those where we know exactly where we want to point the rover’s cameras, must take place before the drive. The first sol is thus packed full of Mastcam and ChemCam observations, starting with a 14×3 Mastcam mosaic of the area in front of us that’s outside of today’s workspace. Individual targets then get some Mastcam love with mosaics of various ripple and layering features at “Verdugo Peak,” “Silver Moccasin Trail,” and “Jones Peak.” Mastcam and ChemCam also team up on a LIBS target, “Trancas Canyon,” and some more long-distance mosaics of Gould Mesa, a feature about 100 meters away from us (about 328 feet) that we’ll be driving to the south of as we continue to head toward the “boxwork” structures. After a drive, there often aren’t many activities scheduled other than the imaging of our new location that we’ll need for the next planning day. However, in this plan ENV decided to take advantage of the fact that Navcam observations can take place at the same time that the rover is talking to one of the spacecraft that orbit Mars. This is a useful trick when power is tight as it allows us to do more science without adding additional awake time (since the rover needs to be awake anyway to communicate with the orbiters). Today, it’s being used to get some extra cloud observations right before sunset, a time that we don’t often get to observe. These observations include a zenith movie that looks straight up over the rover and a “phase function sky survey,” which takes a series of nine movies that form a dome around the rover to examine the properties of the clouds’ ice crystals. The second sol of this plan is much more relaxed, as post-drive sols often are because we don’t know exactly where we’ll be after a drive. Today, we’ve just got our usual ChemCam AEGIS activity, followed by a pair of Navcam cloud and cloud shadow movies to measure the altitude of clouds over Gale. As always, we’ve also got our usual set of REMS, RAD, and DAN activities throughout this plan. Share Details Last Updated Mar 20, 2025 Related Terms Blogs Explore More 2 min read Sols 4481-4483: Humber Pie Article 2 days ago 3 min read Sols 4479-4480: What IS That Lumpy, Bumpy Rock? Article 6 days ago 3 min read Navigating a Slanted River Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  25. This year’s RASC-AL competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond.ASANASA Fourteen university teams have been selected as finalists for NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition. This year’s competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond. Finalists will present their proposed concepts to a panel of NASA and aerospace industry leaders. The 2025 Finalists are: Sustained Lunar Evolution – An Inspirational Moment: Massachusetts Institute of Technology, “M.I.S.T.R.E.S.S. – Moon Infrastructure for Sustainable Technologies, Resource Extraction, and Self-Sufficiency” Tulane University, “Scalable Constructs for Advanced Lunar Activities and Research (SCALAR)” Virginia Polytechnic Institute and State University, “Project Aeneas” Virginia Polytechnic Institute and State University, “Project Khonsu” Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign: Auburn University, “Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER)” University of Illinois, Urbana-Champaign, “MATER: Mars Architecture for Technology Evaluation and Research” Virginia Polytechnic Institute and State University, “Project Vehicles for Engineering Surface Terrain Architectures (VESTA)” Small Lunar Servicing and Maintenance Robot: Arizona State University, “DIANA – Diagnostic and Intelligent Autonomously Navigated Assistant” South Dakota State University, “Next-gen Operations and Versatile Assistant (NOVA)” South Dakota State University, “MANTIS: Maintenance and Navigation for Technical Infrastructure Support” Texas A&M University, “R.A.M.S.E.E.: Robotic Autonomous Maintenance System for Extraterrestrial Environments” University of Maryland, “Servicing Crane Outfitted Rover for Payloads, Inspection, Operations, N’stuff (SCORPION)” University of Puerto Rico, Mayagüez, “Multi-functional Operational Rover for Payload Handling and Navigation (MORPHN)” Virginia Polytechnic Institute & State University, “Adaptive Device for Assistance and Maintenance (ADAM)” The RASC-AL Competition is designed to engage university students and academic institutions in innovation within the field of aerospace engineering. By providing a platform for students to develop and present their ideas, NASA aims to cultivate foundational research for new concepts and technologies for the future of space exploration. This year’s RASC-AL projects include scalable lunar infrastructure and services, a lunar robot that can work autonomously or be controlled remotely, and a concept for a science or technology demonstration mission using human-scale launch, transportation, entry, and landing capabilities at Mars. All of these functions are critical to future NASA missions. “This year’s RASC-AL projects are not just academic exercises; they will contribute real solutions to some of the most pressing challenges we currently face. The competition continues to highlight the importance of innovation and interdisciplinary collaboration in aerospace,” said Daniel Mazanek, RASC-AL program sponsor and senior space systems engineer from NASA’s Langley Research Center in Hampton, VA. These finalist teams will move forward to the next phase of the competition, where they will prepare and submit a detailed technical paper outlining their designs, methodologies, and anticipated impacts. Each team will present their concepts at the 2025 RASC-AL Competition Forum in June 2025 showcasing their work to a judging panel of NASA and industry experts for review and discussion. “The ingenuity and out-of-the-box designs showcased by these students is inspiring,” added Dr. Christopher Jones, RASC-AL program sponsor and chief technologist for the Systems Analysis and Concepts Directorate at NASA’S Langley “We are excited to see how their ideas can contribute to NASA’s ongoing missions and future exploration goals. This is just the beginning of their journey, and we are proud to be part of it.” To learn more about NASA’s RASC-AL Competition, visit NASA’s RASC-AL Competition Website. RASC-AL is sponsored by the Strategy and Architecture Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA’s Langley Research Center. It is administered by the National Institute of Aerospace. Genevieve Ebarle / Victoria O’Leary National Institute of Aerospace View the full article
  26. Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 5 min read Celebrating 25 Years of Terra Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer Terra anniversary banner Image credit: NASA Nasa personnel gather to celebrate Terra’s 25th anniversary at the Goddard Visitor Center. Image credit: NASA On December 18, 2024, Terra—the first EOS Flagship mission celebrated the 25th anniversary of its launch from Vandenberg Space Force (then Air Force) Base. Some 70 individuals gathered at the Goddard Space Flight Center’s (GSFC) Visitor Center to celebrate this remarkable achievement for the venerable mission – with 75 more participating virtually. The gathering began with a reception culminating with some informal remarks in the main area of the Visitor’s Center outside the auditorium from Marc Dinardo [Lockheed Martin, emeritus] who was involved in the design of Terra. He explained that – at the time it was being built in the 1990s – Terra represented a “big step forward” for Lockheed Martin compared to projects the company had done prior to this. He discussed several engineering feats, e.g., fitting spacecraft components into the Atlas rocket used to launch Terra, moving from tape recorders to solid state recorders for data storage, the (at the time) novel thermal system developed to reject heat and protect instruments, and the direct broadcast capabilities. After the initial remarks, the in-person participants moved into the auditorium where they heard from representatives from Senior management [both from NASA Headquarters and GSFC] as well as from several key figures in Terra’s long history. Each speaker gave brief remarks and shared their perspectives on Terra’s development and achievements. Short summaries of each presentation follow below. Julie Robinson [NASA HQ—Deputy Director of the Earth Science Division] began by noting that this feels like a family celebration. She said her first personal experience with Terra was submitting a proposal as a young scientist to do research that would use data from Terra. At that time the idea of studying Earth as a system of systems was brand new. She had no idea at that time that more than a quarter-century later, she’d be involved in planning the “next generation” Earth System Observatory (ESO). Shawn Domagal-Goldman [Deputy Director of the Sciences and Exploration Directorate] spoke about how some of the biggest science questions we try to answer are interdisciplinary and cross-instrument, spanning missions and generations, and that the expertise and diverse skillsets of those who have worked on the Terra team over the past 25 years embodies this goal. Tom Neumann [GSFC—Deputy Director of Earth Science Division (GSFC)] reflected on his early involvement in the Terra–Aqua–Aura proposal reviews. He noted the sheer number of people involved in the mission and the logistical challenges that organizing that size group presented at the time. He also commented on the feeling of family surrounding the Team and how this surely contributed to its remarkable achievements over the past 25 years. Guennadi Kroupnik [Canadian Space Agency—Director General of Space Utilization] extended congratulations to NASA and Terra team for 25 years of operations. He commented that this “six year” mission has endured far beyond what was planned. Canada’s contribution was the Measurement of Pollution in the Troposphere (MOPITT) instrument with Jim Drummond [University of Toronto] as Principal Investigator. Kroupnik noted that MOPITT Is longest continuously running instrument in Canadian history. He is pleased that CSA has been able to partner with NASA on Terra and looks forward to future collaboration on the Atmospheric Observing System (AOS), which is one of the missions planned as part of ESO. Jack Kaye [NASA Headquarters—Associate Director for Research of the Earth Science Division] spoke of Terra’s remarkable scientific accomplishments, the creativity of the team, and the intentional emphasis placed on validating the data, and the creativity of the Team. He also noted that the direct broadcast capability was extremely useful and led to many applications. Kaye remarked that the late Yoram Kauffman referred to the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) as the “zoom lens of Terra.” Miguel Román [GSFC—Deputy Director for Atmospheres] described himself as a “child of Terra,” as he began his science career at around the same time that Terra launched and has been involved in various capacities ever since. Román recalled the launch taking place near vineyards, where the team celebrated the successful launch with local wine, to finally sharing a bottle of wine with the late Piers Sellers (who served as the first Terra project scientist) at one of the final gatherings Piers threw before he passed from cancer. Román also mentioned the Our Changing Planet book that four Earth Scientists – including former EOS Senior Project Scientist and Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team Leader Michael King and former Aqua Project Scientist Claire Parkinson—both GSFC emeritus – collaborated to write that was published in 2007. This book made use of numerous images and data from Terra’s five instruments – as well as other EOS data. Kurt Thome [GSFC—Terra Project Scientist] rounded out the presentations, emphasizing again what several have stated in their individual comments – the Terra Team truly is a family. He commented that he’s only been leading the mission for the past ten years and that his work builds on the shoulders of those who came before him. In particular, he acknowledged the slide Miguel Román showed briefly during his presentation that honored those who were part of the Terra family who have passed away – e.g., Piers Sellers, Yoram Kauffman. Steve Platnick EOS Senior Project Scientist Share Details Last Updated Mar 20, 2025 Related Terms Earth Science View the full article
  27. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This artist’s concept shows astronauts working on the Moon alongside different technology systems. The Data & Reasoning Fabric technology could help these systems operate in harmony, supporting the astronauts and ground control on Earth.Credit: NASA Imagine your car is in conversation with other traffic and road signals as you travel. Those conversations help your car anticipate actions you can’t see: the sudden slowing of a truck as it begins to turn ahead of you, or an obscured traffic signal turning red. Meanwhile, this system has plotted a course that will drive you toward a station to recharge or refuel, while a conversation with a weather service prepares your windshield wipers and brakes for the rain ahead. This trip requires a lot of communication among systems from companies, government agencies, and organizations. How might these different entities – each with their own proprietary technology – share data safely in real time to make your trip safe, efficient, and enjoyable? Technologists at NASA’s Ames Research Center in California’s Silicon Valley created a framework called Data & Reasoning Fabric (DRF), a set of software infrastructure, tools, protocols, governance, and policies that allow safe, secure data sharing and logical prediction-making across different operators and machines. Originally developed with a focus on providing autonomous aviation drones with decision-making capabilities, DRF is now being explored for other applications. This means that one day, DRF-informed technology could allow your car to receive traffic data safely and securely from nearby stoplights and share data with other vehicles on the road. In this scenario, DRF is the choreographer of a complex dance of moving objects, ensuring each moves seamlessly in relation to one another towards a shared goal. The system is designed to create an integrated environment, combining data from systems that would otherwise be unable to interact with each other. “DRF is built to be used behind the scenes,” said David Alfano, chief of the Intelligent Systems Division at Ames. “Companies are developing autonomous technology, but their systems aren’t designed to work with technology from competitors. The DRF technology bridges that gap, organizing these systems to work together in harmony.” Traffic enhancements are just one use case for this innovative system. The technology could enhance how we use autonomy to support human needs on Earth, in the air, and even on the Moon. Supporting Complex Logistics To illustrate the technology’s impact, the DRF team worked with the city of Phoenix on an aviation solution to improve transportation of critical medical supplies from urban areas out to rural communities with limited access to these resources. An autonomous system identified where supplies were needed and directed a drone to pick up and transport supplies quickly and safely. “All the pieces need to come together, which takes a lot of effort. The DRF technology provides a framework where suppliers, medical centers, and drone operators can work together efficiently,” said Moustafa Abdelbaky, senior computer scientist at Ames. “The goal isn’t to remove human involvement, but help humans achieve more.” The DRF technology is part of a larger effort at Ames to develop concepts that enable autonomous operations while integrating them into the public and commercial sector to create safer, efficient environments. “At NASA, we’re always learning something. There’s a silver lining when one project ends, you can identify a new lesson learned, a new application, or a new economic opportunity to continue and scale that work,” said Supreet Kaur, lead systems engineer at Ames. “And because we leverage all of the knowledge we’ve gained through these experiments, we are able to make future research more robust.” Choreographed Autonomy Industries like modern mining involve a variety of autonomous and advanced vehicles and machinery, but these systems face the challenge of communicating sufficiently to operate in the same area. The DRF technology’s “choreography” might help them work together, improving efficiency. Researchers met with a commercial mining company to learn what issues they struggle with when using autonomous equipment to identify where DRF might provide future solutions. “If an autonomous drill is developed by one company, but the haul trucks are developed by another, those two machines are dancing to two different sets of music. Right now, they need to be kept apart manually for safety,” said Johnathan Stock, chief scientist for innovation at the Ames Intelligent Systems Division. “The DRF technology can harmonize their autonomous work so these mining companies can use autonomy across the board to create a safer, more effective enterprise.” Further testing of DRF on equipment like those used in mines could be done at the NASA Ames Roverscape, a surface that includes obstacles such as slopes and rocks, where DRF’s choreography could be put to the test. Stock also envisions DRF improving operations on the Moon. Autonomous vehicles could transport materials, drill, and excavate, while launch vehicles come and go. These operations will likely include systems from different companies or industries and could be choreographed by DRF. As autonomous systems and technologies increase across markets, on Earth, in orbit, and on the Moon, DRF researchers are ready to step on the dance floor to make sure everything runs smoothly. “When everyone’s dancing to the same tune, things run seamlessly, and more is possible.” Share Details Last Updated Mar 20, 2025 Related TermsGeneral Explore More 3 min read Bringing the Heat: Abigail Howard Leads Thermal Systems for Artemis Rovers, Tools Article 2 days ago 5 min read Risk of Venous Thromboembolism During Spaceflight Article 6 days ago 4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage Article 1 week ago Keep Exploring Discover More Topics From NASA Ames Research Center Aeronautics Research Mission Directorate Intelligent Systems Division Space Technology Mission Directorate View the full article
  1. Load more activity
×
×
  • Create New...